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Problem 1 (Cauchy-Schwarz inquality).
(a) Prove that for every two random variables X and Y,
(E[XY])* < E[X?]E[Y?] =)

provided the expectations exist.

[Hint: Observe that the function ¢(t) := E[(Y —¢X)?] is non-negative for every ¢t € R. Expand the expression for ¢(t)
as a quadratic polynomial of a single variable ¢. What does the non-negativity of ¢ (t) tell you about the coefficients
of the latter polynomial?]

(b) Argue that the equality in () holds if and only if either X = 0 or Y = ¢X for some ¢ € R. Describe the
latter condition in a symmetric form.

Problem 2 (Covariance and correlation). Recall that the covariance of two random variables X and Y is defined
as Cov[X,Y] :=E [(X — E[X])(Y — E[Y])] when the expectation exists.

(a) Verify that if X and Y are independent, then Cov[X,Y] = 0.
(b) Verify that the converse of the latter statement is true if X and Y are Bernoulli random variables.

(c) Find an example of a pair of random variables X and Y with Cov[X, Y] = 0 that are not independent.
[Hint: To simplify things, look for an example with E[X] = E[Y] = 0. Tune the joint distribution of X and Y in such
a way that always XY = 0.]

The correlation coefficient of X and Y is defined as

Cov[X,Y]
Var[X]Var[Y] ’

p(X,Y) =

provided the variances are non-zero.

(d) Verify that —1 < p(X,Y) < 1.
[Hint: Apply the Cauchy-Schwarz inequality from Problem 1 to the centered versions of X and Y'.]

(e) Find examples of pairs of random variables with correlation coefficients 1 and —1.
[Hint: These are the cases in which the Cauchy-Schwarz inequality is actually an equality.]

Problem 3 (Minimum and maximum of independent exponential RVs). Let X ~ Exp(A) and Y ~ Exp(v) be
independent exponential random variables with rates A and v respectively. Let V := min{X,Y} and W =
max{X,Y}.

(a) Find the distribution of W.
[Hint: Start with the cdf of W. Use the fact that max{a, b} < w if and only if both a < w and b < w.]

(b) Find the distribution of V. Does the result surprise you?
[Hint: Start with the cdf of V. Use the fact that min{a, b} > v if and only if both @ > v and b > v.]

(c) Find the joint distribution of V and W.
[Hint: Start with the joint cdf of V and W. Given v, w € R, identify the region of the z-y plane in which min{z,y} < v

and max{z,y} < w. Use inclusion-exclusion to write the probability of this region in terms of the joint cdf of X
and Y]

Problem 4 (Bernoulli RVs). Let X and Y be a pair of Bernoulli random variables with joint distribution
p(0,0):a, p(l,O):b, p(O,l):c, p(]-v]-):d'
Show that
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Problem 5 (Exponential with random parameter). Let W be a positive random variable, and suppose that,
given W = w, the conditional distribution of X is exponential with rate w.

(a) Assuming W ~ Geom(p), find the probability density function of X.
(b) Assuming W ~ Unif([0, 1]), find the probability density function of X.

[Hint: In each case, start with finding the cumulative distribution function of X. Use the law of total probability P(X <
z) =EP(X <z|W)]]

Problem 6 (Drunkard’s walk). Consider a drunkard performing a random walk down a street, moving at each
step either one step forward or one step backward, with probabilities p and 1 — p respectively. He stops and
settles for the night if he either arrives at home (located at position 0, the west end of the street) or at the town’s
pub (located n steps from his home towards the east). The drunkard starts his random walk at position a, where
0 < a < n. Let T denote the random number of steps he takes until he arrives at home or the pub. Find the
expected value of T as a function of a.

More specifically, let Z;, Zs, . .. be i.i.d. random variables taking values +1 and —1, representing the consec-
utive steps of the drunkard. Let X, denote the drunkard’s starting position, and for ¢t > 1, let X; := X;_; + Z;.
In this setting, 7" := min {¢ : X; € {0,n}}. Let g(a) := E[T' | X; = da].

(a) Use conditioning on Z; to show that g satisfies the recursion g(a) = 1 + pg(a + 1) + (1 — p)g(a — 1) for
a=1,2,...,n— 1, with boundary conditions g(0) = g(n) = 0. Observe that the latter recursion can also
be written as p[g(a + 1) — g(a)] = (1 — p)[g(a) — g(a —1)] — 1.

(b) Case p = 1/2: Solve the recursion for g to show that g(a) = a(n — a) fora =0,1,2,...,n.
[Hint: Rewrite the recursion in terms of h(a) := g(a) — g(a — 1) and solve it to find h(a) = h(1) — 2(a — 1) for
a=1,2,...,n. Then, observe that g(a) = > ;_, h(k) + ¢g(0). Lastly, use the boundary conditions.]
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(c) Case p # 1/2: Solve the recursion for g to show that g(a) = p(Z/ﬁ)n — gy fora=0,1,2,...,n,
where ¢ := 1 — p. [Hint: Find a constant 3 such that the recursion can be written as p[g(a + 1) — g(a) + 8] =
(1 —p)[g(a) — g(a — 1) + B]. Solve the recursion for h(a) := g(a) — g(a — 1) + S in terms of h(1). Use a telescopic

sum (as in the previous part) to write g(a) in terms of h(1). Finally, use the boundary conditions.]



