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Problem 1 (Cauchy–Schwarz inquality).

(a) Prove that for every two random variables X and Y ,

(E[XY ])
2 ≤ E[X2]E[Y 2] (l)

provided the expectations exist.
[Hint: Observe that the function φ(t) := E[(Y − tX)2] is non-negative for every t ∈ R. Expand the expression for φ(t)
as a quadratic polynomial of a single variable t. What does the non-negativity of φ(t) tell you about the coefficients
of the latter polynomial?]

(b) Argue that the equality in (l) holds if and only if either X = 0 or Y = cX for some c ∈ R. Describe the
latter condition in a symmetric form.

Problem 2 (Covariance and correlation). Recall that the covariance of two random variables X and Y is defined
as Cov[X,Y ] := E

[
(X − E[X])(Y − E[Y ])

]
when the expectation exists.

(a) Verify that if X and Y are independent, then Cov[X,Y ] = 0.

(b) Verify that the converse of the latter statement is true if X and Y are Bernoulli random variables.

(c) Find an example of a pair of random variables X and Y with Cov[X,Y ] = 0 that are not independent.
[Hint: To simplify things, look for an example with E[X] = E[Y ] = 0. Tune the joint distribution of X and Y in such
a way that always XY = 0.]

The correlation coefficient of X and Y is defined as

ρ(X,Y ) :=
Cov[X,Y ]√
Var[X]Var[Y ]

,

provided the variances are non-zero.

(d) Verify that −1 ≤ ρ(X,Y ) ≤ 1.
[Hint: Apply the Cauchy–Schwarz inequality from Problem 1 to the centered versions of X and Y .]

(e) Find examples of pairs of random variables with correlation coefficients 1 and −1.
[Hint: These are the cases in which the Cauchy–Schwarz inequality is actually an equality.]

Problem 3 (Minimum and maximum of independent exponential RVs). Let X ∼ Exp(λ) and Y ∼ Exp(γ) be
independent exponential random variables with rates λ and γ respectively. Let V := min{X,Y } and W :=
max{X,Y }.

(a) Find the distribution of W .
[Hint: Start with the cdf of W . Use the fact that max{a, b} ≤ w if and only if both a ≤ w and b ≤ w.]

(b) Find the distribution of V . Does the result surprise you?
[Hint: Start with the cdf of V . Use the fact that min{a, b} > v if and only if both a > v and b > v.]

(c) Find the joint distribution of V and W .
[Hint: Start with the joint cdf of V and W . Given v, w ∈ R, identify the region of the x-y plane in which min{x, y} ≤ v

and max{x, y} ≤ w. Use inclusion-exclusion to write the probability of this region in terms of the joint cdf of X

and Y .]

Problem 4 (Bernoulli RVs). Let X and Y be a pair of Bernoulli random variables with joint distribution

p(0, 0) = a , p(1, 0) = b , p(0, 1) = c , p(1, 1) = d .

Show that

E[X | Y ] =
b

a+ b
+

ad− bc

(a+ b)(c+ d)
Y .
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Problem 5 (Exponential with random parameter). Let W be a positive random variable, and suppose that,
given W = w, the conditional distribution of X is exponential with rate w.

(a) Assuming W ∼ Geom(p), find the probability density function of X.

(b) Assuming W ∼ Unif([0, 1]), find the probability density function of X.

[Hint: In each case, start with finding the cumulative distribution function of X. Use the law of total probability P(X ≤
x) = E[P(X ≤ x |W )].]

Problem 6 (Drunkard’s walk). Consider a drunkard performing a random walk down a street, moving at each
step either one step forward or one step backward, with probabilities p and 1 − p respectively. He stops and
settles for the night if he either arrives at home (located at position 0, the west end of the street) or at the town’s
pub (located n steps from his home towards the east). The drunkard starts his random walk at position a, where
0 ≤ a ≤ n. Let T denote the random number of steps he takes until he arrives at home or the pub. Find the
expected value of T as a function of a.

More specifically, let Z1, Z2, . . . be i.i.d. random variables taking values +1 and −1, representing the consec-
utive steps of the drunkard. Let X0 denote the drunkard’s starting position, and for t ≥ 1, let Xt := Xt−1 + Zt.
In this setting, T := min

{
t : Xt ∈ {0, n}

}
. Let g(a) := E[T |X0 = a].

(a) Use conditioning on Z1 to show that g satisfies the recursion g(a) = 1 + pg(a + 1) + (1 − p)g(a − 1) for
a = 1, 2, . . . , n − 1, with boundary conditions g(0) = g(n) = 0. Observe that the latter recursion can also
be written as p

[
g(a+ 1)− g(a)

]
= (1− p)

[
g(a)− g(a− 1)

]
− 1.

(b) Case p = 1/2: Solve the recursion for g to show that g(a) = a(n− a) for a = 0, 1, 2, . . . , n.
[Hint: Rewrite the recursion in terms of h(a) := g(a) − g(a − 1) and solve it to find h(a) = h(1) − 2(a − 1) for
a = 1, 2, . . . , n. Then, observe that g(a) =

∑a
k=1 h(k) + g(0). Lastly, use the boundary conditions.]

(c) Case p ̸= 1/2: Solve the recursion for g to show that g(a) = n
2p−1

1−(q/p)a

1−(q/p)n − a
2p−1 for a = 0, 1, 2, . . . , n,

where q := 1 − p. [Hint: Find a constant β such that the recursion can be written as p
[
g(a + 1) − g(a) + β

]
=

(1 − p)
[
g(a) − g(a − 1) + β

]
. Solve the recursion for h(a) := g(a) − g(a − 1) + β in terms of h(1). Use a telescopic

sum (as in the previous part) to write g(a) in terms of h(1). Finally, use the boundary conditions.]
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