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Chapter 10

Estimation

So far, we have been learning about the language of probability models, and how to use such models to extract
information about the random experiments they represent. For instance, we have discussed how to apply
mathematical reasoning to a probability model in order to calculate the probability of a certain event, or to
deduce information on the concentration of the long-run average of a random quantity. Mathematical reasoning
on the basis of an already-chosen probability model is the subject of probability theory.

In practice, however, it is not always obvious which model is appropriate for a random phenomenon, and
even if we are able to choose a reasonable parametric model, we may still need to tune the parameters to make
the model compatible with the random experiment. A reasonable idea for bridging this gap is to use statistical
evidence (in the form of random samples or other forms of data) to infer information about the model. For
instance, we may use statistical data to estimate the parameters of the model, or to judge between competing
models. This is the domain of statistical inference.

This and the next chapter are dedicated to two standard problems in statistical inference, namely estimation
and hypothesis testing. Our discussions will be limited to the so-called frequentist approach.

10.1 Teaser: measurement

Every measurement is subject to various sources of error. As a result, there is often a discrepancy (of unknown
magnitude) between the result of the measurement and the quantity to be measured. We model this discrepancy
using probabilities.

As an example, suppose we want to measure the voltage between two points A and B in an electronic circuit
using a voltmeter (Figure 10.1). Every time we measure the voltage, we may get a slightly different reading

1.563 volt , 1.559 volt , 1.561 volt , . . .

Q What is the true value of the voltage?

A

B

Figure 10.1: A voltmeter for measuring the voltage between A and B

10.1.1 A model for measurement

Let us denote the true value of the voltage between A and B by vAB . This is a (non-random) number, which
nevertheless is unknown to us. The reading on the voltmeter is not exactly vAB , but

V := vAB +R

where R indicates a random error, which we can model as a random variable. If the device is calibrated (i.e.,
well-tuned), we have E[R] = 0. This implies that the reading on the voltmeter is unbiased, that is, E[V ] = vAB .
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Figure 10.2: The intervals vAB ± 0.06 (black) and V ± 0.06 (green). Note that V belongs to the black interval
if and only if vAB belongs to the green interval. Each of these conditions is equivalent to the condition that the
distance between vAB and V is less than 0.06 volt. The black interval is a fixed interval which is unknown to us.
The green interval is a random interval which can be computed on the basis of the observation.

The variance of the error σ2
R := Var[R] is an indicator of how large the error can typically be. The standard

deviation of the error σR is sometimes referred to as the standard error of the measurement.
Suppose we have a calibrated voltmeter with standard error σR = 0.02 volt, and we use that to measure the

voltage between A and B. Thus E[V ] = vAB and Var[V ] = Var[R] = (0.02)2 volt2.

Q Suppose the voltmeter shows 1.563 volt. How can we interpret this reading?

A The reading 1.563 volt is the observed value of the random variable V . For the random variable V (i.e.,
before performing the measurement), Chebyshev’s inequality gives

P
(
|V − vAB | < 3× 0.02

)
≥ 1− 1

32
≈ 88.9% .

The event |V − vAB | < 3× 0.02 can be equivalently expressed in either of the following forms:1

– ⟨the interval vAB ± 0.06 contains V ⟩,
– ⟨the interval V ± 0.06 contains vAB⟩

(see Figure 10.2). Using the latter form, we obtain that

P(V ± 0.06 contains vAB) ≥ 88.9% . ( )

Thinking of probabilities as idealized frequencies, we arrive at the following conclusion: If we repeat the
measurement many many times, then in at least 88.9% of the measurements, the interval V ± 0.06 will
contain the true value of the voltage vAB .

The reading 1.563 volt together with the inequality ( ) is often summarized as an estimate of the form

vAB = 1.563± 0.06 volt (with 88.9% confidence).

The interval 1.563 ± 0.06 volt is called an interval estimate (or a confidence interval) for the voltage vAB . The
value 0.06 volt is called the margin of error and indicates the precision of the estimate. The probability 88.9% is
the confidence level for the estimate.

Let us emphasize that the margin of error and the level of confidence concern not with the specific reading
1.563 volt but with the measurement procedure that has lead to that reading.

More generally, for every a > 0, Chebyshev’s inequality gives

P(V ± 0.02a contains vAB) ≥ 1− 1/a2 ,

thus the same reading 1.563 volt can give us the interval estimate

vAB = 1.563± 0.02a volt (with confidence 1− 1/a2).

Note that there is a trade-off between precision and confidence:

• Choosing a to be larger, we get a larger margin of error (i.e., lower precision in the measurement) but
with higher confidence, while

• Choosing a to be smaller, we get a smaller margin of error (i.e., higher precision in the measurement) but
with lower confidence.

Can we improve this? More specifically:

Q Can we use the same voltmeter to get more precision more confidently?
1The notation a± b is a short and convenient way to refer to the interval (a− b, a+ b).
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10.1.2 Repeated measurements

In order to achieve more precision with higher confidence, a natural idea is to repeat the measurement a number
of times and take average.

Q What is the benefit of repeating the measurement?

A We expect the average of n independent measurement to be typically closer to vAB than the result of a
single measurement.

To see why this should be the case, let V1, V2, . . . , Vn be the results of n independent measurements. Math-
ematically, V1, V2, . . . , Vn are independent random variables with the same distribution as V . Let

V n :=
V1 + V2 + · · ·+ Vn

n

be the average of these n measurements. Note that

E[V n] =
1

n

n∑
i=1

E[Vi] =
1

n
· n · vAB = vAB ,

Var[V n] =
1

n2

n∑
i=1

Var[Vi] =
1

n
· n · σ2

R =
1

n
σ2
R .

Thus, the distribution of V n is more concentrated around vAB than the distribution of a single measure-
ment, which is to say, V n is typically closer to vAB than the result of a single measurement.

Recall that we are using a calibrated voltmeter with standard error σR = 0.02 volt. Suppose that we make
n = 5 independent measurements, and use their average V 5 to estimate vAB .

Q How do V 5 and a single measurement compare in terms of precision and confidence?

A The variance of V 5 is Var[V 5] = (0.02)2/5 volt2, hence the standard error of V 5 is SD[V 5] = 0.02/
√
5 volt ≈

0.00895 volt, which is smaller than the standard error σR = 0.02 volt of a single measurement.

Applying Chebyshev’s inequality, for every a > 0 we get

P(V 5 ± 0.00895a contains vAB) ≥ 1− 1/a2 .

For instance, choosing a := 3, we get

P(V 5 ± 0.0267 contains vAB) ≥ 88.9% . (5: )

Thus, by repeating the measurement 5 times, we achieve more than twice higher precision (i.e., a margin
of error of 0.0267 volt instead of 0.06 volt) with the same 88.9% confidence level.

Alternatively, choosing a := 3
√
5, we get

P(V 5 ± 0.06 contains vAB) ≥ 97.8% .

Hence, repeating the measurement 5 times allows us to achieve a much higher confidence level of 97.8%
(compared to 88.9% for a single measurement) with the same precision (i.e., a 0.06 volt margin of error).

Clearly, the larger the number of measurements, the better the estimate. More specifically, a larger number
of measurements leads to a smaller standard error, hence a higher precision for a given level of confidence, or
higher confidence for a given level of precision.

In the above discussion, we have been using Chebyshev’s inequality to bound the level of confidence for a
given margin of error because we did not know the distribution of V n. If we happen to have more information
on the distribution of V n, then we can identify the confidence level more accurately. We now consider different
scenarios in which we do have more information on the distribution of V n.

10.1.3 Many repeated measurements

When the number of measurements n is large, the average V n is, by the central limit theorem, approximately
normally distributed.2 In this case, in order to identify the level of confidence, we can use a normal approxima-
tion rather than Chebyshev’s inequality.

2In most practical applications, n = 50 or n = 100 should be sufficient for the central limit theorem to provide a reasonable approxima-
tion, although for any fixed n, one can find a pathological distribution for which the approximation provided by the central limit theorem
is poor.
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Namely, the central limit theorem tells us that, when n is large, the average V n of n independent measure-
ments is approximately distributed according to the N(vAB , σ

2
R/n) distribution. Thus, for every a > 0,

P
(
V n ± σR√

n
a contains vAB

)
= P

(
vAB − σR√

n
a < V n < vAB +

σR√
n
a

)
= P

(
−a <

V n − vAB

σR/
√
n

< a

)
≈ Φ(a)− Φ(−a)

= 2Φ(a)− 1 ,

approximately N(0, 1)

= 1 − Φ(a), by symmetry

where, as usual, Φ denotes the cdf of the standard normal distribution (see Figure 10.3).

z

φ(z)

0−a a

Figure 10.3: The pdf of the standard normal distribution. The area of the shaded region is Φ(a) − Φ(−a) =
2Φ(a)− 1.

For instance, suppose that we repeat the measurement n = 100 times. As before, we assume that the
voltmeter has a standard error of σR = 0.02 volt.

Q How does V 100 compare with a single measurement in terms of precision and confidence?

A With n = 100, the standard error is SD[V 100] = σR/
√
n = 0.02/10 = 0.002 volt. For the sake of comparison

with ( ), let us choose a := 3. Using the statistical software R, we can find Φ(a) ≈ 0.9986501, hence
2Φ(a)− 1 ≈ 0.9973002. Put together, we obtain

P(V 100 ± 0.006 contains vAB) ≈ 99.7% .

Thus, compared to the estimate provided by a single measurement, the average of 100 measurements
achieves 10 times higher precision (a margin of error of 0.006 volt instead of 0.06 volt) with much higher
confidence (99.7% instead of 88.9%).

While repeating the measurement many times improves both precision and confidence level, it is not always
practical. In more realistic scenarios, each measurement has a cost (time, energy, money, . . . ), and we might
not always be able to afford more than a few measurements.

10.1.4 When the error is normal

Suppose that, in its specification, the manufacturer of the voltmeter has provided the extra information that the
error R is normally distributed. In other words, we know that R ∼ N(0, σ2

R), where σR = 0.02 volt.

Q How can we use this extra information?

A In this case, even with a small sample size, we can achieve higher precision/confidence than provided by
Chebyshev’s inequality.

Namely, in this case the measurements V1, V2, . . . , Vn are independent normally distributed random vari-
ables. Therefore, even if n is small, by the stability of the normal distribution, their average V n is also
normally distributed. It follows that V n ∼ N(vAB , σ

2
R/n). Therefore, for every a > 0,

P
(
V n ± σR√

n
a contains vAB

)
= P

(
vAB − σR√

n
a < V n < vAB +

σR√
n
a

)
= P

(
−a <

V n − vAB

σR/
√
n

< a

)
= Φ(a)− Φ(−a)

= 2Φ(a)− 1 ,

without relying on the central limit theorem.
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For instance, suppose that we repeat the measurement n = 5 times.

Q How does the normality of error affect the precision and confidence level of V 5?

A With n = 5, we have the standard error SD[V 5] = σR/
√
n = 0.02/

√
5 ≈ 0.0089. For instance, choosing

a := 2, we obtain

P(V 5 ± 0.0178 contains vAB) = 2Φ(2)− 1 ≈ 95.4% .

Thus, compared to (5: ) for which we relied on Chebyshev’s inequality, we achieve a higher precision (a
margin of error of 0.0178 volt instead of 0.0267 volt) and a higher level of confidence (95.4% instead of
88.9%) with the same number of measurements.

10.1.5 Normal error with unknown standard deviation

Sometimes, the assumption of the normality of the error makes sense but we do not know the true value of the
standard deviation σR. For instance, the manufacturer of the voltmeter might have declared that the error is
normal but have not provided us with the value of σR. Or we may have theoretical reasons to believe that the
error must be normally distributed without having an estimate on the standard error.

Q Can we still use the information regarding the normality of the error to our benefit?

A In this case, we can still achieve better confidence level for the same precision, compared to what is provided
by Chebyshev’s inequality.

Namely, suppose that we perform n independent measurements V1, V2, . . . , Vn, and use their average V n to
estimate vAB . By the stability of the normal distribution, the average V n is still normally distributed, that
is, N(vAB , σ

2
R/n). However, we do not know the variance σ2

R.

In order to circumvent this problem, a natural idea is to use the same measurements V1, V2, . . . , Vn to
estimate σ2

R. A reasonable estimate for σ2
R is given by the sample variance

S2
R :=

1

n− 1

n∑
k=1

(Vk − V n)
2

which we discussed in Chapter 2.3

Q How does replacing the true variance σ2
R with its estimate S2

R affect the precision and confidence level?

Let us consider two different case, based on whether n is large or small.

A1 (when n is large)
When n is large, the sample variance S2

R should provide a good approximation for the true vari-
ance σ2

R. Therefore,

V n − vAB

SR/
√
n

≈ V n − vAB

σR/
√
n

∼ N(0, 1) .

Hence, in this case, for every a > 0,

P
(
V n ± SR√

n
a contains vAB

)
= P

(
−a <

V n − vAB

SR/
√
n

< a

)
≈ P

(
−a <

V n − vAB

σR/
√
n

< a

)
= Φ(a)− Φ(−a)

= 2Φ(a)− 1 ,

as in the case in which σ2
R is known to us. Thus, in this case, replacing the true variance σ2

R with its
estimate S2

R changes nothing but to make our identification of precision and confidence less reliable
due to the approximation.

3In the following chapter, we will talk more about the sample variance. In particular, we will explain the reason for dividing the sum
by n− 1 rather than n.
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A2 (when n is small)
When n is small, the sample variance S2

R could be very far off from the true variance σ2
R. Nevertheless,

we can exploit another remarkable property of the normal distribution.
Namely, let T := (V n − vAB)/(SR/

√
n) (i.e., the mean measurement standardized using the sample

variance rather than the true variance). Although T does not have the N(0, 1) distribution, its distribu-
tion turns out to be still independent of σ2

R. The distribution of T is called Student’s t-distribution with
n − 1 degrees of freedom (see below), and its pdf and cdf can be calculated using standard statistical
software such as R.
Therefore, for every a > 0,

P
(
V n ± SR√

n
a contains vAB

)
= P

(
−a <

V n − vAB

SR/
√
n

< a

)
= FT(n−1)(a)− FT(n−1)(−a)

= 2FT(n−1)(a)− 1 ,

has T(n − 1) distribution

= 1 − FT(n−1)(a)

by symmetry

where FT(n−1) denotes the cdf of Student’s t-distribution with n− 1 degrees of freedom.

For instance, suppose that we repeat the measurement n = 5 times.

Q Assuming the normality of the error, how does not knowing σ2
R affect the precision and confidence level

of V 5?

A Choosing a := 3, we can use the computer software R to find FT(4)(3) ≈ 0.980029, and 2FT(4)(3) − 1 ≈
0.960058. Hence,

P
(
V 5 ±

SR√
5
× 3 contains vAB

)
≈ 96.0% .

Note that in this case, the margin of error SR√
5
× 3 of the estimate is random. The confidence level 96.0% is

somewhat lower than the value 99.7% suggested by the standard normal distribution.

Let us now consider a concrete example. Suppose that in 5 measurements of vAB , we obtain the following
values:

1.529 volt, 1.576 volt, 1.547 volt, 1.585 volt, 1.607 volt.

Q Assuming the normality of the error, what is the best interval estimate for the voltage vAB if we seek a 95%
confidence level?

A We must choose a such that 2FT(4)(a)− 1 = 0.95. The computer software R gives a ≈ 2.776445. The mean
and standard deviation of the observed values are

v5 =
1.529 + 1.576 + 1.547 + 1.585 + 1.607

5
= 1.5688 volt ,

sR =

√
(1.529− 1.5688)2 + (1.576− 1.5688)2 + (1.547− 1.5688)2 + (1.585− 1.5688)2 + (1.607− 1.5688)2

5− 1

≈ 0.03095481 volt .

Thus, the margin of error is

sR√
n
× a ≈ 0.03095481√

5
× 2.776445 ≈ 0.0384 volt.

Thus, we obtain the interval estimate

vAB = 1.5688± 0.0384 volt (with 95% confidence).
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B Student’s t-distribution. Let X1, X2, . . . , Xn be independent random variables with distribution N(µ, σ2), and
let Xn := (X1+X2+ · · ·+Xn)/n be their mean. By the stability of the normal distribution, Xn has distribution
N(µ, σ2/n). Thus, its standardized version

Z :=
Xn − µ

σ/
√
n

has the standard normal distribution. If instead of the true variance σ2, we use the sample variance

S2 :=
1

n− 1

n∑
k=1

(Xk −Xn)
2 ,

to standardize Xn, we obtain a random variable

T :=
Xn − µ

S/
√
n

.

Remarkably, the distribution of T still does not depend on the parameters µ and σ, but only on n. The distribu-
tion of T is called Student’s t-distribution4 with n− 1 degrees of freedom, and is denoted by T(df = n− 1).

The t-distribution is a symmetric unimodal distribution similar to the standard normal distribution (see
Figure 10.4). It has a mean of 0 and a standard deviation which is slightly larger than 1.5 The larger the
parameter df , the closer is the T(df) distribution to the N(0, 1) distribution. However, for small values of df , the
two distributions T(df) and N(0, 1) considerably differ from each other.6

Aside from the above qualitative features, the exact formulas for the probability density function and the cu-
mulative distribution function of the t-distribution are mostly irrelevant to us. In practice, we can use computers
to calculate the cumulative distribution of the t-distribution or its inverse with arbitrarily high precision.7

z

φ(z)

0

T(df = 3)

T(df = 5)

T(df = 10)

N(0, 1)

Figure 10.4: The pdf of the T(df) distribution for a few values of the parameter df , compared with the pdf of
the standard normal distribution.

10.2 Point Estimation

10.2.1 Examples

10.2.2 What makes a good estimator

10.2.3 Method of moments

10.3 Interval Estimation

10.3.1 Why interval estimation

10.3.2 Interpretation of confidence intervals

10.3.3 Examples

4Named after statistician William Sealy Gosset (1876–1937), who used Student as his pen name.
5To be specific, the variance of T(df) is df/(df − 2) when df > 2. When df ≤ 2, the variance does not exist.
6More specifically, compared to a N(0, 1) random variable, a T(df) random variable typically has a larger absolute value. This is

consistent with the fact that the variance of T(df) is larger than the variance of N(0, 1).
7Programming languages such as R and Python have routines or libraries for computing the cdf of the t-distribution and its inverse.
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