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Introduction to Probability and Statistics American University of Beirut

Chapter 4

Language of Probabilities: Discrete
Random Variables

This chapter is about another element of the language of probabilities, namely, random variables. Random
variables provide the vocabulary for talking and reasoning about random quantities in probability models. For
instance, the height and the weight of a randomly picked student from a class can be formulated as random
variables in a model which describes the experiment of picking a student from the class at random.

In this chapter, we focus on discrete random variables, that is, those with discrete range of values. Those
with continuous range of values and those which do not fit in this division will be dealt with later. Moreover,
our discussion in this and the following chapter will be limited to individual random variables, or collections of
random variables that are statistically independent of one another. Inter-dependence between random variables
will be discussed later.

4.1 What is a random variable

Example 4.1.1 (Height and weight of a random student). Consider the height (in centimeters) and the weight
(in kilograms) of a student chosen at random from a class.

@ How should we incorporate these quantities in our model of probabilities?
The model for the experiment of picking a student from a class at random is described by
o (sample space) Q: set of all students in the class,

o (measure of probabilities) P(w) = 1/|92| for each outcome w € § (i.e., all students are equally likely to be
chosen).

In this framework,
o Each student a € Q, has a height H(a) and a weight W (a).

The two functions H and W are examples of random variables. O

Terminology. A random variable (sometimes abbreviated as RV) is a numerical quantity which is determined
by the outcome of an experiment. Mathematically, a random variable X is simply a function that assigns a
number X (a) to each outcome a € 2. The set of possible values that X can take is sometimes referred to as its
range.

More examples.

@ Experiment: roll two 6-sided dice. An example of a random variable:

X = (sum of the two numbers on the dice) .

@ What are the possible values of X?

2,3,4,...,12.

@ Experiment: flip a coin 10 times. An example of a random variable:

X = (number of heads) .
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@ What are the possible values of X?

0,1,2,...,10.
@ Experiment: repeat flipping a coin until there is a head. An example of a random variable:

N := (total number of flips) .

@ What are the possible values of N?

1,2,3,....

@ Experiment: repeat flipping a coin until there are two heads. Two examples of random variables:

N; := (the number of flips until and including the 1st head) ,
Ny := (the number of flips until and including the 2nd head) .

@ What are the possible values of N; and N5?

Possible values of Ny: 1,2,3,....
Possible values of Ny: 2,3,4,. ...

@ Experiment: draw a number from the interval [—1, 1] at random. An example of a random variable:

X = (square of the drawn number) .

@ What are the possible values of X?
[0, 1].

Convention. We use capital letters (such as X, N, A,...) for naming random variables and use small letters
(such as x,n, a, ...) to refer to their possible values.

Following this convention would greatly help us not get confused when dealing with random variables. We
will often need to refer to events such as {X = z} or {X < z} where z is a possible value for a random
variable X. For instance, this convention allows us to define a function such as

@Mﬂl{

=

p(x) = P(X = o)

concisely and unambiguously. This is simply a function that
» with input 1, gives out p(1) = P(X = 1) (the probability of the event {X = 1}),
 with input 10, gives out p(10) = P(X = 10) (the probability of the event {X = 10}),
» with input 2.5, gives out p(2.5) = P(X = 2.5) (the probability of the event {X = 2.5}),
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? Notation. The notation P(X = z) is a compact way to refer to the probability that X = z. In other words,
this is the probability of the event {X = z}, which consists of all possible outcomes w € 2 for which X (w) = z.
Therefore, in our notation,

7

PX=2)=P{X=2})=P({weQ: X(w)=1}).

&0
Types of random variables. In this chapter, we study random variables that have only finitely many, or
countably many possible values. Such random variables are known as discrete random variables. Of the five
examples above, all except @ are discrete. Handling discrete random variables is significantly simpler than
the other types of random variables. In particular, the distribution of a discrete random variable can simply be
described by identifying the probability that the random variable takes each of its possible values.
Example @ is an example of another type of random variables, known as continuous random variables.
The possible values of a continuous random variable range over entire intervals.! While working with discrete
random variables involves calculating finite or infinite sums and counting objects, dealing with continuous
random variables involves calculating integrals and using calculus.
Not every random variable falls into one of the two categories of discrete and continuous random variables.
However, in many scenarios which we encounter in practice, discrete and continuous random variables seem to
be sufficient in modeling random quantities. In a later chapter, we will discuss other types of random variables.

LThe exact definition of what is called a continuous random variable will be discussed later.



4.2 Distribution of a random variable: part I

4.2.1 Describing the distribution

Example 4.2.1 (Rolling two dice). Suppose we roll two fair dice. Let X denote the sum of the two numbers
that appear on the dice.
An appropriate model for this experiment can be given by

o (sample space) Q = {1, ), . . ., G396},
o (measure of probabilities) P(w) := 1/|Q}| = 1/36 for each w € Q (i.e., all outcomes are equally likely).

In this model, X is a random variable. For instance, when the outcome is J&J, the value of X is &, that is,
X (&%) = 8. In general, for each possible outcome (a,b) (where a is the number appearing on the first die, and
b is the number appearing on the second die), we have X ((a,b)) := a + b. Table 4.1 shows the value of X for
each possible outcome.
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& Figure 4.1: Distribution of the sum of the numbers on
two dice

Table 4.1: Sum of the numbers on two dice

The possible values of X are
2,3,4,5,6,7,8,9,10,11,12 .

However, observe that these values are not equally likely. For instance, X = 2 happens only if the outcome is
(1)), whereas there are six possible outcomes for which X = 7, namely,

X)) = X () = X(U0) = X (B = X (BED) = X () =7.
This means that it is six times more likely that X = 7 than X = 2.
@ What is the probability that X takes each of its possible values?

z : 2 3 4 5 6 7 8 9

-—2) - L 2 3 4 5 6 5 4 3 2
P(X—x)':as 36 36 36 36 36 36 36 36 36 36

10 11 12

From Table 4.1, we see that there is one outcome realizing X = 2, two outcomes realizing X = 3, ..., and
one outcome realizing X = 12. Since each individual outcome has probability 1/36, we have P(X = 2) =
1/36, P(X = 3) = 2/36, ..., P(X = 12) = 1/36.

The function p(z) := P(X = z) is called the probability mass function of the random variable X. In this example,
p(z) is given by the above table when z is a possible value of X, and p(z) := 0 when z is not one of the possible
values. Figure 4.1 shows the graph of p(x). O

Example 4.2.2 (Flipping a coin 10 times). Suppose we flip a coin 10 times. Let X denote the number of heads.
Let p be the parameter of the coin, indicating the chance of getting a head in one flip.
The model for this experiment is described by

o (sample space) 2 := {H, T}'°,
o (measure of probabilities) P is given by
P(TTTTTTTTTT) = (1 — p)'° .

P(HHHHHHHHHH) = p'° | P(HHHHHHHHHT) = p°(1 —p), ...,
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In this model, X is a random variable given by
X(alag s alo) = <# of W’sin ajas - - - a10>

for each outcome aqas - - - aig € Q.
The possible values of X are 0,1,2,...,10.

@ What is the probability that X takes each of its possible values?

For x =0,1,2,...,10, we have

There are (') outcomes with exactly z heads and 10 — x tails, each of which has probability p=(1 — p)'0==.

The probability mass function of the random variable X is thus

(1pe(1 - p)lo=* ifx € {0,1,2,...,10},

px(z) =P(X =x) = {

0 otherwise.

Another function associated to the random variable X is its so-called cumulative distribution function, which is
defined as

Fx(z) =P(X <x).

@ What is the value of Fx(z) for each x € R?

0 ifx <0,

2]
Fx(e)=B(X <a)={Y <1k0)pk(1 — )0k if0 <z <10,
k=0
1 if 10 < z.

If x < 0, then the event X < z never happens, hence P(X < z) = 0. If x > 10, then the event X < z
always happens, thus P(X < z) =1. Ifx = 0,1, ...,10, then the event X < x happens if either X = 0, or
X =1,0r..., X =x. Note that if 0 < 2 < 10 but « is not an integer, then the events X < x is the same as
the event X < |z], where |z| denotes the largest integer k satisfying k£ < z. For instance, X < 2.7 happens
precisely when X < 2 happens. O

Terminology. The probability mass function (often abbreviated as pmf) of a discrete random variable X is a
function px (z) with one input argument z, defined as

px(z) =P(X = x) for each z € R.

It describes the distribution of X, that is, how likely it is for X to take each value. Based on the interpretation
of the probabilities as “idealized frequencies”, the value of px () is roughly the proportion of times in which
X = x if we repeat the experiment many many times.

The distribution of a discrete random variable X can alternatively be described by its cumulative distribution
function (often abbreviated as cdf), which is defined as

Fx(z) =P(X <z for each = € R.
Relationship between the pmf and the cdf. The two functions px (x) and Fx (z) carry the same information
about a discrete random variable X: if we know one of them, we can find the other.
@ If we know the pmf of a discrete random variable X, how can we find its cdf?

Fx(z) = Z px(y) for each z € R.

yiy<w



@ If we know the cdf of a discrete random variable X, how can we find its pmf?

Suppose we know the cdf and we want to find the value of the pmf px(x) for some value z. Let y be
another value which is strictly smaller than z but very close to it (say, y = z — 0.001). Then, the probability
that y < X < z will be small, and hence

px(x)=P(X =2)=P(X <z)-P(X <)
~P(X < @)~ P(X <) = Fx(x) - Fx(y) -
As we choose y closer and closer to x, the approximation becomes more and more accurate, and in the limit

y /' x, we get an exact equality. In fact, if y is close enough to x such that X has no possible value between
y and z, then the approximation is already an exact equality and we can calculate px (z) as Fx (z) — Fx (y).

While the meaning of the pmf is clear, the relevance of the cdf is less obvious. If the pmf and the cdf carry
the same information, why not stick to the simpler, more intuitive one? In some scenarios, working with the cdf
simplifies the calculations. However, the main advantage of the cdf is that its domain of applicability is much
broader. As we will see later, the pmf is only useful in describing the distribution of discrete random variables,
whereas the cdf can be used for any type of random variable. This will be clarified in the following chapters.

Example 4.2.3 (Flipping until a head comes up). Suppose we repeat flipping a coin until it comes up heads.
Let N denote the total number of flips in this experiment. As usual, we let p denote the bias parameter of the
coin, that is, the probability that it comes up heads in one flip.

The model for this experiment can be described by

o (sample space)  := {H, TH, T?H, T*H, .. .},
o (measure of probabilities) P(T*H) = (1 — p)*p for each k = 0,1,2,....
In this model, N is a random variable given by
N(TFH) =k +1 foreachk=0,1,2,....
The possible values of N are 1,2,3,....
@ What is the probability mass function of N?

(1—p)tp ifn=12.3,..,
0 otherwise.

wn:mwzm:{

@ What is the cumulative distribution function of N?

Forn =1,2,3,..., the cdf is given by

F(n) =P(N <n)= Z(l —p)*1p.
k=1

This is a geometric sum,? which can be calculated as
_1- (1—p)"
1-(1-p)

For general values of n (not necessarily positive, not necessarily an integer), we have

p=1—-(1-p".

0 ifn <1,
1-(1-pl ifn>1.

F(n) =P(N <n)= {

When n = 1,2,3,..., we can use the following trick to simplify the calculation, hence avoiding the geo-
metric sum:

F(n)=P(N<n)=1-P(N >n)

Observe that {N > n} is simply the event that there are no H’s in the first n flips, hence P(N > n) =
(1 — p)™. Therefore,

Fn)=1—(1—-p)".

The value of F(n) for other values of n (not necessarily positive, not necessarily an integer) is as in the
previous answer. O

2A quick review of geometric sums comes in Interlude 4.A.



Interlude 4.A (Review of geometric sums). A geometric sum is the sum of a finite number of terms in which the
ratio between every two consecutive terms is the same. For instance, in the sum
3 3 3 3
S=34+-4+-4-++55
2 4 8 210
each term is half the previous term. The value of a geometric sum can be found using a similar trick as in the
case of geometric series. Namely, observe that

S:3+%(3+g+%+---+2%).

§—3/210

Hence, S = 3 + (1/2)(S — 3/2'°). Solving this equation, we obtain S = 6 x (1 — 1/2'*) = 5.9970703125.
More generally, a geometric sum has the form

n
S:a+ar+ar2+ar3+--~ar":Zark, (~)
k=0

where « is the starting term, r is the common ratio of the consecutive terms, and there are n + 1 terms in total.
The value of the sum (&) can be found as in the example above. O

4.2.2 Bernoulli random variables

A random variable with exactly two possible values 0 and 1 is called a Bernoulli random variable.® This is the
simplest type of random variable. The distribution of a Bernoulli random variable X is identified by a single
parameter p, indicating the probability of X = 1. The probability of X = 0 is then simply 1 — p. The probability
mass function of a Bernoulli random variable with parameter p is thus

D ifer=1,
plz)=q¢1—-p ifx=0,
0 otherwise.

The distribution of X is known as the Bernoulli distribution with parameter p.
Bernoulli random variables naturally arise in coin flipping experiments, but also in many other contexts.
Here are some examples of Bernoulli random variables in three different contexts:

Experiment: flip a coin 5 times. For k = 1,2,...,5, let

X 1 if the k’th flip comes up heads,
"7 Yo otherwise.

Then, X1, X, ..., X5 are Bernoulli random variables.

@ What are the parameters of these Bernoulli random variables?

The same as the parameter of the coin (i.e., the chance of getting a head in one flip).

Experiment: roll two fair dice. Let

__J 1t if the two dice show the same number,
' 0 otherwise.

This is a Bernoulli random variable.

@ What is the parameter of this Bernoulli random variable?
/6. There are 6 possibilities ()], (37, (I, 363, (), 6363, each occurring with probability 1/36.

Experiment: pick a student from a class at random. Let

oo 1 if the height of the picked student is > 170 cm,
" 10 otherwise.

This is a Bernoulli random variable.

3Named after mathematician Jacob Bernoulli (1655-1705).


https://en.wikipedia.org/wiki/Jacob_Bernoulli

@ What is the parameters of this Bernoulli random variable?

The proportion of students in the class with height > 170 cm.

Bernoulli random variables can often be used to indicate whether a certain event has happened or not. As we
will see, this sometimes allows us express other types of random variables in much simpler terms.

4.2.3 Graphs of pmf and cdf

To understand the concepts of the probability mass function and the cumulative distribution function, it is
instructive to know how their graphs look like.

Example 4.2.4 (Bernoulli RV with parameter p). Let X be a Bernoulli random variable with parameter p, that is,

X 1 with probability p,
~ | o with probability 1 — p.

@ How does the pmf of X look like?
See Figure 4.2a. Note that P(X = z) = 0 unless z is one of the two possible values.

@ How does the cdf of X look like?

See Figure 4.2b. Note that

- If # < 0, then the event X < z never happens, hence P(X < z) = 0.
- If0 <z <1,then X < zif and only if X = 0. Therefore, P(X <2)=P(X =0)=1—0p.
— If x > 1, then the event X < z always happens, hence P(X < z) = 1.

O
P(X = x) P(X <x)
1 —_—
1—p ° | 1—-p 0
] i : ; 1 :
(@ (b)

Figure 4.2: The distribution of a Bernoulli RV with parameter p. (a) pmf (b) cdf

Example 4.2.5 (Number on a die). Suppose we roll a fair die. Let X be the number appearing on the die.
Hence,

1 with probability /e,

2 with probability /s,

X=9. .

6 with probability /.
@ How does the pmf of X look like?
See Figure 4.3a. Note that P(X = z) = 0 unless z is one of the six possible values.

@ How does the cdf of X look like?

See Figure 4.3b. Note that



If 2 < 1, then the event X < x never happens, hence P(X < z) = 0.

If 1 <z < 2, then the event X < z happens if and only if X = 1. Therefore, P(X <z)=P(X =1) =
1/e.

If 2 < z < 3, then the event X < x happens if either X = 1 or X = 2. Therefore, P(X < z) =P(X =
1)+ P(X =2) =2/

If 2 > 1, then the event X < x always happens, hence P(X < z) = 1.

O
P(X =x) P(X <x)
1 -—
5/6 4 ,—o
4/6 | —o
3/6 —
2/6 | —o
/e ) ) ) ) ) ) /e { ——o
| | | | | | T N T
1 2 3 4 5 6 1 2 3 4 5 6
(@) (b)

Figure 4.3: The distribution of the number on a fair die. (a) pmf (b) cdf
s“% Shape of the cdf (discrete RVs). Let F'(z) be the cdf of a discrete random variable X.* Then,
(i) F(z) is non-decreasing.
(i) F(x) = 0if x is smaller than all the possible values of X.°
(iii) F(z) = 1if z is larger than all the possible values of X 6
(iv) At each possible value x of X, the graph of F' has an upward jump. The amount of the jump is P(X = z).
(v) In between the possible values of X, F(z) is constant.”
& Exercise. By examining the above two examples or by using mathematical reasoning, argue that the above
properties indeed hold for the cdf of every discrete random variable.
4.2.4 Independence of random variables

Example 4.2.6 (Flipping a coin 5 times). Consider again the experiment of flipping a coin 5 times. For k =
1,2,...,5, consider the Bernoulli random variables

X e 1 if the k’th flip comes up heads,
"7 Yo otherwise.

The random variables X7, Xo, ..., X5 indicate the results of the 5 flips. Since the flips do not affect one another,
the values of X, X5, ..., X5 are independent of one another.

@ How should we formulate the fact that X, X, ..., X5 are independent?
The independence of X1, Xo, ..., X5 is perfectly captured by the fact that the events
{Xl = 1}3 {XQ = 1}7 {X3 = 1}7 {X4 = 1}a {X5 = 1}

are independent. O

4The cdf of non-discrete random variables has some but no all the above properties. For instance, for a continuous random variable, the
cdf is a continuous function.

5If no such z exists, then we still have F(z) — 0 as x — —oo.

81If no such x exists, then we still have F'(z) — 1 as z — oo.

7In particular, if 21, zo are two consecutive possible values of X, then F(x) = F(x1) whenever 1 < z < z2.
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Terminology. Two discrete random variables X and Y are said to be (statistically) independent if for every
values z, y, the events

{X =z} and {Y =y}

are independent. This means that the value that X takes does not provide us with any information about the
value that Y takes, and vice versa.
The independence of more than two random variables can be formulated analogously.

& Exercise. Verify that the random variables X, X5, ..., X5 in Example 4.2.6 are independent in the above sense.
For instance, you need to show that the events

{(Xi=1}, {Xo=1}, {Xz=1}, {Xua=1}, {X;=0}

are also independent, and similarly for any combination of 0s and 1s as values.

4.3 Expected value of a random variable: part I

Example 4.3.1 (Number on a die). Let us go back to the experiment of rolling a fair die (Example 4.2.5).
Suppose we repeat rolling the die many many times.

@ What will be the average of the numbers appearing on the die?
Let X denote the number appearing on the die. This is a random variable, where

1 with probability /e,
2 with probability 1/s,
X=q. .
6 with probability /.

Suppose we repeat the experiment of rolling the die n times, where n is very large. If z; denotes the
number we observe on the die in the £’th experiment, then

T1+To+ -+ Ty
n
Nopy(X=1)-14+N(X=2)-24+---+ N, (X =6)-6

)

(average of the values of X) =

n

where as usual, we have written N,,(X = i) to denote the number of times among these repeated experi-
ments in which X = 4. Note that each of the terms in the sum x1 + 25 + --- + x,, is either 1, or 2, ..., or 6.
In the above equality, we have simply grouped the 1s together, the 2s together, and so on.® The latter can
now be written as

The ratio N,,(X = 1)/n is the proportion of times in which X = 1. Based on the interpretation of probabil-
ities as “idealized frequencies”, the latter proportion approximates P(X = 1). Similarly,

Therefore,
(average of the values of X) ~ P(X =1)- 1 +P(X =2)-2+--- +P(X =6) -6

1 1 1
= .14+=.24...4+=-.6=235.
soltg 2t

8For instance, if n = 10 and the values of X in 10 repeated experiments are 3,1, 5,3,2,1,1,6,4, 5, then
3414+5+3+2+14+14+6+44+5 (1+1+1)+2+(3+3)+4+(5+5)+6

10 10
3X1+1Xx242x3+1x442%x5+1%X6

- 10
In this case, Nlo(X = 1) = 3, Nlo(X = 2) = 1, Nlo(X = 3) = 2, Nlo(X = 4) = 1, Nlo(X = 5) = 2 and Nlo(X = 6) =1.
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The value
EX]=P(X=1)-14P(X=2)-2+---+P(X =6)-6=3.5

is called the expected value of X. It can be thought of as the “idealized average” of X in many many repeated
experiments. O

Example 4.3.2 (Bernoulli RV with parameter p). Consider the experiment of flipping a coin with parameter p.
Define a random variable X by setting X = 1 if the coin comes up heads and X = 0 if the coin comes up tails.
Then, X is a Bernoulli random variable with parameter p (Example 4.2.4).

Suppose we repeat the experiment many many times?

@ What will be the average value of X in these repeated experiments?

Suppose we repeat the experiment n times, where n is very large. As in the previous example, let x
denote the value of X in the k’th experiment. Let N,,(X = 0) and N,,(X = 1) denote the number of times
in which X = 0 and X = 1, respectively. Then,

.I‘1+$2+"'+$n

<average of the values of X > =

n
CN,(X=0)-04+Ny(X=1)-1
a n

Ny(X =0 Npy(X =1
_Na(X=0) | Na(X=1)

n n
~P(X=0)-0+P(X=1)-1=p.

Observe that the average value of X is simply the proportion of times in which the coin comes up heads.
According to the interpretation of probabilities as “idealized frequencies”, the latter proportion approxi-
mates P(H) = p.

In this example, the expected value of X is the “idealized average”
EX]=P(X=0)-0+P(X=1)-1=p.

O

Terminology. The expected value (or expectation, or mean) of a discrete random variable X, denoted by E[X],
is the quantity

EX]=>» P(X=1)-z, (1)

where the sum runs over all the possible values of X. In words, the expected value of X is the average of the
possible values of X weighted by their probabilities.
If © denotes the underlying sample space, then the expected value of X can also be calculated as’

E[X]=) Pw) X(w), (22)

weN

In words, the expected value of X is the average of the values that X takes for each possible outcome, weighted
by its probability.

The expected value of a random variable X is often denoted by the Greek letter u, or by ux if we want to
emphasize the dependence on X.

Interpretation. The expected value of a random variable X is understood as the “idealized average” of the
values of X in many many repeated experiments. More specifically, suppose that we repeat the experiment n
times, and let x; denote the value of X in the k’th experiment. Then,

1 +xo+ -+ Ty
n

E[X] ~

9To be precise, this is true if Q2 is finite or countable.

10



when n is large, and the approximation becomes more and more accurate as n — oo. As usual, let N, (E)
denote the number of time in these repeated experiments in which the event £ happens. Expression (&) is
obtained by grouping the terms in the sum xzy + x5 + - - - + x,, based on the possible values of X, and noting that

Ty T+ Fx, Y Ny(X=1x)2
n n '

Expression (&) is obtained by grouping the terms in the sum x; + 22 + - - - + x,, based on the outcome of the
experiment, and noting that

T4+ 2o+ +Tn D yeqNn(w) X(w)

n n

Example 4.3.3 (A game of chance). To “meditate the sacred geometry of chance”,' two curious friends Ismael
and Leyla are playing the following silly game. They roll two fair dice.

¢ If the two dice show the same number, Ismael gives 6000 LL to Leyla.

* If not, Leyla gives 1000 LL to Ismael.
@ Is this game fair?

Let G denote Leyla’s gain (in Lebanese Liras) in one game. This is a random variable with!!

__ J 46000 with probability /s,
" 1 -1000 with probability 5/c.
The expected gain of Leyla in one game is therefore

1000

1
E[G] = P(G = +6000) - (+6000) + P(G = ~1000) - (~1000) = ¢ - 6000 + % - (~1000) = —

This means that if Ismael and Leyla play this game many many times, then Leyla’s average gain per game
will be roughly 1000/6 LL. Therefore, the game is biased in Leyla’s favor.

Ismael and Leyla decide to modify the game to make it fair. In the modified game, the 6000 LL which Ismael
pays to Leyla is changed to a different amount which we denote by z. Thus,

¢ If the two dice show the same number, Ismael gives z LL to Leyla.

* If not, Leyla gives 1000 LL to Ismael.

@ For which value of z is this game fair?

In the modified game, Leyla’s expected gain is

ot

E[G] = P(G = z) - x + P(G = —1000) - (—1000) = % <+ o+ (~1000).

In order for the game to be fair, Leyla’s expected gain must be zero, hence
1 5
- - -(—1000) =0.
5 ¢ + 5 ( )
Solving for x, we obtain x = 5000. O
Example 4.3.4 (Variant of China’s one-child policy'?). In order to limit the population growth in China, during

1979-2016 the Chinese government had implemented the so-called one-child policy, limiting the number of
children a couple could have to one.'® An alternative policy which was considered was the one-son policy:

* One-son policy: As long as a couple have only female children, they are allowed to have more children.

There was however a concern that such a policy could affect the ratio of male to female in the population.
Indeed, following this policy, no family would have more than one son, whereas many families would have
several daughters.

10As Sting put it . ..

1A negative gain corresponds to a loss. Ismael’s gain in one game is simply —G.

12This example is taken from the book Elementary Probability for Applications by Rick Durrett.

131n practice, the policy allowed for various exceptions and adjustments. See One-child policy (Wikipedia) and the references therein for
more information.
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@ Would the implementation of the one-son policy affect the ratio of male to female in the country?

To answer this question, we make a probability model. To avoid getting lost in details, we make the following
simplifying assumptions:

I. In each birth, the chance of delivering male and female children are the same.*
II. The sex of successive children are independent.

IIl. There are no intersex children.'®

IV. There are no twins, triplets, and so on.'®

V. Each family will keep on having children until they have a son.

Note that under these assumptions, each family will have exactly one son.

@ What is the average number of daughters per family under the one-son policy with the above assumptions.

The probability model for the births in one family can be given by

o (sample space) €2 := {M, FM, F?M, F3M, ...},
o (measure of probabilities) P(F¥M) = (1/2)k(1/2) = (1/2)k*! for each k = 0,1,2, .. ..

Let N denote the number of daughter in this family. This is a random variable where N (F*M) = k. The
possible values of N are 0,1,2, ..., and its distribution is given by

o\k+l  if g
P(N = k) = (1/2) if k 9,1,2,...,
0 otherwise.
Therefore, the expected value of N is
EIN] =) P(N=k)-k=> (Y2)"k.
k=0 k=0
Calculating the latter sum,'” we obtain
E[N]=1.

This is the expected number of daughters in one family. Since the number of families is very large, the
average number of daughters per family is approximately E[N] = 1.

The above calculation shows that, under assumptions I-V, the one-son policy would not change the male-to-
female ratio in the population.

While assumptions I-IV may be considered as reasonable simplifications, assumption V appears more sus-
picious. Would the conclusion remain valid if assumption V does not hold? To examine this, let us consider a
modified model in which each family stops having children once they have three daughters. In other words, let
us replace assumption V with the following:

V’. Each family will keep on having children until they have a son, or if they have three daughters.

Note that with this modified stopping strategy, the number of sons per family is not always one anymore.

@ What are the average numbers of daughters and sons per family under the one-son policy with the modified
assumption.

With the modified assumption, the model is changed to the following:

o (sample space) Q' := {M, FM, F?M, F3},

o (measure of probabilities)

P(M) = 1/2, P(FM) = 1/4, P(F2M) = Vs, P(F%) = Vs .

141n reality, the male to female ratio at birth for humans is around 1.05. The bias is compensated by the fact that the infant mortality rate
for boys is slightly higher than for girls. See Human sex ratio (Wikipedia) and the references therein for more information.

151n reality, between 0.018% to 1.7% of infants at birth do not fit into either of the two categories of male and female (depending on the
definition). See Intersex (Wikipedia) and the references therein for more information.

16See Multiple birth (Wikipedia) for statistics on multiple births.

17See Interlude 4.B for a review of how to calculate such series.
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Let Nr and Ny denote the number of daughters and sons in the family, respectively. Then,

E[Ne

=(Y2)- 0+ (Ya) -1+ (Y/8) -2+ (Ys) -3 E[N] = (Y/2) - 1+ (Ya)- 1+ (/8) -1+ (1/s)- 0
=T/s, =T/5.

Therefore, the average numbers of daughters and sons per family will both be roughly 7/s.

We conclude that, under the modified assumption, the policy would not affect the male-to-female ratio in the
population.

In fact, under assumptions I-IV, the balance of male to female in the population cannot change, no matter
what strategy the couples follow to decide when to stop having children. Indeed, imagine a couple who are
about to have a baby. Ismael and Leyla make the following bet (compare with Example 4.3.3):

* If the baby is a girl, Ismael gives 1$ to Leyla.
* If the baby is a boy, Leyla gives 1$ to Ismael.

Let G denote Leyla’s gain in the game. Then, under assumption I, we have E[G]| = 0, which means that the
game is fair. Therefore, if Ismael and Leyla repeat playing this game many times, Leyla’s average gain per game
will be approximately zero. Leyla may want to come up with a strategy for when to stop playing the game in
order to maximize her gain. However, it can be shown that in a fair game, no matter what stopping strategy
Leyla uses, her expected total gain will remain zero.'8

Surprisingly, the one-child policy seems to have lead to an increase in the male-to-female ratio in China, but
for altogether different reasons. This imbalance has been associated (among other potential causes) to wide-
spread sex-selective abortions among some traditional segments of the society who have preference for having
sons. In the presence of such sex-selective abortions, assumption I is no longer valid.'® O

The problem of finding the expected value of a discrete random variable X amounts to the calculation of
the sum ) P(X = z)z. In practice, direct calculation of the sum can be quite tedious if not challenging. An
important fact which is often of great help in this regard is the linearity of expectation.

P

%

I

Linearity of expectation.

» If X is a (discrete) random variable and a, b € R arbitrary numbers, then

ElaX + 0] =aE[X]+5b.

» If X and Y are two (discrete) random variables, then
E[X + Y] =E[X]+E[Y].

To be more precise, the above statements hold provided that the expectations E[X] and E[Y] exist! In general,
the expected value of a (discrete) random variable need not exist. In particular, the sum ) P(X = z)z defining
the expected value might diverge. An example in which this happens will come later (Example 4.4.6). In the
meanwhile, you can try to cook up an example of your own.

@ Why do the above two identities hold?

Let 2 denote the underlying sample space. Then, E[X] )

——
ElaX +b] = > Pw)(aX(w)+b) =a_ Pw)X(w)+b Y _ Pw)=aE[X]+b.

weN weN weN
Similarly, E[X] E[Y]
EX +Y] =) Pw)(X(w)+Yw) =Y PwXw)+ Y Pw)Y(w) =EX]+E[Y].
we we) we

18The mathematical theorem explaining this is known as the optional stopping theorem. Certain realistic assumptions are needed (for
instance, the assumption that Leyla’s initial wealth is finite). The optional stopping theorem is the starting point of the applications of
probability theory in finance.

19See Missing women of China (Wikipedia) and the references therein for more information.
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Interlude 4.B (Arithmetico-geometric series). Consider the series

“k 0 1 2 3 4
S = — = o S S — 4 &
25 Tt titstet (D)

This looks almost like a geometric series, except that the £’th term is multiplied by k.

@ How can we calculate such a series?

(Method 1)

Consider the following infinite triangular array:

(=1 ¥ ¥
e=5 o

Observe that S is simply the sum of all the entries in this array. Indeed, the sum of the entries in the k’th
column is k /2", and hence the sum of all the entries in the array is >_,- , k/2% = S.

Now, let us add up the entries row by row. The sum of the entries in the ¢'th row is a geometric series
with starting term 1/2¢ and common ratio 1/2, and hence evaluates to 1/2‘~'. Therefore, the sum of all
the entries in the array is -, 1/2¢~1. This is again a geometric series, this time with starting term 1 and
common ratio 1/2, and hence evaluates to 2.

We conclude that S = 2.

(Method 2: via generating functions)

Let us define an auxiliary function g(z) with one argument as

1
= k = —_—
g9(z) = kgioz T

The series is convergent if and only if —1 < z < 1, so g(z) is defined only for such values. Let us now take
the derivative of this function:

12:00 Zk71: 1
g'(2) ;k (1_2)2'

Note that the derivative can be taken in two ways: by taking the derivative of each term in the series, or
by taking the derivative of the evaluated sum 1/(1 — z). Note also that the derivative of 2° = 1 is zero,
and that is why we have started the series for ¢/(z) from k& = 1 rather than k£ = 0.

Now, observe that the series in ¢’(z) resembles the series in S. In fact, S can be written in terms of ¢'(z)
evaluated at z = 1/2. Namely,

1 J—
(1=1/2)2

The function g(z) is an example of a so-called generating function. The method of generating functions is
very powerful, but requires a degree of creativity in choosing the right function.

1, 1
- - - . 2.
S 2g(/2) 5

The series (€9) is an example of an arithmetico-geometric series (also known as Gabriel’s staircase). An
arithmetico-geometric series is a series of the form

S:Z(a—i—kb)rk =a+ (a+b)r+ (a+20)r* + (a+3b)r® + (a +4b)r* 4 - -
k=0

When 0 < r < 1, the series converges and either of the above methods can be used to calculate it.?° <&

20Gee Gariel’s stairecase (MathWorld) for a beautiful illustration of the first method.
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4.4 Interesting examples: computing the expected value

Example 4.4.1 (A binomial RV). Take a coin with bias parameter p, and consider the experiment of flipping
the coin n times. Let X denote the number of heads. The possible values of X are 0,1,2,...,n. The probability
mass function of X is given by

(Z)pk(l —p)nk ifk=0,1,2,...,n,
0 otherwise,

px (k) == P(X = k) = {

(see Example 4.2.2). The latter is called the binomial distribution with parameters n and p. A random variable
with this distribution is called a binomial random variable with parameters n and p.

@ What is the expected value of X?

(Method 1: via generating functions)
We have

n

> (Z)p’“(l )"k

E[X] =Y P(X =k)k =
k=0 k=0
How can we calculate the latter sum?

Recalling the binomial identity,?! let us define the generating function

9(2) = zn: (Z) = (142",

k=0

Taking the derivative, we get

S =3k (Z) (142

k=1
Note that the derivative can be taken in two ways, using either of the two expressions for ¢g(z). Note also
that the derivative of z° = 1 is zero, and that is why we have started the series for ¢’(z) from k = 1 rather
than £ = 0.
Now, observe that the first expression for ¢’(z) resembles the expression for E[X]. In fact, we can write
E[X] as

s =0y (1) (7)o

L—p
n—1
=1 -p"p- n(l + 17) (using the second expression for ¢'(z))
—-p
1 n—1
S0 ali)
1=p)"""p-nf3 —
=pn .

(Method 2: using the linearity of expectation)
Define Bernoulli random variables X1, X», ..., X,,, where

X {1 if the ¢’th flip comes up heads,
‘7 lo otherwise.
These are independent Bernoulli random variables with parameter p. Observe that
X=X1+Xo+-+X,.
Therefore, by the linearity of expectation,
EX]=E[X; 4+ Xo+ - + X,]
=E[Xi]+E[X3] + - + E[X,,]
=p+p+---+p=np.
n times

O

2IThe binomial identity is the algebraic identity (a + b)™ = >-3_; (})a*b™~*, which holds for every two numbers a,b € R and every
non-negative integer n.
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Binomial random variables. A binomial random variable with parameters n and p is a random variable X
which can be represented as a sum

X:X1+X2+"’+Xna

where X1, Xo,..., X, are independent Bernoulli random variables with the same parameter p. The distribution
of a binomial random variable is called a binomial distribution.?> Here are two generic examples of binomial
random variables in different contexts:

Experiment: flip a coin 10 times. Let X be the number of heads. In this context, X; indicates whether
the ¢’th flip comes up heads or tails.

More generally, the coin flips could be replaced with any sort of random trials which are either success-
ful or unsuccessful. The results of the repeated trials must be independent of one another.

Experiment: we have a jar with N balls, K of which are blue and the remaining N — K red. At random,
we draw an (ordered) sample of n balls with replacement (see Example 3.4.6 and Figure 3.11). Let X
be the number of blue balls drawn. In this context, X; indicates whether the ¢’th drawn ball is blue or
red.

@ What are the binomial parameters of X?

The first parameter is n, the second is p := K/N.

Example 4.4.2 (A hypergeometric RV). Suppose that we have a jar with N balls, K of which are blue, and the
remaining N — K are red. At random, we draw an (unordered) sample of n balls without replacement (see
Example 3.4.7 and Figure 3.11). For simplicity, let us assume that n < K and n < N — K, which means there
are at least n balls of each color in the jar. Let X be the number of blue balls drawn. The possible values of X
are 0,1,2,...,n. The probability mass function of X is given by

0 ¢,

Sk )inck) =0,1,2,...,
px(B) =P(X =k =4 () ' "

0 otherwise.

The latter is called the hypergeometric distribution with parameters N, K and n. A random variable with this
distribution is called a hypergeometric random variable with parameters N, K and n.?3

@ What is the expected value of X?

(Method 1: via generating functions; optional)

We have
- R0

=0

The latter sum can be calculated using the method of generating functions, but in a more complicated
way. Let us define a function h(u, v) of two real arguments as

h(u,v) = (1 +u) (1 +0)¥7F
Expanding the two terms using the binomial identity, we get
K N-K K N-K
B K\ . N-K\ , N—-K\ .,
=[S0 S () -2 5 ()T

Taking the partial derivative of h with respect to its first argument, we get

I (u, v) = a%h(u,v) K1+ w511+ 0)N :i Z_; ( ><N;K> bt

22 Alternatively, the binomial distribution with parameters n and p can be defined by its pmf, which is given in ()
23The assumptions n < K and n < N — K can be relaxed with appropriate adjustments.
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Note that the first sum starts from k& = 1 rather than & = 0, because the derivative of u° = 1 is zero.
Note also that the second expression for /4 (u, v) has a resemblance to the expression for E[X]. Let us now
substitute « for v and define

g(u) = hy(u,u) = K(1+u)™ i X_: ( ><N K) uf e

k=1 (=0

Observe that the two expressions for g(u) are polynomials in variable w. In order for two polynomials in u
to be equal, their corresponding coefficients for the powers of u must be equal. Identifying the coefficients
of u"~1! in the two polynomials, we obtain

<2 (00

(N—1)!

1 N - K K7 Kag—oowv—my  Kn
—TZ k= ™ N =N -
k=0

n n n!(N—n)!

Dividing by (), we find that

(Method 2: using the linearity of expectation)

Imagine drawing the balls one by one. At the end, we ignore the order of the drawn balls and obtain an
unordered sample. However, this way of drawing the sample allows us represent X as

X =Xi+Xp+ X,

where

X 1 if the 7’th drawn ball is blue,
""" lo otherwise.

Note that

— Each X is a Bernoulli random variable.
- X1, X5, ..., X, are not independent.

@ What is the Bernoulli parameter of X;?

The parameter of X; is clearly K/N. To find the parameter of X5, we divide the possibilities based
on the value of X;. Namely, by the principle of total probability,

(parameter of X5) =P(Xy = 1)
=P(X; =0)P(Xo=1|X; =0)+P(X; = 1)P(Xo = 1| X; =1)
_N-K K K K-1
SN N-1 TN N-1
7NK—K2+K2—K
N(N —1)

With the same approach but more tediously, we can verify that the parameter of X3 is K/N as well.
What about the rest?

The parameter of X; is K/N for every i = 0,1,2,...,n. Imagine drawing the balls without looking
at their colors. Once all the balls are drawn, pick the i’th ball and observe its color. Clearly, the
chance that the ball is blue is K/N.

Therefore, by the linearity of expectation,

EX] =E[X; + Xo+ -+ X,
= E[X1] + E[Xa] + - - + E[X,,]

K
=K/N+K/N+--+K/N=n-= .

N
n times
Let us emphasize that, unlike in Example 4.4.1, here the random variables X, X», ..., X,, are not inde-
pendent. Nevertheless, the above computation is still valid. The linearity of expectation holds irrespective
of whether the summands are independent of not. O
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Example 4.4.3 (A geometric RV). Take a coin with bias parameter p. Repeat flipping the coin until it comes
up heads. Let N denote the total number of flips in this experiment. The possible values of N are 1,2,.... The
probability mass function of N is given by

(1—p)Flp ifk=1,23,...,
0 otherwise,

p(k) =P(N =k) = {

(see Example 4.2.3). This is called the geometric distribution with parameter p. A random variable with this
distribution is called a geometric random variable with parameter p.

@ What is the expected value of N?

(via generating functions)
We have

EN] =) P(N=kk=> (1-p*'p-k.
k=1 k=1

Note that the latter resembles an arithmetico-geometric series. As in Interlude 4.B, let us consider the
generating function

oo 1
— k _
g(z)._g =10

k=0
defined for —1 < z < 1. Taking the derivative, we have

> 1

"(z) = =~
Now, we have
— (] — ) — p :£:1p.
E[N] =pg'(1 - p) R /

O

@Wﬂ/

Geometric RVs are memoryless. Let N be a geometric random variable with parameter p. Then, for every
two integers m, k > 1, we have

P(N=m+k|N>m)= ( m + k and >m): ( m+k)

P(N > m) P(N > m)
_ (1 7p)m+k71p _ .
= W =(1 —p)k p
=P(N=k).

In other words, the conditional distribution of N — m given N > m is the same as the distribution of N.
This phenomenon is referred to as the memorylessness of the geometric random variables, and has a simple
explanation based on the coin flipping experiment. Namely, thinking of NV as the number of flips till the first
head comes up, the memorylessness of N simply says the following:

* If we learn that in the first m flips no head has come up, then the number flips till the first head counted
from after the m’th flip is again geometrically distributed with the same parameter.

But this is rather obvious, given that the coin flips are independent.

Example 4.4.4 (A negative binomial RV). Take a coin with bias parameter p. Let r be a positive integer. We
repeat flipping the coin until we get r heads (see Example 3.4.8). Let X denote the number of tails. The possible
values of X are 0,1,2,.... The probability mass function of X is given by
k+r—1 r k :
1-— fk=0,1,2,...
pX(k) :]P)(X:k): ( r—1 )p( p) 1 .7 ) & )
0 otherwise.
The latter is called the negative binomial distribution with parameters r and p. A random variable with this
distribution is called a negative binomial random variable with parameters r and p.
Observe that this is essentially a generalization of the previous example. In particular, if » = 1, then X + 1 is
a geometric random variable.
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@ What is the expected value of X?

(Method 1: via generating functions; optional)
This is left to you as an exercise. You can use the negative binomial identity**

e (T0)

k=0

(Method 2: using the linearity of expectation)

Imagine simulating this experiment with the help of r students. Each student has a coin with the same
parameter.

e Student #1: Repeats flipping his/her coin until it comes of heads. Let X; denote the number of tails
he/she gets.

e Student #2: Repeats flipping his/her coin until it comes of heads. Let X5 denote the number of tails
he/she gets.

e ...
e Student #r: Repeats flipping his/her coin until it comes of heads. Let X, denote the number of tails
he/she gets.

We simulate the original experiment by first reading the outcome of the coin flips made by the first student,
then reading the outcomes of coin flips made by the second students, and so on and so forth. Here is an
example, in the case r = 4: 43

#1 #2 T #4

——

TTTTTHTTTHHTTTTH
—_— — —
X1 =5 Xg:Bl X4 =4

Clearly, Xs =0

X=X +Xo+ -+ X,.
Furthermore,

- X1, X5, ..., X, are independent,
— For each i, X; + 1 is a geometric random variable with parameter p.
In particular, E[X; + 1] = 1/p, which implies E[X;] = 1/p — 1.
Therefore, by the linearity of expectation,

E[X] = E[X; + Xo + - + X,]
=E[Xi1] + E[X5] + - + E[X,]
rl-p)

==+ p—1)+-+p—1)=r(/p—1) = »

r times

O

Example 4.4.5 (A Poisson RV). A Poisson random variable?> with parameter p > 0 is a random variable X with
possible values 0, 1,2, ... and probability mass function

et itk =01,2,...,
0 otherwise.

The latter is called the Poisson distribution with parameter p. We will later discuss the interpretation of such
random variables. For now, note that px is non-negative and

[e.°]

k=0 k=0 k=0

so px is indeed a valid probability mass function.

24See Newton’s generalized binomial theorem.
25Named after mathematician Siméon Denis Poisson (1781-1840).
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@ What is the expected value of X?
E[X] = p. The derivation is left as an exercise. O

Example 4.4.6 (Expected value need not exist!). Let X be a geometric random variable with parameter p,
that is,

(1—-p)Flp ifk=1,23,...,
0 otherwise.

MX:M:{

Let 7 be a real number and consider a new random variable Y := »¥. If we try to calculate the expected value
of Y, we get
EY] =S P(X =kt =5 (1—p)tprk = L
V)= 2P =Bt =30t =

(7‘(1 —p))k .

However, the latter sum (a geometric series) diverges if |r(1 — p)| > 1. For instance, if » = 1/(1 — p), then the
sum becomes Y77, 1, which diverges to +oo, and if r = —1/(1 — p), the sum turns to Y ;- (—1)* which is an
oscillating divergent series. O

4.5 Variance and standard deviation of a random variable

The expected value is an indication of the “center” of a distribution. The variance and standard deviation
measure its “spread”.

Terminology. The variance of a (discrete) random variable X with E[X] = p is defined as
Var[X] = E[(X — p)?] .
The standard deviation of X is the square root of its variance, that is,

SD[X] == y/Var[X] .

The standard deviation of a random variable X is often denoted by the Greek letter o, or by o if we want to
emphasize its dependence on X. Thus, the variance of X is denoted by o2 or 0% .

Interpretation. The variance of a random variable X is the abstract version of the variance of the values in a
data set (Section 2.3). More specifically, suppose that we repeat the experiment in which X is defined n times,
and let z;, denote the value of X in the k’th experiment. Then,

1 n
Var[X] =~ var(z1, x2, ..., Tn) = Z(xk —-7)?

n—1
k=1

when n is large, and the approximation becomes more and more accurate as n — co.

Alternative expression. Expanding (X — p)? and using the linearity of expectation, we can write
Var[X] = E[X? — 2Xpu + %] = E[X?] — 2uE[X] + p? = E[X?] — p? .
| S|
Therefore, we get the following alternative expression: i

Var[X] = E[X?] — (E[X])” .

Example 4.5.1 (A Bernoulli RV). Let X be a Bernoulli random variable with parameter p, that is,

¥ — {1 with probability p,
0 with probability 1 — p.
We know that E[X] = (1 —p)-0+p-1=p (Example 4.3.2).
@ What is the variance of X?
Observe that for a Bernoulli random variable, we always have X2 = X, because 0> = 0 and 12 = 1.

Therefore, using the second expression for the variance, we have

2

Var[X] = E[X?] — (E[X])" =p—p*=p(l—p) .

Before, we continue with the properties of variance, let us mention a fact about expectation.
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Expectation of product of independent RVs. If X and Y are independent (discrete) random variables, then
E[X -Y] =E[X] E[Y]
@ Why?
Y]= Z]P’(X =z,Y = y)ry

= Z P(X = y)zy (by independence)
—ZZ 2] - [B(Y = y)y]
= [Z]P’ (X ==z aj} . [ZP(Y = y)y}

— E[X] - E[Y].

As an example, if X and Y are independent Bernoulli random variables with parameters p and ¢, respectively,
then

E[X Y] =E[X] - E[Y] = pq

which can alternatively be seen by noting that X - Y is itself a Bernoulli random variable with parameter pq.

Some basic facts about the variance. Unlike expectation, variance is not linear. Nevertheless, we have the
following properties, which can often help us when calculating the variance:

» If X is a (discrete) random variable and a, b € R arbitrary numbers, then

Var[aX + b] = a® Var[X] ,
SD[aX + b] = |a|SD[X] .

@ Why?
Let y :== E[X]. Then, E[aX + b] = ap + b, hence
Var[aX +b] = E[(aX + b — ap — b)?]
= E[a*(X — p)’]
=ad®E[(X — p)? (by linearity of expectation)
= a* Var[X] .

For the second identity, note that va? = |a].

Interpretation:

* Multiplication by a corresponds to scaling by |a|. which in turn results in the multiplication of the
spread (measured by the standard deviation) by |al.

* Addition by b corresponds to shifting by b. Shifting does not change the spread.
See Figure 4.4 for an example.
» If X and Y are two (discrete) independent random variables, then
Var[X +Y] = Var[X] + Var[Y] .
@ Why?
Let px = E[X] and py = E[Y]. Then,
Var[X + Y] =E[(X +Y — pux — py)?]
=E[(X — pux)* + (Y = py)? +2(X = px) (Y = py )]

= Var[X] + Var[Y] + 2E [(X — ux)(Y — py)] (by linearity of expectation)
= Var[X]| 4+ Var[Y] + 2E[X — px] E[Y — py] (by independence)
= Var[X] 4 Var[Y] . 0 0
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Note that if X and Y are not independent, then the above identity need not be satisfied. For instance, if
X =Y (hence, far from being independent), then

Var[X 4+ Y] = Var[2X] = 4 Var[X] # 2 Var[X] = Var[X] 4+ Var[Y],

unless X is a constant.

P(X = z) P(2X +3 =1y)
I i : ! !
R i : ol
pmf of X pmf of 2X + 3

Figure 4.4: The distribution of a random variable X and its shifted and scaled version. Note that the distribution
of 2X + 3 is twice as spread as the distribution of X.

4.6 Interesting examples: computing the variance

Example 4.6.1 (A binomial RV). Let X be a binomial random variable with parameters n and p. Thus, X has
the form

X:X1+X2+Xn

where X1, X, ..., X, are independent Bernoulli random variables, all with the same parameter p. From Exam-
ple 4.4.1, we know that E[X]| = np.

@ What is the variance of X?

Recall that Var[X;] = p(1 — p) for each i = 1,2,...,n (Example 4.5.1). Since X3, X5, ..., X,, are indepen-
dent, we have
Var[X] = Var[X; + Xo + -+ + X,,]
= Var[X;] + Var[Xs] + - - - 4+ Var[X,,]
=p(l—p)+p(l—p)+ - +p(l—p)=np(l-p).

n times

Example 4.6.2 (A geometric RV). Let X be a geometric random variable with parameter p, so that

(1—p)k-tp ifk=1,2,3,...,
0 otherwise,

MN—@—{

From Example 4.4.3, we know that E[X] = 1/p.
@ What is the variance of X?

Var[X] = (1 —p)/p?. The derivation is left as an exercise. You already know E[X], so it remains to find
E[X?]. You can use the same generating function as in Example 4.4.3, but this time you need to differentiate
twice. O

Example 4.6.3 (A hypergeometric RV). As in Example 4.4.2, suppose that we have a jar with NV balls, K of
which are blue, and the remaining N — K are red. At random, we draw an (unordered) sample of n balls
without replacement.

Let X be the number of blue balls drawn. This is a hypergeometric random variable with parameters N, K
and n. We assume that n < K andn < N — K.

From Example 4.4.2, we know that E[X]| = nK/N.

@ What is the variance of X?
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Recall from Example 4.4.2 that X can be represented as

X=X1+Xo+- X, ,

where
X 1 if the ¢’th drawn ball is blue,
" lo otherwise.
However, note that X7, X, ..., X,, are not independent, whence Var[X] is not necessarily the sum of Var[X;].

N —n K K
Var[X] = n-—=1-=].
= (=1) v (-3)
The derivation is still based on the above representation, but requires more careful calculation. We skip the
derivation for now, and will return to it later when we discuss the covariance of random variables.

)= (X21) o B (1K)
tJ H

where H is the variance if the sample was taken with replacement (see Example 4.6.1), and [J can be thought
of as a “correction” factor needed when the sample is taken without replacement.

When N, K, N — K >> n, the distinction between a sample with or without replacement is minute.?® This is
reflected in the above expression for Var[X]: when N > n, we have (N —n)/(N — 1) ~ 1, and the variance is
approximately the same as in the case in which the sample is taken with replacement. O

The above answer has the form

Example 4.6.4 (A negative binomial RV). We have a coin with bias parameter p. We repeat flipping the coin
until we get r heads. Let X denote the number of tails. This is a negative binomial random variable with
parameters r and p.

From Example 4.4.4, we know that E[X]| = r(1 — p)/p.

@ What is the variance of X?

Recall from Example 4.4.4, that we could represent X as
X=X1+Xo+ -+ X;,
where,

- X1, Xo,..., X, are independent,

— For each i, X; + 1 is a geometric random variable with parameter p.
In particular, Var[X;] = Var[X; + 1] = (1 — p)/p*.

Therefore,

Var[X] = Var[Xl + X2 4.+ Xn]

= Var[X;] + Var[X3] + - - - + Var[X,,] (by independence)
(1-p)  (-p) (1-p) _n(l-p
— p2 + p2 + e + p2 = p2 .
n times @)

Example 4.6.5 (A Poisson RV). Let X be a Poisson random variable with parameter ;. > 0, that is,

k
et =012,

0 otherwise.
From Example 4.4.5, we know that E[X] = pu.
@ What is the variance of X?

Var[X] = u. The derivation is left as an exercise. O

26Indeed, in this case, even if the sample is taken with replacement, the chance that there are repetitions will be small.
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