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Chapter 6

Relationships between Random Variables

When describing and reasoning about random phenomena, we often need to exploit the relationship between
two or more random variables that are defined in the same probability model. In this chapter, we discuss a few
common scenarios in which different random variables can be related to one another in a deterministic fashion
(e.g., one can be described as a function of others). Non-deterministic relationships between random variables
(namely, statistical dependence and independence) will be discussed in a later chapter.

6.1 Functions of random variables

Suppose we have a random variable Y that can be represented as a function of a simpler random variable X.
More specifically, let Y = h(X) where h is a function mapping real numbers to real numbers. How is the
distribution of Y related to the distribution of X? Can we derive the distribution of Y if we know the distribution
of X? Can we compute expected value, variance, and other characteristics of Y ?

Example 6.1.1 (Points in a game). In a game of chance, the number of points you gain is determined by rolling
a die. If you get a 1, you lose 1 point; if you get a 5 or a 6, you gain 1 point; otherwise you neither gain nor lose
any points.

Let D denote the number shown on the die, and G your gain. According to the description of the game,

G =


−1 if D = 1,
+1 if D ∈ {5, 6},
0 if D ∈ {2, 3, 4}.

In other words, G = h(D) where h is the function given by1

h(x) =


−1 if x = 1,
+1 if x ∈ {5, 6},
0 if x ∈ {2, 3, 4}.

Q What is the distribution of G?

A The possible values of G are −1, 0 and 1. We have

P(G = −1) = P(D = 1) = 1/6 ,

P(G = 0) = P(D ∈ {2, 3, 4}) = P(D = 2) + P(D = 3) + P(D = 4) = 1/6 + 1/6 + 1/6 = 1/2 ,

P(G = 1) = P(D ∈ {5, 6}) = P(D = 5) + P(D = 6) = 1/6 + 1/6 = 1/3 .

Hence, the pmf of G is

pG(y) =


1/6 if y = −1,
1/2 if y = 0,
1/3 if y = 1,
0 otherwise.

As a sanity check, let us note that pG(−1) + pG(0) + pG(1) = 1/6 + 1/2 + 1/3 = 1, as it should be.
1Let us spell out the model more precisely: The set of possible outcomes is Ω := {1, 2, 3, 4, 5, 6} and the measure of probabilities is given

by P(1) = P(2) = · · · = P(6) = 1/6. The two random variables D and G are functions on Ω defined by D(a) := a and G(a) := h(D(a))
for each a ∈ Ω.
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Q What is the expected value of G?

A1 (using the distribution of G)
Since we already know the pmf of G, we can write

E[G] =
∑
g

P(G = g)g

= P(G = −1) · (−1) + P(G = 0) · 0 + P(G = 1) · 1
= (1/6) · (−1) + (1/2) · 0 + (1/3) · 1
= 1/6 .

A2 (using the distribution of D)
As we saw earlier, in order to calculate the expected value of G = h(D), we can directly use the pmf of D.
Namely,

E[G] =
∑
d

P(D = d)h(d)

= P(D = 1) · (−1) + P(D = 2) · 0 + P(D = 3) · 0 + P(D = 4) · 0 + P(D = 5) · 1 + P(D = 6) · 1
= (1/6) · (−1) + (1/6) · 0 + (1/6) · 0 + (1/6) · 0 + (1/6) · 1 + (1/6) · 1
= 1/6 .

The advantage of this approach is that it does not require deriving the pmf of G. #

Example 6.1.2 (Square root of an exponential RV). Let T be an exponential random variable with rate λ, and
suppose S :=

√
T .

Q What is the distribution of S?

A Let us start by finding the cdf of S. The possible values of S are all the non-negative numbers, hence
FS(x) = 0 if x < 0. For x ≥ 0, we have

FS(x) = P(S ≤ x) = P(
√
T ≤ x) = P(T ≤ x2) = 1− e−λx2

.

(Warning. Note that the latter computation is not valid if x < 0, because in that case,
√
T ≤ x is impossible

while T ≤ x2 is not.) Put together, we get

FS(x) =

{
1− e−λx2

if x ≥ 0,
0 if x < 0.

To find the pdf of S, we differentiate FS(x):

fS(x) =

{
2λxe−λx2

if x > 0,
0 if x < 0.

Let us note that FS(x) is not differentiable at x = 0, hence fS(x) is not defined at x = 0.

Q What is expected value of S?

A1 (using the pdf of S)
Since we have already derived the pdf of S, we can write

E[S] =
ˆ ∞

−∞
xfS(x) dx

=

ˆ ∞

0

2λx2e−λx2

=
0

������−xe−λx2
∣∣∣∞
0

+

ˆ ∞

0

e−λx2

dx . (integration by parts

{
u(x) := x

v(x) := −e−λx2 )

To compute the remaining integral, we can proceed as in the exercise after Example 5.2.3. Alternatively,
we can observe that e−λx2

resembles the pdf of the normal distribution. More specifically,

E[S] =
ˆ ∞

0

e−λx2

dx

=

√
π

λ

ˆ ∞

0

1√
2π

e−
1
2 z

2

dz (change of variable x = 1√
2λ
z)

= 1
2

√
π
λ ,
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where the latter follows once we recall that φ(z) := 1√
2π

e−
1
2 z

2

(the pdf of the standard normal distribution)

is symmetric with
´∞
−∞ φ(z) dz = 1.

A2 (using the pdf of T )
Since S is a function of T , we can directly calculate the expected value of S using the pdf of T .

E[S] =
ˆ ∞

−∞

√
tfT (t) dt

=

ˆ ∞

0

√
tλe−λt dt

=

ˆ ∞

0

2λx2e−λx2

dx (change of variable t = x2, x > 0)

which is the same integral as in the previous answer. #

Example 6.1.3 (Normal distribution). In this example, we derive the pdf of the general normal distribution
based on the pdf of the standard normal distribution introduced in the previous chapter.

Recall from Section 5.3 that a normal random variable with mean µ and standard deviation σ > 0 is a
random variable of the form X = σZ + µ where Z is a standard normal random variable.

Q What is the pdf of X?

A Let us start by deriving the cdf of X in terms of the cdf of the standard normal distribution Φ. By definition,
the cdf of X at a given value x ∈ R is

FX(x) = P(X ≤ x) = P(σZ + µ ≤ x) = P
(
Z ≤ x− µ

σ

)
= Φ

(x− µ

σ

)
.

Differentiating with respect to x, we obtain

fX(x) =
d

dx
FX(x) =

d

dx
Φ
(x− µ

σ

)
=

1

σ
φ
(x− µ

σ

)
=

1

σ
√
2π

e−
(x−µ)2

2σ2 .

Figure 6.1 depicts the graph of the pdf of X in the case µ = 3 and σ = 2. As expected, the pdf of X has the
same shape as the pdf of Z, except it has a different location and a different scale.

Q What is the maximum value of fX(x)?

A1 In the derived expression above, the maximum is clearly achieved when x = µ. We have fX(µ) = 1
σ
√
2π

.

A2 Compared to the pdf of Z, the pdf of X is horizontally scaled up by a factor σ. In order for the total area
under the pdf to remain 1, the pdf of X must be vertically scaled down by a factor σ. Hence, the maximum
value of fX(x) is 1/σ the maximum value of φ(z), that is, 1

σ
√
2π

.

#

0 3

1√
2π

N(0, 1)

N(3, 22)

Figure 6.1: The pdfs of two normal distributions.

Example 6.1.4 (Chi-squared distribution with 1 degree of freedom). Consider a random variable of the form
X := Z2, where Z ∼ N(0, 1) is a standard normal random variable. Random variables of this type often show
up in statistical contexts, and hence deserve a name. We call X a chi-squared random variable with 1 degree of
freedom. A more general concept of a chi-squared distribution will be discussed in the following section.

Q What is the pdf of X?
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A Let us start with deriving the cdf of X.

Observe that X takes only non-negative values, hence FX(x) = 0 for x < 0. For x ≥ 0, we have

FX(x) = P(X ≤ x) = P(Z2 ≤ x) = P
(
−
√
x ≤ Z ≤

√
x
)

= P
(
Z ≤

√
x
)
− P

(
Z <

√
x
)
= Φ

(√
x
)
− Φ

(
−
√
x
)
.

where Φ denotes the cdf of the standard normal distribution. Let us note that for the last equality, we have
used the fact that Φ is continuous.

Differentiating with respect to x, we obtain

fX(x) =
d

dy
FX(x) =


0 if x < 0,
1

2
√
x
φ(
√
x) +

1

2
√
x
φ(−
√
x) if x > 0.

=


0 if x < 0,

1√
2πx

e−x/2 if x > 0,

where, as usual, φ(z) = 1√
2π

e−z2/2 denotes the pdf of the standard normal distribution.

Q What is the expected value of X?

A Since X = Z2, we have

E[X] = E[Z2] = Var[Z] = 1 .

#

Exercise.A Find the variance of a chi-squared random variable with 1 degree of freedom. (Hint: The answer
is 2 .)

While a function of a discrete random variable is necessarily a discrete random variable, a function of
continuous random variable may or may not be continuous.

Example 6.1.5 (Bernoulli as a function of uniform). Let U be a continuous random variable uniformly dis-
tributed over the interval [0, 1]. In other words, suppose that U has pdf

fU (x) =

{
1 if 0 < x < 1,
0 otherwise.

Let p ∈ [0, 1] be an arbitrary number. Define a new random variable X, where X = 0 if U < 1− p and X = 1 if
U ≥ 1− p.

Q What is the distribution of X?

A Bernoulli with P(X = 0) = 1− p and P(X = 1) = 1− (1− p) = p. #

It turns out that every random variable can be expressed as a function of a uniformly distributed continuous
random variable. In computer simulations, this can be used to generate (pseudo-)random numbers with any
prescribed distribution.

Exercise.A Let U be a random variable that is uniformly distributed over [0, 1]. Define a new random variable X
as a function of U such that P(X = −1) = 1/6, P(X = 0) = 1/2 and P(X = 1) = 1/3.

6.2 Sums of independent random variables

In this section, we consider the scenario in which a random variable Y can be represented as a sum of two or
more simpler random variables, that is, Y = X1+X2+· · ·+Xn. In Chapter 4, we saw how such a representation
can help us compute the expected value or the variance of Y (Examples 4.4.1, 4.4.2 and 4.4.4). Here, we focus
on the case in which X1, X2, . . . , Xn are independent, and discuss how the distribution of Y is related to the
distribution of X1, X2, . . . , Xn. This will also be an excuse to introduce some important families of distributions.

Example 6.2.1 (Sum of i.i.d. geometric RVs). Let N1 and N2 be two independent geometric random variables
with parameter p, and let M := N1 +N2.
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Q What are the possible values of M?

A 2, 3, 4, . . ..

Q What is the distribution of M?

A1 (conceptual approach)
The random variable M resembles (but is not exactly the same as) a negative binomial random variable
with parameters 2 and p (see Example 4.4.4).

Indeed, we can simulate N1, N2 and M using a coin with bias parameter p. Suppose we repeat flipping
the coin until two tails come up. Let N ′

1 denote the number of flips until the first head, and N ′
2 denote the

number of flips after the first head until the second head, and define M ′ := N ′
1 +N ′

2.

T T T T T H T T T H

N ′
1 N ′

2

M ′

Clearly,

– N ′
1 has the same distribution as N1,

– N ′
2 has the same distribution as N2,

– N ′
1 and N ′

2 are independent, just like N1 and N2.

Therefore, M ′ has the same distribution as M .

Note that M ′ is the number of flips until the second head comes up. The number of tails until the second
head (i.e., M ′ − 2) is, by definition, a negative binomial random variable with parameters 2 and p. Thus,
we find the pmf of M to be

pM (k) := P(M = k) = P(M ′ = k)

= P(M ′ − 2 = k − 2) =

{(
k−1
1

)
p2(1− p)k−2 if k = 2, 3, . . .,

0 otherwise.

A2 (computational approach)
To compute P(M = k), we can use the principle of total probability by breaking the possibilities based on
the value of N1 (or N2). Namely, for every k, we can write

P(M = k) =
∑
ℓ

P(N1 = ℓ and M = k)

=
∑
ℓ

P(N1 = ℓ and N2 = k − ℓ) (since M = N1 +N2)

=
∑
ℓ

P(N1 = ℓ)P(N2 = k − ℓ) . (since N1 and N2 are independent)

Since the possible values of N1 and N2 are 1, 2, . . ., we have

– P(N1 = ℓ) = 0 unless ℓ is an integer with ℓ ≥ 1,
– P(N2 = k − ℓ) = 0 unless k − ℓ is an integer with k − ℓ ≥ 1, that is, ℓ ≤ k − 1.

Thus, for k = 2, 3, . . ., we have

P(M = k) =

k−1∑
ℓ=1

P(N1 = ℓ)P(N2 = k − ℓ)

=

k−1∑
ℓ=1

(1− p)ℓ−1p× (1− p)k−ℓ−1p︸ ︷︷ ︸
(1−p)k−2p2

= (k − 1)(1− p)k−2p2 .

In summary, the pmf of M is given by

pM (k) := P(M = k) =

{
(k − 1)(1− p)k−2p2 if k = 2, 3, . . .,
0 otherwise.

#

The idea of using the principle of total probability to write the pmf of M = N1 +N2 in terms of the pmfs of
N1 and N2 is not specific to the above example. Let us spell it out in general terms.
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B Distribution of sum of independent RVs (discrete case). Let X and Y be two independent discrete random
variables with pmfs pX and pY . Then, using the principle of total probability as in the above example, the pmf
of Z := X + Y can be written as

pZ(k) = P(Z = k) =
∑
i

P(X = i)P(Y = k − i) =
∑
i

pX(i)pY (k − i)

The above sum is often called the discrete convolution of the two integer functions pX and pY . The summation
runs over the values for which pX(i) and pY (k − i) are non-zero.

Example 6.2.2 (Sum of i.i.d. exponential RVs). Let T1 and T2 be two independent exponential random variables
with rate λ, and consider S := T1 + T2.

Recall that a exponential random variable can be a reasonable model for the waiting time till the arrival of
the next spam email in your mailbox.

Q In the latter context, what could be the interpretation of the sum of two independent exponential random
variables with rate λ?

A The waiting time till the arrival of two spam emails in your mailbox.

time
#1 #2

T1
T2

S

Namely, think of T1 as the waiting time from now till the arrival of the first spam email, and T2 as the
waiting time between the first two spam emails. Then, S = T1+T2 is simply the waiting time till the arrival
of the second spam email.

Q What are the possible values of S?

A All non-negative real numbers.

Q What is the distribution of S?

A In analogy with the convolution formula for the pmf of the sum of two independent discrete random
variables, we may guess that the pdf of S satisfies

fS(x) =

ˆ
t

fT1
(t)fT2

(x− t) dt .

This is indeed true, although it takes more to justify it than a simply application of the law of total proba-
bility (see below).

Since T1 and T2 can only take non-negative values, we have

– fT1
(t) = 0 unless t ≥ 0,

– fT2
(x− t) = 0 unless x− t ≥ 0, that is, t ≤ x.

Therefore, for x ≥ 0, we have

fS(x) =

ˆ x

t=0

fT1(t)fT2(x− t) dt

=

ˆ x

t=0

λe−λt × λe−λ(x−t)︸ ︷︷ ︸
λ2e−λx

dt

=

ˆ x

t=0

λ2e−λx dt

= λ2xe−λx .

Altogether, we obtain

fS(x) =

{
λ2xe−λx if x ≥ 0,
0 otherwise.

(m)
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Due to its natural interpretation, the distribution of S deserves a name: it is called the gamma distribution
with parameters 2 and λ. More generally, the distribution of the sum of r independent exponential random
variables with rate λ is referred to as the gamma distribution with parameters r (the shape parameters) and λ
(the rate). As an example, if the average rate of arrivals of spam emails in your mailbox is λ, then the arrival
time of the r’th spam email in your mailbox is a gamma random variable with shape r and rate λ.

Repeating the above computation recursively, one can find the pdf of the gamma distribution with shape r
(a positive integer) and rate λ > 0 to be

fS(x) =

{
λr

(r−1)!x
r−1e−λx if x ≥ 0,

0 otherwise.

#

Exercise.A Derive the above formula for the pdf of the gamma distribution.

B Distribution of sum of independent RVs (continuous case). Let X and Y be two independent continuous
random variables with pdfs fX and fY . Then, the pdf of Z := X + Y satisfies

fZ(z) =

ˆ
x

fX(x)fY (z − x) dx .

The integral is called the convolution of fX and fY .

Q What is the justification for the above identity?Skip on
first read!

A1 (intuitive but non-rigorous)
We would like to use the principle of total probability as in the discrete case. However, there are two
obstacles to this: (1) fZ(z), fX(x) and fY (z − x) indicate probability densities rather than probabilities,
and (2) the possible values of X are uncountable. To circumvent these, we use approximations that can
be made arbitrarily sharp.

First, let ∆z > 0 be small. Then

fZ(z)∆z ≈ P(z ≤ Z ≤ z +∆z) (S)

(see Figure 6.2a). Next, let ∆x > 0 be small, and divide the possible values of X into intervals [xi, xi+1) of
length ∆x (see Figure 6.2b). We now partition the outcome space based on which tiny interval X belongs
to, and apply the principle of total probability to write

P(z ≤ Z ≤ z +∆z) =

∞∑
i=−∞

P(xi ≤ X < xi +∆x and z ≤ Z ≤ z +∆z) . (S)

If we choose ∆x to be much smaller than ∆z, then the condition〈
xi ≤ X < xi +∆x and z ≤ Z ≤ z +∆z

〉
becomes almost equivalent to〈

xi ≤ X < xi +∆x and z − xi −∆x ≤ Y ≤ z +∆z − xi

〉
.

Indeed, if xi ≤ X < xi +∆x and z ≤ Z ≤ z +∆z, then z − xi −∆x ≤ Y ≤ z +∆z − xi, and conversely,
if xi ≤ X < xi +∆x and z − xi −∆x ≤ Y ≤ z +∆z − xi, then z −∆x < Z < z +∆z +∆x, which is not
much different from z ≤ Z ≤ z +∆z. Hence,

P(xi ≤ X < xi +∆x and z ≤ Z ≤ z +∆z)

≈ P(xi ≤ X < xi +∆x and z − xi −∆x ≤ Y ≤ z +∆z − xi) . (S)

The smaller ∆x, the better this approximation. Since X and Y are independent,

P(xi ≤ X < xi +∆x and z − xi −∆x ≤ Y ≤ z +∆z − xi)

= P(xi ≤ X < xi +∆x)P(z − xi −∆x ≤ Y ≤ z +∆z − xi) (S)

Note that, since ∆x and ∆z are small,

P(xi ≤ X < xi +∆x) ≈ fX(xi)∆x , (S)

P(z − xi −∆x ≤ Y ≤ z +∆z − xi) ≈ fY (z − xi)(∆z +∆x) . (S)
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Combining the equations tagged with (S), we find the approximation

fZ(z)∆z ≈
∞∑

i=−∞
fX(xi)∆xfY (z − xi)(∆z +∆x)

= (∆z +∆x)

∞∑
i=−∞

fX(xi)fY (z − xi)∆x .︸ ︷︷ ︸
%

Note that % resembles a Riemann sum for the integral
ˆ ∞

−∞
fX(x)fY (z − x) dx.2 Hence, it is plausible

(and indeed true) that

fZ(z)∆z ≈ (∆z +∆x)

ˆ ∞

−∞
fX(x)fY (z − x) dx .

Sending first ∆x→ 0 and then ∆z → 0, all the approximations sharpen, and in the limit, we obtain

fZ(z) =

ˆ ∞

−∞
fX(x)fY (z − x) dx ,

as claimed.

z

fZ(z)

z z+∆z

x

fX(x)

x−1 x0

x1 xi xi+1

(a) (b)

Figure 6.2: Illustration of the intuitive argument for the convolution formula. (a) The pdf of Z at a point z
is approximately P(z ≤ Z ≤ z + ∆z)/∆z. (b) The possible values of X are partitioned into small intervals of
length ∆x. Here, xi+1 − xi = ∆x for every i.

A2 (rigorous but less intuitive)
We postpone this till Chapter 8, where we see a calculus-based argument for a more general version of
the claimed identity.

[To be moved to Chapter 8:] Let us start with the cdf of Z. For every z, we have

FZ(z) = P(Z ≤ z)

= P(X + Y ≤ z)

=

¨
x+y≤z

fX,Y (x, y) dxdy

=

ˆ ∞

x=−∞

(ˆ z−x

y=−∞
fX,Y (x, y) dy

)
dx (Fubini’s theorem)

=

ˆ ∞

x=−∞

(ˆ z

w=−∞
fX,Y (x,w − x) dw

)
dx (change of variable w = y + x)

=

ˆ z

w=−∞

(ˆ ∞

x=−∞
fX,Y (x,w − x) dx

)
dw (Fubini’s theorem) (�)

2Recall that Riemann sums are finite sums and are only meant to make sense of integrals on bounded closed intervals. Here, we have
an infinite sum and an improper integral.
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Now, using the fundamental theorem of calculus, we conclude that

fZ(z) = F ′
Z(z) =

ˆ ∞

−∞
fX,Y (x, z − x) dx

at every point z at which z 7→
ˆ ∞

−∞
fX,Y (x, z − x) dx is continuous.3

Example 6.2.3 (Sum of independent normal RVs). Let Y = X1 + X2 where X1 and X2 are two independent
random variables with X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2).

Q What are the expected value and the variance of Y ?

A We have E[Y ] = µ1 + µ2 (by the linearity of expectation) and Var[Y ] = σ2
1 + σ2

2 (since X1 and X2 are
independent).

Q What is the pdf of Y ?

A1 (tedious integration)
As discussed above, the pdf of Y is the convolution of the pdfs of X1 and X2. From Example 6.1.3, we
know that

fX1
(x) =

1

σ1

√
2π

e
−

(x−µ1)
2

2σ2
1 , fX2

(x) =
1

σ2

√
2π

e
−

(x−µ2)
2

2σ2
2 .

Computing the convolution of these two functions, one can find that

fY (y) =
1√

2π(σ2
1+σ2

2)
e
−

(y−µ1−µ2)
2

2(σ2
1+σ2

2) . (�)

A2 (geometric approach)
We postpone this till Chapter 8.

Q From its pdf, do you recognize the distribution of Y ?

A The function in (�) is the pdf of the normal distribution with mean µ1 + µ2 and variance σ2
1 + σ2

2 . #

Exercise.A In the above example, derive the pdf of Y by computing the convolution integral.

The above example highlights an important property of the normal distribution.

B Stability of the normal distribution. Every non-degenerate linear combination of independent normal ran-
dom variables is again a normal random variable. Specifically,

▶ If X is a normal random variable and a, b ∈ R with a ̸= 0, then aX + b is again a normal random variable.

▶ If X and Y are independent normal random variables, then X + Y is again a normal random variable.

Example 6.2.4 (Chi-squared distribution). Let r be a positive integer, and consider the random variable Y =
Z2
1 + Z2

2 + · · · + Z2
r , where Z1, Z2, . . . , Zr are independent standard normal random variables. Such a random

variable Y is called a chi-squared random variable with r degrees of freedom. The chi-squared distribution with r
degrees of freedom is often denoted by χ2(r).4

We discussed the case r = 1 in Example 6.1.4. Let us now consider the case r = 2.

Q What is the pdf of Y when r = 2?

A We can write Y = X1 +X2 where X1 := Z2
1 and X2 := Z2

2 are independent chi-squared random variables
with 1 degree of freedom. From Example 6.1.4, we know that X1 and X2 have the following pdf:

fX(x) =


0 if x < 0,

1√
2πx

e−x/2 if x > 0.

3To be precise, the fundamental theorem of calculus concerns proper integrals, whereas the outer integral on the right-hand side of (�)
is improper. However, the extension of the fundamental theorem of calculus to this type of improper integrals is straightforward. Namely,
fix z0 and write

´ z
v=−∞ =

´ z0
v=−∞ +

´ z
v=z0

. The complete argument is left to the mathematically conscientious readers.
4Note: χ is the Greek letter “chi”, not to be confused with the Latin letter X.
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The pdf of Y is thus the convolution of the latter function with itself.

Since Y is always non-negative, we have fY (y) = 0 for every y < 0. For y ≥ 0, we have

fY (y) =

ˆ ∞

−∞
fX(x)fX(y − x) dx

=

ˆ y

0

fX(x)fX(y − z) dx (why?)

=
1

2π

ˆ y

0

1√
x(y − x)

e−x/2e−(y−x)/2 dx

=
1

2π
e−y/2

ˆ y

0

1√
x(y − x)

dz︸ ︷︷ ︸
π

(standard integration)

=
1

2
e−y/2 .

In summary,

fY (y) =


1

2
e−y/2 if y ≥ 0,

0 if y < 0.

Q Do you recognize the latter pdf?

A It is the pdf of the exponential distribution with rate 1/2.

You may find it curious that χ2(r = 2) is nothing but the exponential distribution with rate 1/2. Iterating the
convolution recursively, one can find the pdf of the chi-squared distribution for r > 2. The general formula for
the pdf of χ2(r) turns out to be

fY (y) =

{
⟨some constant⟩ yr/2−1e−y/2 if y ≥ 0,

0 otherwise.

The unspecified constant is such that the integral of fY is 1.
Let us next discuss a geometric interpretation of the chi-squared distribution. For simplicity, let us focus on

the case r = 2. As before, let Z1 and Z2 be two independent standard normal random variables. Consider a
point Q on the plane with coordinates Z1 and Z2. Let D denote the (random) distance between Q and the
origin.

Q What is the distribution of D?

A By the Pythagorean theorem, D2 = Z2
1 + Z2

2 . Thus, D2 has the chi-squared distribution with 2 degrees
of freedom. As we saw above, the chi-squared distribution with 2 degrees of freedom happens to be the
same as the exponential distribution with rate 1/2. Recall Example 6.1.2 in which we derived the pdf of
the square root of an exponential random variable with rate λ. Setting λ = 1/2, we obtain

fD(x) =

{
xe−x2/2 if x > 0,
0 if x < 0.

For general r, the chi-squared distribution can be interpreted similarly. If Q is a point in the r dimensional
Euclidean space whose coordinates are independent standard normal random variables, then the square of the
distance between Q and the origin has the χ2(r) distribution. #

B Gamma vs. chi-squared distribution. You may have noticed a similarity between the pdf of a gamma distri-
bution and the pdf of a chi-squared distribution:

Gamma(s, λ): f(x) =

{
⟨some constant⟩xs−1e−λx if x ≥ 0,
0 otherwise.

χ2(r): f(x) =

{
⟨some constant⟩xr/2−1e−x/2 if x ≥ 0,

0 otherwise.

10



Bernoulli process ←→ Poisson process
geometric distribution ←→ exponential distribution

negative binomial distribution ←→ gamma distribution
binomial distribution ←→ ?

Table 6.1: The analogy between Bernoulli and Poisson processes.

From the pdfs, one can observe that, when r is even, χ2(r) = Gamma(r/2, 1/2), that is, the chi-squared distri-
bution with r degrees of freedom is the same as the gamma distribution with shape r/2 and rate 1/2. This is
consistent with the earlier observation that the chi-squared distribution with 2 degrees of freedom is the same
as the exponential distribution with rate 1/2 (Example 6.2.4).

Does the identity χ2(r) = Gamma(r/2, 1/2) still hold when r is odd? Our earlier definition of Gamma(s, λ)
as the distribution of the sum of s independent Exp(λ) random variables does not give a meaning to gamma
distributions with non-integer shapes. Nevertheless, given arbitrary real numbers α > 0 and λ > 0, we can
consider a pdf of the form

f(x) =

{
⟨some constant⟩xα−1e−λx if x ≥ 0,
0 otherwise,

where the constant is chosen such that the integral of f is 1. By extension, the distribution defined by the latter
pdf is called the gamma distribution with shape α and rate r, and is denoted by Gamma(α, λ). With this extended
notion of gamma distribution, the identity χ2(r) = Gamma(r/2, 1/2) holds for every positive integer r.

Exercise.A Recall that, for a positive integer r, the constant in front of the pdf of Gamma(r, λ) is λr

(r−1)! . The
constant in front of the pdf of χ2(r) can be shown to be 1

2r/2Γ(r/2)
, where Γ(·) is the gamma function. Find

an expression for the constant in front of the pdf of Gamma(α, λ) for arbitrary α > 0 in terms of the gamma
function. Verify that your expression is consistent with the two special cases.

6.3 Mixtures of random variables

[To be written!]

Exercise.A Let X be a continuous RV with cdf F and B be a Bernoulli RV with parameter p, and suppose that X
and B are independent. Derive a formula for the distribution of Y = B +X in terms of F and p.

6.4 Bernoulli and Poisson processes

You may have noticed that there is an analogy between some discrete random variables and some continuous
random variables (see Table 6.1). On the one side, we have random variables that can be defined in terms of
a coin-flipping experiment: geometric, negative binomial and binomial random variables. On the other side,
we have exponential, gamma, and perhaps other types of random variables. Exponential random variables
resemble geometric random variables: both can be interpreted as the time until some event happens, and both
are “memoryless”. Likewise, gamma random variables are analogous to negative binomial random variables: a
gamma random variable can be defined as a sum of independent exponential random variables the same way
a negative binomial random variable can (almost) be thought of as a sum of independent geometric random
variables.

Q In this analogy, which distribution corresponds to the binomial distribution?

What ties all these distributions together and clarifies the analogy is the concepts of Bernoulli and Poisson
processes. A Bernoulli process is the mathematical model of a coin-flipping experiment. A Poisson process is a
“continuous-time” analog of a Bernoulli process as we shall clarify shortly.

B Bernoulli process. A Bernoulli trial refers to an elementary random experiment with two possible outcomes:
“success” and “failure.” The paradigmatic example of a Bernoulli trial is the experiment of flipping a coin, in
which we can declare heads as “success” and tails as “failure”, or vice versa. An infinite sequence of independent
Bernoulli trials all with the same probability of success is called a Bernoulli process (Figure 6.3).

A variety of different experiments and phenomena can be modeled as or in terms of Bernoulli processes.
Here are a few examples:

• We repeatedly flip a coin.
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time
1 2 3 4 5 m n

Figure 6.3: A realization of a Bernoulli process with success probability 1/2. Blue indicates “success” and red
indicates “failure.”

• We send a sequence of information bits through a noisy communication channel. The fate of each bit of
information can be thought of as a Bernoulli trial: either the bit is communicated correctly (“success”) or
is corrupted by noise (“failure”).

• You and your friend repeatedly play a game of chance. You winning a game could count as “success” and
you losing a game as “failure.”

Mathematically, a Bernoulli process can be described by a sequence of independent Bernoulli random vari-
ables

X1, X2, X3, . . .

all with the same parameter p. In this formulation, Xi = 1 indicates that the i-th trial has been successful and
Xi = 0 indicates that the i-th trial has been unsuccessful.

Observe that the geometric, negative binomial, and binomial distributions appear naturally in the context of
a Bernoulli process. Let p denote the probability of success in each trial.

Q What is the distribution of the number of trials until the first success?

A Geometric with parameter p.

More generally, starting from any trial, the number of trials until the next success is geometric.

Q Let r ≥ 1 be an integer. What is the distribution of the number of failures until there are r successful trials?

A Negative binomial with parameters r and p.

Q Let n ≥ m ≥ 1 be integers. What is the distribution of the number of successful trials between trial number
m and trial number n?

A Binomial with parameters n−m+ 1 and p.

B Poisson process. A Poisson process is a model of “events” occurring over time independently of one another
at a certain average rate (Figure 6.4). For instance, the arrivals of spam emails in your mailbox can be modeled
as a Poisson process: spam emails are virtually independent of one another, yet arrive at more or less constant
rate. Here are a few examples of other processes that can be modeled as a Poisson process:

• Arrival of unique visitors at a popular website. An “event” means the arrival of a visitor.

• Arrival of data packets at a server of a computer network. An “event” means the arrival of a data packet.

• The clicks of a Geiger counter.5 An “event” means a clicking sound on the device, which in turn corre-
sponds a burst of radiation (alpha particles, beta particles, or gamma rays) hitting the detector of the
Geiger counter.

time
0

I J

Figure 6.4: A realization of a Poisson process. Blue dots indicate arrival times of the “events.”

A Poisson process can be thought of as a “continuous-time” analog of a Bernoulli process, where “events”
correspond to “successful” trials. However, the mathematical formulation of a Poisson process is more cumber-
some. Indeed, one has to resort to an indirect formulation by imitating the key aspects of a Bernoulli process.

A Poisson process with rate λ > 0 can indirectly be formulated as follows (see Figure 6.4).

P1 Each time interval I contains a random number of events, which we denote by N(I).

5A Geiger counter is an instrument used for detecting ionized radiations. The portable Geiger counters often make a clicking sound upon
detection of each ionization event.
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P2 The expected number of events occurring in a time interval I is E[N(I)] = λ× length(I). This is a different
way to say that the average number of events per unit time is λ.

P3 The number of events occurring in disjoint time intervals are independent. Namely, if I and J are two
disjoint time intervals, then the two random variables N(I) and N(J) are independent. More generally, if
I1, I2, . . . , Ik are disjoint time intervals, then the random variables N(I1), N(I2), . . . , N(Ik) are indepen-
dent.

Observe that a Bernoulli process has properties analogous to the above three properties.
Consider a Poisson process with rate λ.

Q What is the distribution of the arrival time of the first event?

A Exponential with rate λ. (See below for a justification.)

More generally, starting from any point in time, the arrival time of the next event is exponential. In
particular, the inter-arrival times between consecutive events are independent and exponentially distributed
with the same rate λ (see Figure 6.5).

Q Let r ≥ 1 be an integer. What is the distribution of the arrival time of the r-th event?

A Gamma with parameters r (the shape) and λ (the rate).

Indeed, the arrival time of a the r-th event is a sum of r independent exponential random variables, each
with rate λ. This is what we earlier called a gamma random variable (see Example 6.2.2 and the paragraph
after that).

Q Let I be a time interval. What is the distribution of N(I) (i.e., the number of events occurring in I)?

A Poisson with parameter λ× length(I). (See below for a justification.)

This completes the analogy in Table 6.1. The missing distribution is the Poisson distribution!

time
0

T1 T2
T3 T4 T5

Figure 6.5: The inter-arrival times in a Poisson process.

A justification of the above claims can be given through approximation of a Poisson process with a Bernoulli
process.

B Approximation of a Poisson process with a Bernoulli process. Suppose we divide the time into tiny intervals
of length ∆t (see Figure 6.6). Let us call the endpoints of these intervals t0, t1, t2, . . ., so that t0 = 0, t1 = ∆t,
t2 = 2∆t, and so on. We can associate a Bernoulli trial to each of these tiny intervals [tk−1, tk). The trial
associated to [tk−1, tk) will be considered “successful” if an event has occurred during that interval.

Q What is the probability of “success” for the trial at interval [tk−1, tk)?

A Approximately λ∆t.

Indeed, since ∆t is very small, it is very unlikely for the interval [tk−1, tk) to contain more than one event.
Thus, N

(
[tk−1, tk)

)
, the number of events in this interval, is in effect a Bernoulli random variable, indicating

whether the trial has been “successful” or not. The parameter of this Bernoulli random variable (the
probability of “success”) coincides with its expected value, which is λ∆t.

time

∆t

0 t1 t2 t3

Figure 6.6: An approximation of a Poisson process with a Bernoulli process. There is a trial corresponding to
each tiny interval, which is considered “successful” if an event has occurred during that interval.

This approximation can be used to derive the distribution of the arrival time T1 of the first event and the
distribution of the number N(I) of events occurring within a time interval I. Let us start with the latter.
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Q Why does N(I) have a Poisson distribution?

A Let ℓ denote the length of I. The interval I is partitioned into roughly n ≈ ℓ/∆t tiny intervals I1, I2, . . . , In,
each with length ∆t.

I

I1 I2 I3 In

Clearly, N(I) = N(I1)+N(I2)+ · · ·+N(In). Since the tiny intervals I1, I2, . . . , In are disjoint, the variables
N(I1), N(I2), . . . , N(In) are independent. Furthermore, as argued above, each N(Ii) is approximately a
Bernoulli random variable with parameter λ∆t. Thus, the distribution of N(I) is approximately binomial
with parameters n and λ∆t.

Now, let k be a non-negative integer. Assuming ∆t is small enough so that n ≈ ℓ/∆t ≥ k, we have

P
(
N(I) = k

)
≈

(
n

k

)
(λ∆t)k(1− λ∆t)n−k

≈ n!

k!(n− k)!

(
λ
ℓ

n

)k (
1− λ

ℓ

n

)n−k

(since ℓ ≈ n∆t)

=
(λℓ)k

k!

(
1− λℓ

n

)n

︸ ︷︷ ︸
≈e−λℓ

n!

nk(n− k)!︸ ︷︷ ︸
≈1

(
1− λ

n

)−k

︸ ︷︷ ︸
≈1

(rearrangement)

≈ (λℓ)k

k!
e−λℓ , (g)

where the latter approximations follow from the facts that:

•
(
1− λℓ

n

)n → e−λℓ as n→∞,6

• n!
nk(n−k)!

= n(n−1)···(n−k+1)
nk → 1 as n→∞,

•
(
1− λ

n

)−k → 1 as n→∞.

Note that the expression (g) is simply the probability mass function of the Poisson distribution with
parameter λℓ.

Q Why does T1 (the arrival time of the first event) have an exponential distribution?

A1 Let us derive the cumulative distribution function F (t) of T1. Clearly, T1 cannot be negative, hence
F (t) = 0 for t < 0.

Let t ≥ 0. Let K1 denote the number of trials until the first “success” so that the first event arrives during
the K1-th tiny interval. Clearly, K1 is a geometric random variable with parameter λ∆t. Observe that
T1 ≈ K1∆t. Thus, defining m := t/∆t, we have

F (t) = P(T1 ≤ t)

≈ P(K1∆t ≤ t)

= P(K1 ≤ t/∆t)

≈ 1− (1− λ∆t)
t/∆t (since K1 ∼ Geom(λ∆t))

≈ 1−
(
1− λt

m

)m

(using t = m∆t)

≈ 1− e−λt , (�)

where we have again used the fact that

•
(
1− λt

m

)m → e−λt as m→∞.6

Note that the expression (�) is simply the cumulative distribution function of the exponential distribution
with rate λ.

6The proof of the identity limn→∞(1− x/n)n = e−x can be found in most calculus textbooks.
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A2 For t ≥ 0, observe that the event {T1 > t} (the first event arrives after time t) is the same as the event
{N([0, t]) = 0} (there are no events during the interval [0, t]). As we saw earlier, N([0, t]) is a Poisson
random variable with parameter λt. Thus,

P(T1 > t) = P
(
N([0, t] = 0

)
= e−λt .

Thus, the cumulative distribution function of T1 is

F (t) = P(T ≤ t) = 1− P(T > t) =

{
1− e−λt if t ≥ 0,
0 if t < 0.

Hence, T1 is exponential with rate λ.

6.5 Poisson processes: An example

Example 6.5.1 (Customers). Starting from its opening hours, customers arrive at a shop at random times with
an average rate of 2 customers per hour. It is reasonable to model the arrival of customers with a Poisson process
with rate λ = 2 hour−1.7

Q What is the probability that the first customer arrives within the first 15 minutes?

A Let T1 denote the arrival time of the first customer (see Figure 6.5). We know that T1 has an exponential
distribution with rate λ = 2 hour−1. Denoting the cdf of T1 by FT1 , we can write

P(T1 ≤ 15min) = P(T1 ≤ 0.25 hour) = FT1(0.25 hour) = 1− e−2×0.25 = 1− e−0.5 ≈ 0.3935 .

Q What is the probability that the second customer does not arrive within the first 2 hours?

A1 Let T2 denote the inter-arrival time between the first and the second customers (see Figure 6.5), and
S2 := T1 + T2. We are looking for the probability that S2 > 2.

We know that S2 has a Gamma distribution with shape r = 2 and rate λ = 2 hour−1. Denoting the cdf
of S2 by FS2

, we have P(S2 > 2) = 1 − FS2
(2). Using a computer software such as R, we can find

FS2
(2) ≈ 0.90842, thus P(S2 > 2) ≈ 1− 0.90842 = 0.09158 .

Alternatively, if we let fS2
denote the pdf of S2 given in (m), we can write

P(S2 > 2) =

ˆ ∞

2

fS2
(x) dx

=

ˆ ∞

2

4xe−2x dx

= −2xe−2x

∣∣∣∣∞
x=2

+

ˆ ∞

2

2e−2x dx (integration by parts)

= 5e−4

≈ 0.09158 .

A2 The event that the second customer does not arrive within the first two hours can equivalently be described
as N([0, 2]) ≤ 1, where N([0, 2]) denotes the number of customers arriving within the first two hours.

We know that N([0, 2]) is a Poisson random variable with parameter

µ = λ× length([0, 2]) = 2 hour−1 × 2 hour = 4 .

Therefore,

P(N([0, 2]) ≤ 1) = P(N([0, 2]) = 0) + P(N([0, 2]) = 1)

= e−µ + e−µ µ

1!

= 5e−4

≈ 0.09158 .

7Why is a Poisson process a good model in this scenario? Does the process of the arrival of customers satisfy the defining conditions of a
Poisson process with rate λ?
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Q What is the probability that, among the first 5 customers, no two arrive within 15 minutes of each other?

A For k = 2, 3, 4, . . ., let Tk denote the inter-arrival duration between the (k− 1)st and the kth customers (see
Figure 6.5). We are looking for the probability that (T2 > 15min) and (T3 > 15min) and (T4 > 15min) and
(T5 > 15min).

We know that T2, T3, T4, T5 are independent, each having an exponential distribution with rate λ = 2 hour−1.
Therefore,

P
(
(T2 > 15min) and (T3 > 15min) and (T4 > 15min) and (T5 > 15min)

)
= P(T2 > 15min)P(T3 > 15min)P(T4 > 15min)P(T5 > 15min)

=
(
e−2×0.25

)4
= e−2

≈ 0.1353 .

#

6.6 More on Poisson processes

[To be written!]
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