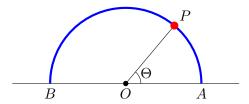
Full Name:	Grade:
Student No:	

Read before you start:

- Please make sure you write your full name and student number.
- The exam consists of 6 questions, some with multiple parts, and a total score of 70 points. All answers require justifications.
- The duration of the exam is 1h30.

You can use the remainder of this page as scratch paper.

1. (15 points) A point P is picked uniformly at random from a semicircle. Let Θ denote the angle of this point relative to one of the endpoints of the semicircle.



(a) What is the probability that $\sin(\Theta) > \frac{1}{2}$?

Solution: The angle Θ is uniformly distributed over the interval $[0, \pi]$. Note that for $0 \le \theta \le \pi$, the condition $\sin(\theta) > 1/2$ is equivalent $\pi/6 < \theta < 5\pi/6$. Thus,

$$\mathbb{P}(\sin(\Theta) > 1/2) = \mathbb{P}(\pi/6 < \theta < 5\pi/6) = \frac{5\pi/6 - \pi/6}{\pi - 0} = \boxed{2/3}.$$

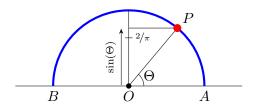
(b) What is the expected value of $sin(\Theta)$?

Solution: The angle Θ is uniformly distributed on $[0, \pi]$, hence its pdf is

$$f_{\Theta}(\theta) = \begin{cases} 1/\pi & \text{if } 0 < \theta < \pi, \\ 0 & \text{otherwise.} \end{cases}$$

We can use the distribution of Θ to compute

$$\mathbb{E}[\sin(\Theta)] = \int_{-\infty}^{\infty} \sin(\theta) f_{\Theta}(\theta) d\theta = \int_{0}^{\pi} \sin(\theta) \frac{1}{\pi} d\theta = \frac{-\cos(\theta)}{\pi} \Big|_{\theta=0}^{\pi} = \boxed{2/\pi} \approx 0.6366 .$$



(c) What is the expected value of $cos(\Theta)$?

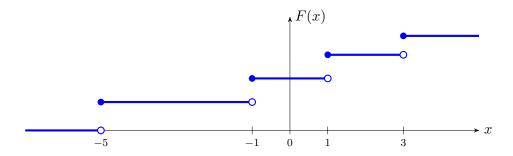
Solution:

Approach 1: Direct computation similar to the previous part leads to the answer $\mathbb{E}[\cos(\Theta)] = 0$.

<u>Approach 2</u>: $\mathbb{E}[\cos(\Theta)] = 0$ by symmetry. Indeed, both $\cos(\theta)$ and the distribution of Θ are symmetric about $\theta = \pi/2$.

2. (20 points) A random variable *X* has the following cumulative distribution function:

$$F(x) = \begin{cases} 0 & \text{if } x < -5, \\ 0.3 & \text{if } -5 \le x < -1, \\ 0.55 & \text{if } -1 \le x < 1, \\ 0.8 & \text{if } 1 \le x < 3, \\ 1 & \text{if } 3 \le x. \end{cases}$$



(a) What is the probability that X > 0?

Solution: We have
$$\mathbb{P}(X > 0) = 1 - \mathbb{P}(X \le 0) = 1 - F(0) = 1 - 0.55 = \boxed{0.45}$$
.

(b) What is the probability that $1 \le X \le 3$?

Solution: We have

$$\mathbb{P}(1 \le X \le 3) = \mathbb{P}(X \le 3) - \mathbb{P}(X \le 3) - \mathbb{P}(X \le 3) - \mathbb{P}(X \le 1) + \mathbb{P}(X = 1) \ .$$

We know $\mathbb{P}(X \le 3) = F(3) = 1$ and $\mathbb{P}(X \le 1) = F(1) = 0.8$. To find $\mathbb{P}(X = 1)$, we note that at x = 1, the cdf F(x) has a jump from 0.55 to 0.8. Hence, $\mathbb{P}(X = 1) = 0.8 - 0.55 = 0.25$. We conclude that $\mathbb{P}(1 \le X \le 3) = 1 - 0.8 + 0.25 = \boxed{0.45}$.

Alternatively, we may note that X is a discrete random variable with possible values -5, -1, 1, 3, find its probability mass function (see the next part), and compute

$$\mathbb{P}(1 \le X \le 3) = \mathbb{P}(X = 1 \text{ or } X = 3) = \mathbb{P}(X = 1) + \mathbb{P}(X = 3) = 0.2 + 0.25 = \boxed{0.45}.$$

(c) Find the expected value of *X*.

Solution: From its cdf, we observe that X is a discrete random variable with possible values -5, -1, 1, 3. (Indeed, F(x) has jumps at these values and is constant between every two consecutive jump.) The height of the jump gives the probability of each possible value:

$$\mathbb{P}(X = -5) = 0.3 - 0 = 0.3 ,$$
 $\mathbb{P}(X = -1) = 0.55 - 0.3 = 0.25 ,$ $\mathbb{P}(X = 1) = 0.8 - 0.55 = 0.25 ,$ $\mathbb{P}(X = 3) = 1 - 0.8 = 0.2 .$

(As a sanity check, 0.3 + 0.25 + 0.25 + 0.2 = 1.) The expected value can now be calculated as

$$\mathbb{E}[X] = \mathbb{P}(X = -5) \times (-5) + \mathbb{P}(X = -1) \times (-1) + \mathbb{P}(X = 1) \times 1 + \mathbb{P}(X = 3) \times 3$$
$$= 0.3 \times (-5) + 0.25 \times (-1) + 0.25 \times 1 + 0.2 \times 3 = \boxed{-0.9}.$$

(d) Find the variance of X.

Solution: We use the equality $\mathbb{V}ar[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$. We already know $\mathbb{E}[X]$. Using the probability mass function of X, we can calculate

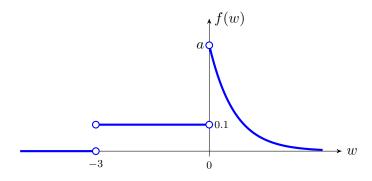
$$\mathbb{E}[X^2] = \mathbb{P}(X = -5) \times (-5)^2 + \mathbb{P}(X = -1) \times (-1)^2 + \mathbb{P}(X = 1) \times 1^2 + \mathbb{P}(X = 3) \times 3^2$$
$$= 0.3 \times 25 + 0.25 \times 1 + 0.25 \times 1 + 0.2 \times 9 = 9.8.$$

Therefore, $Var[X] = 9.8 - (-0.9)^2 = 8.99$

3. (15 points) A continuous random variable W has the following probability density function:

$$f(w) = \begin{cases} 0 & \text{if } w < -3, \\ 0.1 & \text{if } -3 < w < 0, \\ a e^{-2w} & \text{if } 0 < w, \end{cases}$$

where a is an unknown constant.



The sketch is not up to scale!

(a) Find *a*.

Solution: In order for f(w) to be a probability density function, its integral from $-\infty$ to ∞ (i.e., the total area under its graph) must be 1, that is,

$$1 = \int_{-\infty}^{\infty} f(w) dw = \int_{-3}^{0} 0.1 dw + \int_{0}^{\infty} ae^{-2w} dw = 0.3 + 0.5a$$

Solving for a, we obtain $a = \boxed{1.4}$.

(b) What is the probability that $W \leq 1$?

Solution: The probability of $W \le 1$ is the area under the graph of f(w) to the left of w = 1, that is,

$$\mathbb{P}(W \le 1) = \int_{-\infty}^{1} f(w) \, dw = \int_{-3}^{0} 0.1 \, dw + \int_{0}^{1} 1.4 e^{-2w} \, dw$$
$$= 0.3 + 1.4 \times \frac{e^{-2w}}{-2} \Big|_{0}^{1} = \boxed{1 - 0.7 e^{-2}} \approx 0.9053 .$$

Alternatively,
$$\mathbb{P}(W \le 1) = 1 - \mathbb{P}(W > 1) = 1 - \int_{1}^{\infty} 1.4 e^{-2w} dw = \boxed{1 - 0.7 e^{-2}}.$$

(c) What is the expected value of W?

Solution: We have

$$\mathbb{E}[W] = \int_{-\infty}^{\infty} w f(w) \, \mathrm{d}w = \underbrace{\int_{-3}^{0} 0.1 w \, \mathrm{d}w}_{\bullet} + \underbrace{\int_{0}^{\infty} 1.4 w \mathrm{e}^{-2w} \, \mathrm{d}w}_{\diamondsuit}.$$

Let us compute the two integrals separately. The first one is

The second integral can be computed using integration by parts (with u=1.4w and $v=\frac{1}{2}\mathrm{e}^{-2w}$):

$$\diamondsuit = 1.4w \times \frac{1}{-2} e^{-2w} \Big|_{0}^{\infty} - \int_{0}^{\infty} 1.4 \times \frac{1}{-2} e^{-2w} \, dw = \frac{1.4}{-4} e^{-2w} \Big|_{0}^{\infty} = \frac{1.4}{4} = 0.35 .$$

We conclude that $\mathbb{E}[W] = -0.45 + 0.35 = \boxed{-0.1}$.

4. (5 points) Let X be a normal random variable with mean 3 and variance 4. Express the probability that $2 \le X \le 5$ either in terms of the cumulative distribution function Φ of the <u>standard</u> normal distribution, or as an integral.

Solution: By definition, a normal random variable is a shifted and scaled version of a standard normal random variable. In particular, X can be written as $X = \sigma Z + \mu$, where Z is a standard normal random variable, and μ and σ are the mean and standard deviation of X. Here, $\mu = 3$ and $\sigma = \sqrt{4} = 2$. Therefore,

$$\mathbb{P}(2 \le X \le 5) = \mathbb{P}(2 \le 2Z + 3 \le 5) = \mathbb{P}(-1/2 \le Z \le 1) = \Phi(1) - \Phi(-1/2).$$

5. (5 points) Let G be a discrete random variable with the following probability mass function:

$$p(n) = \begin{cases} (5/6) \times (2/3)^n & \text{if } n=1,3,5,7,\dots \text{ (a positive odd integer),} \\ 0 & \text{otherwise.} \end{cases}$$

Find the expected value of G.

Solution:

Approach 1 (explicit computation):

We have

$$\mathbb{E}[G] = 1 \cdot (5/6)(2/3) + 3 \cdot (5/6)(2/3)^3 + 5 \cdot (5/6)(2/3)^5 + \cdots$$

$$= \sum_{k=0}^{\infty} (2k+1)(5/6)(2/3)^{2k+1}$$

The above series resembles the one that arises when want to compute the expected value of a geometric random variable. To compute it, we can use the following generating function:

$$g(z) = z + z^3 + z^5 + z^7 + \dots = \frac{z}{1 - z^2}$$

The latter equality holds when the geometric series defining g(z) converges, that is, when -1 < z < 1. Differentiating with respect to z, we obtain

$$g'(z) = 1 + 3z^2 + 5z^4 + 7z^6 + \dots = \frac{1 + z^2}{(1 - z^2)^2}$$
.

Comparing the latter series with the series we are trying to compute, we find that

$$\mathbb{E}[G] = (5/6)(2/3)g'(2/3) = (5/6)(2/3) \times \frac{1 + (2/3)^2}{(1 - (2/3)^2)^2} = \boxed{13/5}.$$

Approach 2 (connection with a geometric RV):

There is a clear similarity with the pmf of a geometric distribution. Since the possible values of G are the positive odd numbers, we may guess that G = 2T - 1 for some geometric random variable. Indeed, the possible values of 2T - 1 are also the positive odd numbers. If T has parameter p, then

$$\mathbb{P}(2T - 1 = 1) = \mathbb{P}(T = 1) = p ,$$

$$\mathbb{P}(2T - 1 = 3) = \mathbb{P}(T = 2) = (1 - p)p$$

$$\mathbb{P}(2T - 1 = 5) = \mathbb{P}(T = 3) = (1 - p)^{2}p$$

$$\vdots = \vdots$$

$$\mathbb{P}(2T - 1 = 2k + 1) = \mathbb{P}(T = k + 1) = (1 - p)^{k}p .$$

Comparison with the pmf of G shows a perfect match if $p = 1 - (2/3)^2 = 5/9$. We conclude that

$$\mathbb{E}[G] = \mathbb{E}[2T - 1] = 2\mathbb{E}[T] - 1 = 2 \times \frac{1}{5/9} - 1 = \boxed{13/5}.$$

Remark. In another version of the exam, the constant in front of the exponential was incorrect, leading to a nonsensical result that $\mathbb{E}[G] < 1$. Obviously, since G is always at least one and has a positive probability of being larger than 1, its expected value must be larger than 1.

- 6. (10 points) A box contains 10 cards numbered 1 to 10. You are offered to play the following game: At the beginning of the game, you pay an entrance fee of \$3. You then draw 6 cards from the box, one after another, with replacement. You receive \$1 for each distinct number you draw. For instance, if you draw 1, 6, 4, 4, 3, 4, you receive \$4 for the distinct numbers 1, 3, 4, 6.
 - (a) Calculate your expected payoff. [Hint: Use the linearity of expectation.]

Solution: Let X denote your (random) payoff in dollars. We have X = -3 + N, where N is the number of distinct numbers you draw. We have $\mathbb{E}[X] = -3 + \mathbb{E}[N]$. To compute $\mathbb{E}[N]$, we have two options: (i) derive the distribution of N and follow the definition, (ii) write N as a sum of simpler random variables and use the linearity of expectation. We follow the second approach.

For each number k = 1, 2, ..., 10, define a Bernoulli random variable

$$X_k = \begin{cases} 1 & \text{if card number } k \text{ is drawn,} \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $N = X_1 + X_2 + \cdots + X_{10}$. We have

$$\mathbb{E}[X_k] = \mathbb{P}(X_k = 1) = \mathbb{P}(\text{card number } k \text{ is drawn}) = 1 - (9/10)^6$$
.

Therefore,

$$\mathbb{E}[N] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_{10}] = 10(1 - (9/10)^6).$$

We conclude that the expected payoff is

$$\mathbb{E}[X] = -3 + 10(1 - (9/10)^6) = \boxed{7 - 10 \cdot (9/10)^6} = 1.68559 \ .$$

(b) Is this a fair game? If not, how would you change the entrance fee in order to make it fair?

Solution: Since the expected payoff is not zero, the game is unfair. (If you repeat the game many many times, on average, you gain about \$1.68559 per game.)

To make the game fair, the fee must be the same as $\mathbb{E}[N] = 10(1 - (9/10)^6) = \boxed{4.68559}$ dollars so that $\mathbb{E}[X] = 0$.