Full Name:	Grade:
Student No:	

For each answer, provide a short argument.

1. (1 point) Let U and V be independent standard normal random variables. What is the distribution of 3U - 4V + 5?

Solution: Recall that the normal distribution is stable, that is:

- The scaled and shifted version of any normal RV is again nomal,
- The sum of any two independent normal RVs is again normal.

Hence, X := 3U - 4V + 5 is a normal random variable. We only need to find its two parameters, namely its mean and its variance. The mean of X is

$$\mu_X = \mathbb{E}[X] = \mathbb{E}[3U - 4V + 5]$$

$$= 3 \mathbb{E}[U] - 4 \mathbb{E}[V] + 5 \qquad \text{(linearity of expectation)}$$

$$= 3 \times 0 - 4 \times 0 + 5 \qquad \text{(U and V are standard normal)}$$

$$= 5 \ .$$

The variance of X is

$$\sigma_X^2 = \mathbb{V}\mathrm{ar}[X] = \mathbb{V}\mathrm{ar}[3U - 4V + 5]$$

$$= \mathbb{V}\mathrm{ar}[3U - 4V] \qquad \qquad \text{(shifting does not affect the variance)}$$

$$= \mathbb{V}\mathrm{ar}[3U] + \mathbb{V}\mathrm{ar}[-4V] \qquad \qquad \text{(3U and $-4V$ are independent)}$$

$$= 9 \mathbb{V}\mathrm{ar}[U] + 16 \mathbb{V}\mathrm{ar}[V] \qquad \qquad \text{(variance of the scaled version of a RV)}$$

$$= 9 \times 1 + 16 \times 1 \qquad \qquad \text{(U and V are standard normal)}$$

$$= 25 .$$

In summary, X is normal with mean 5 and variance 25.

2. (1 point) In a certain city, fatal traffic accidents occur according to a Poisson process with an average rate of 7 per year. What is the probability that the 2nd fatal accident in 2024 occurs by the end of January? [Note: 2024 will be a leap year, which means it will have 366 days. January has 31 days.]

Answer:
$$\approx 0.11957$$

Solution:

Approach 1:

Let S denote the arrival time of the 2nd accident in 2024, measured from the beginning of the year. We are looking for $\mathbb{P}(S \leq 31 \text{ days})$. Note that S is a gamma random variable with shape r=2 and

rate $\lambda = 7$ per year because the accidents occur according to a Poisson process. Thus,

$$\begin{split} \mathbb{P}(S \leq 31\,\mathrm{days}) &= \int_{-\infty}^{31/366} f_S(x)\,\mathrm{d}x \\ &= \int_0^{31/366} 7^2 x \mathrm{e}^{-7x}\,\mathrm{d}x \qquad \qquad \text{(using the pdf of Gamma}(r=2,\lambda=7)) \\ &= -7x \mathrm{e}^{-7x} \Big|_0^{\frac{31}{366}} + 7 \int_0^{\frac{31}{366}} \mathrm{e}^{-7x}\,\mathrm{d}x \qquad \qquad \text{(integration by parts)} \\ &\approx 0.11957 \; . \end{split}$$

Approach 2:

A simpler approach that does not require integration is to note that

• The event that the 2nd accident in 2024 occurs by the end of January can equivalently be described as the event that during January, there are at least 2 accidents.

More precisely, let N(January) denote the number of accidents during January 2024. Then, the two events $\{S \leq 31 \text{ days}\}$ and $\{N(\text{January}) \geq 2\}$ coincide. Now, note that N(January) is a Poisson random variable with mean

$$\mu = (7 \, \text{per year}) \times (31 \, \text{days}) = 7 \times \frac{31}{366} = \frac{217}{366} \; .$$

Thus,

$$\begin{split} \mathbb{P}(S \leq 31 \, \mathrm{days}) &= \mathbb{P}\left(N(\mathrm{January}) \geq 2\right) \\ &= 1 - \mathbb{P}\left(N(\mathrm{January}) = 0\right) - \mathbb{P}\left(N(\mathrm{January}) = 1\right) \\ &= 1 - \mathrm{e}^{-\mu} - \mathrm{e}^{-\mu} \frac{\mu^1}{1!} \\ &= 1 - \mathrm{e}^{-217/366} (1 + \frac{217}{366}) \\ &\approx 0.11957 \; . \end{split}$$

- 3. (3 points) Let T be an exponential random variable with rate 5.
 - (a) What is the probability that $-1 \le T \le 1$?

Answer:
$$\approx 0.99326$$

Solution: We have

$$\mathbb{P}(-1 \le T \le 1) = \int_{-1}^{1} f_T(t) dt$$

$$= \int_{0}^{1} 5e^{-5t} dt \qquad \text{(using the pdf of Exp}(\lambda = 5))}$$

$$= 1 - e^{-5}$$

$$\approx 0.99326$$

Now, consider the random variable $X = e^{-T}$.

(b) What are the possible values of X?

Solution: The interval (0, 1].

Namely, since the possible values of T are all the real numbers between 0 and $+\infty$, the possible values of $X = e^{-T}$ are all the numbers between 0 and 1 (including 1 but excluding 0).

(c) Find the probability density function of X.

Solution: As usual, it is easier to start with the cumulative density function. For $x \in (0,1]$ (the possible values), we have

$$\begin{split} F_X(x) &= \mathbb{P}(X \leq x) \\ &= \mathbb{P}(\mathrm{e}^{-T} \leq x) \\ &= \mathbb{P}\left(-T \leq \ln(x)\right) \qquad \text{(the events } \{-T \leq \ln(x)\} \text{ and } \{\mathrm{e}^{-T} \leq x\} \text{ are the same)} \\ &= \mathbb{P}\left(T \geq -\ln(x)\right) \qquad \text{(the events } \{T \leq -\ln(x)\} \text{ and } \{-T \leq \ln(x)\} \text{ are the same)} \\ &= 1 - \mathbb{P}\left(T < -\ln(x)\right) \\ &= 1 - F_T\left(-\ln(x)\right) \qquad \text{(the cdf of T is continuous)} \\ &= 1 - \left(1 - \mathrm{e}^{5\ln(x)}\right) \qquad \text{(using the cdf of } \mathsf{Exp}(\lambda = 5)) \\ &= x^5 \end{split}$$

Differentiating with respect to x, we get $f_X(x) = 5x^4$ for $x \in (0,1)$. Thus, the pdf of X is

$$f_X(x) = \begin{cases} 5x^4 & \text{if } 0 < x < 1, \\ 0 & \text{if } x < 0 \text{ or } x > 1. \end{cases}$$

4. (0 points) On the scale of 0–5, what is your estimate of your grade on this quiz?