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Chapter 11

Introduction to Estimation

So far, we have been learning about the language of probability models, and how to use such models to extract
information about the random experiments they represent. For instance, we have discussed how to apply
mathematical reasoning to a probability model in order to calculate the probability of a certain event, or to
deduce information on the concentration or the long-run average of a random quantity. Mathematical reasoning
on the basis of an already-chosen probability model is the subject of probability theory.

In practice, however, it is not always obvious which model is appropriate for a random phenomenon, and
even if we are able to choose a reasonable parametric model, we may still need to tune the parameters to make
the model compatible with the random experiment. A reasonable idea for bridging this gap is to use statistical
evidence (in the form of random samples or other forms of data) to infer information about the model. For
instance, we may use statistical data to estimate the parameters of the model, or to judge between competing
models. This is the domain of statistical inference.

Starting from this chapter, we talk about two standard problems in statistical inference, namely estimation
and hypothesis testing. Specifically, this chapter includes a teaser for the topic of estimation. Point and interval
estimations will be studied more systematically in the following two chapters. We will discuss hypothesis testing
afterwards. Our discussions will be limited to the so-called frequentist approach.

11.1 Teaser: measurement

Every measurement is subject to various sources of error. As a result, there is often a discrepancy (of unknown
magnitude) between the result of the measurement and the quantity to be measured. We model this discrepancy
using probabilities.

As an example, suppose we want to measure to voltage between two points A and B in an electronic circuit
using a voltmeter (Figure 11.1). Every time we measure the voltage, we may get a slightly different reading

1.563volt,  1.559volt,  1.561volt,

@ What is the true value of the voltage?

fﬁk

Figure 11.1: A voltmeter for measuring the voltage between A and B

11.1.1 A model for measurement

Let us denote the true value of the voltage between A and B by vap. This is a (non-random) number, which
nevertheless is unknown to us. The reading on the voltmeter is not exactly v g, but

Vi=vap+ R
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where R indicates a random error, which we can model as a random variable. If the device is calibrated (i.e.,
well-tuned), we have E[R] = 0. This implies that the reading on the voltmeter is unbiased, that is, E[V] = v4p.
The variance of the error 0% = Var[R] is an indicator of how large the error can typically be. The standard
deviation of the error o is sometimes referred to as the standard error of the measurement.

Suppose we have a calibrated voltmeter with standard error oz = 0.02 volt, and we use that to measure the
voltage between A and B. Thus E[V] = v45 and Var[V] = Var[R] = (0.02)? volt?.

@ Suppose the voltmeter shows 1.563 volt. How can we interpret this reading?

The reading 1.563 volt is the observed value of the random variable V. For the random variable V' (i.e.,
before performing the measurement), Chebyshev’s inequality gives

1
P (|V —vap| < 3 x0.02) 21— o5 ~88.9%.

The event |V — vap| < 3 x 0.02 can be equivalently expressed in either of the following forms:*

— (the interval v4 5 + 0.06 contains V),

- (the interval V' £ 0.06 contains vap)

(see Figure 11.2). Using the latter form, we obtain that
P(V + 0.06 contains vap) > 88.9% . @

Thinking of probabilities as idealized frequencies, we arrive at the following conclusion: If we repeat the
measurement many many times, then in at least 88.9% of the measurements, the interval V + 0.06 will
contain the true value of the voltage v, 3.

VAB

Figure 11.2: The intervals v4p 4 0.06 (black) and V' + 0.06 (green). Note that V' belongs to the black interval
if and only if v4 5 belongs to the green interval. Each of these conditions is equivalent to the condition that the
distance between v and V is less than 0.06 volt. The black interval is a fixed interval which is unknown to us.
The green interval is a random interval which can be computed on the basis of the observation.

Let us emphasize that the above interpretation concerns not with the specific value 1.563 volt but with the
measurement procedure that has lead to that value.

In inequality (®), the value 0.06 is an indicator of the accuracy of the measurement, and 88.9% is an indicator
of the level of confidence we can have on the result. More generally, for every a > 0, Chebyshev’s inequality gives

P(V 4+ 0.02a contains vap) > 1 — 1/a?,

where again, 0.02¢ is an indicator of accuracy and 1 — 1/a? is an indicator of the level of confidence. Note that
there is a trade-off between accuracy and confidence:

* Choosing a to be larger, we get lower accuracy in our measurement but with higher confidence, while
* Choosing a to be smaller, we get higher accuracy in our measurement but with lower confidence.
Can we improve this? More specifically:

@ Can we use the same voltmeter to get more accuracy more confidently?

IThe notation a + b is a short and convenient way to refer to the interval (a — b, a + b).



11.1.2 Repeated measurements

In order to achieve more accuracy with higher confidence, a natural idea is to repeat the measurement a number
of times and take average.

@ What is the benefit of repeating the measurement?

We expect the average of n independent measurement to be typically closer to v4p than the result of a
single measurement.

To see why this is the case, let V1, V4, ..., V, be the results of n independent measurements. Mathematically,
Vi, Va,...,V, are independent random variables with the same distribution as V. Let
. Vi+ Vot +V,
V., — 1+ Vot +
n

be the average of these n measurements. Note that

= 1 1
E[Va] = ﬁ;E[Vi] =T UAB =UAB
— 1 & 1 1
Var[V,,] = ﬁ;Var[Vi] = n-oh = EUIQ%-

Thus, the distribution of V,, is more concentrated around v,z than the distribution of a single measure-

ment, which is to say, V,, is typically closer to v4p than the result of a single measurement.

Recall that we are using a calibrated voltmeter with standard error or = 0.02volt. Suppose that we make
n = 5 independent measurements, and use their average V5 to estimate v4g.

@ How do V5 and a single measurement compare in terms of accuracy and confidence?

The variance of V5 is Var[V5] = (0.02)2/5 volt®, hence the standard error of V5 is SD[V5] = 0.02/+/5 volt ~
0.00895 volt, which is smaller than the standard error oz = 0.02 volt of a single measurement.

Applying Chebyshev’s inequality, for every a > 0 we get
P(V5 £ 0.00895a contains vag) > 1 — 1/a? .
For instance, choosing a := 3, we get
P(V5 4 0.0267 contains v4p) > 88.9% . (5:®)
Thus, by repeating the measurement 5 times, we achieve more than twice better accuracy (i.e., 0.0267 volt

instead of 0.06, both in volts) with the same 88.9% level of confidence.

Alternatively, choosing a = 31/5, we get
P(V5 & 0.06 contains vag) > 97.8% .

Hence, repeating the measurement 5 times allows us to achieve the same accuracy of 0.06 volt with a much
higher confidence level of 97.8% (compared to 88.9% for a single measurement).

Clearly, the larger the number of measurements, the better the estimate. More specifically, a larger number
of measurements leads to a smaller standard error, hence we can obtain higher precision for a given level of
confidence, or higher confidence for a given precision.

In the above discussion, we have been using Chebyshev’s inequality to bound the level of confidence because
we did not know the distribution of V. If we happen to have more information on the distribution of V,, then
we can identify the confidence level more accurately. We now consider different scenarios in which we do have
more information on the distribution of V,,.

11.1.3 Many repeated measurements

When the number of measurements n is large, the average V, is, by the central limit theorem, approximately
normally distributed.? In this case, in order to identify the level of confidence, we can use a normal approxima-
tion rather than Chebyshev’s inequality.

2In most practical applications, n = 50 or n = 100 should be sufficient for the central limit theorem to provide a reasonable approxima-
tion, although for any fixed n, one can find a pathological distribution for which the approximation provided by the central limit theorem
is poor.



Namely, the central limit theorem tells us that, when n is large, the average V,, of n independent measure-
ments is approximately distributed according to the N(vag, 0% /n) distribution. Thus, for every a > 0,

P (Vn + U—\/I%a contains UAB> =P (’UAB - U—\/}%a <V, <vap+ 3%@)

P ( approximately N(0, 1)
= —a < ———=

or/vVn
~ q)(a) _ =1 — ®(a), by symmetry
=2P(a)—1,

where, as usual, ® denotes the cdf of the standard normal distribution (see Figure 11.3).

¢(2)

—a 0 a

Figure 11.3: The pdf of the standard normal distribution. The area of the shaded region is ®(a) — ®(—a) =
2®(a) — 1.

For instance, suppose that we repeat the measurement n = 100 times. As before, we assume that the
voltmeter has a standard error of oz = 0.02 volt.
@ How does V 1oy compare with a single measurement in terms of accuracy and confidence?
With n = 100, the standard error is SD[V 190] = or/v/n = 0.02/10 = 0.002 volt. For the sake of comparison

with (@), let us choose a := 3. Using the statistical software R, we can find ®(a) ~ 0.9986501, hence
20 (a) — 1 ~ 0.9973002. Put together, we obtain

P(V 100 + 0.006 contains vag) ~ 99.7% .

Thus, compared to the estimate provided by a single measurement, the average of 100 measurements
achieves 10 times more accuracy (0.006 volt instead of 0.06 volt) with much higher confidence (99.7% in-
stead of 88.9%).

While repeating the measurement many times improves both the accuracy and the confidence level, it is not
always practical. In more realistic scenarios, each measurement has a cost (time, energy, money, ...), and we
might not always be able to afford more than a few measurements.

11.1.4 When the error is normal

Suppose that, in its specification, the manufacturer of the voltmeter has provided the extra information that the
error R is normally distributed. In other words, we know that R ~ N(0,0%), where o = 0.02 volt.

@ How can we use this extra information?

In this case, even with a small sample size, we can achieve more accuracy/confidence than provided by
Chebyshev’s inequality.

Namely, in this case the measurements Vi, Vs, ..., V, are independent normally distributed random vari-
ables. Hence, even if n is small, by the stability of the normal distribution, their average V', is also normally
distributed. It follows that V,, ~ N(vap, 0% /n). Therefore, for every a > 0,

— o . g — o
P <Vn + 22 4 contains UAB> =P <UAB ~Ra< Viap<vap+ Ra)

vn vn vn
o _a Vn — VAB a
-P (o< TR <0)
= P(a) — P(—a)
=2%(a) -1,

without relying on the central limit theorem.



For instance, suppose that we repeat the measurement n = 5 times.

@ How does the normality of error affect the accuracy and confidence level of V5?

With n = 5, we have the standard error SD[V;5] = or//n = 0.02/1/5 ~ 0.0089. For instance, choosing
a = 2, we obtain

P(V5 +0.0178 contains vap) = 2®(2) — 1 ~ 95.4% .

Thus, compared to (5:®) for which we relied on Chebyshev’s inequality, we achieve a higher level of
accuracy (0.0178 volt instead of 0.0267 volt) and a higher level of confidence (95.4% instead of 88.9%) with
the same number of measurements.

11.1.5 Normal error with unknown standard deviation

Sometimes, the assumption of the normality of the error makes sense but we do not know the true value of the
standard deviation og. For instance, the manufacturer of the voltmeter might have declared that the error is
normal but have not provided us with the value of o. Or we may have theoretical reasons to believe that the
error must be normally distributed without having an estimate on the standard error.

@ Can we still use the information regarding the normality of the error to our benefit?

In this case, we can still achieve better confidence level for the same accuracy, compared to what is provided
by Chebyshev’s inequality.

Namely, suppose that we perform n independent measurements Vi, Vs, ..., V,,, and use their average V, to
estimate v4 . By the stability of the normal distribution, the average V,, is still normally distributed, that
is, N(vap,0%/n). However, we do not know the variance o%.

In order to circumvent this problem, a natural idea is to use the same measurements V;,V,...,V, to
estimate o%. A reasonable estimate for 0% is given by the sample variance

n

which we discussed in Chapter 2.3#
@ How does replacing the true variance 0% with its estimate ¢% affect the accuracy and confidence level?

Let us consider two different case, based on whether n is large or small.

(when n is large)
When n is large, the sample variance 5% should provide a good approximation for the true vari-
ance o%. Therefore,

Vio—vap _ Viu—vap
or/vVn or/v/n

Hence, in this case, for every a > 0,

~N(0,1) .

~

P <Vn + 22, contains vAB> =P <—a

vn O/ vn

V. o_
< = UAB<a>
P VnUAB<a>
(

Q

(o< Tt
®(a) — D(—a)
2®(a) — 1,

as in the case in which 0% is known to us. Thus, in this case, replacing the true variance o% with its
estimate 5% changes nothing but to make our identification of accuracy and confidence less reliable
due to the approximation.

3In the following chapter, we will talk more about the sample variance. In particular, we will explain the reason for dividing the sum
by n — 1 rather than n.
4We use the “hat” in G to indicate the distinction with the true value o .



(when n is small)
When n is small, the sample variance 5% could be very far off from the true variance c%. Nevertheless,
we can exploit another remarkable property of the normal distribution.
Namely, let T := (V,, —vap)/(Gr/v/n) (i.e., the mean measurement standardized using the sample
variance rather than the true variance). Although T" does not have the N(0, 1) distribution, its distribu-
tion turns out to be still independent of ¢%. The distribution of T is called Student’s t-distribution with
n — 1 degrees of freedom (see below), and its pdf and cdf can be calculated using standard statistical
software such as R.
Therefore, for every a > 0,

OR

P <Vn + —Z g4 contains vAB> =P (

n
= FT(n—1)<a) _ =1-Frin-1(a)

= 2FT(.,L_1)(G) -1, by symmetry

has T(n — 1) distribution

where Fr(,_1) denotes the cdf of Student’s t-distribution with n — 1 degrees of freedom.

For instance, suppose that we repeat the measurement n = 5 times.

@ Assuming the normality of the error, how does not knowing o% affect the accuracy and confidence level
of V5')

Choosing a = 3, we can use the computer software R to find Fr4(3) ~ 0.980029, and 2Fr4(3) — 1 =
0.960058. Hence,

— o .
P (V5 + 7’% x 3 contains vAB> ~ 96.0% .
Note that in this case, the accuracy 3—\/% x 3 of the estimate is random. The confidence level 96.0% is
somewhat lower than the value 99.7% suggested by the standard normal distribution.

Student’s t-distribution. Let Xy, X», ..., X,, be independent random variables with distribution N(z, 0?), and
let X,, .= (X1 + X2 +---+ X,)/n be their mean. By the stability of the normal distribution, X, has distribution
N(u,o?/n). Thus, its standardized version

X, —
z =" ’
o/v/n
has the standard normal distribution. If instead of the true variance o2, we use the sample variance
1 n
~2 7 )2
52 = n—lZ(Xk X,)%,
k=1
to standardize X ,,, we obtain a random variable
X, —
T=2n" 1
a/vn

Remarkably, the distribution of T still does not depend on the parameters u and o, but it depends on n. The
distribution of T is called Student’s t-distribution® with n— 1 degrees of freedom, and is denoted by T(df = n—1).%

The t-distribution is a symmetric unimodal distribution similar to the standard normal distribution (see
Figure 11.4). It has a mean of 0 and a standard deviation which is slightly larger than 1.7 The larger the
parameter df, the closer is the distribution T(df) to the distribution N(0, 1). However, for small values of df, the
two distributions T(df) and N(0, 1) are considerably different from one another.®

SNamed after statistician William Sealy Gosset (1876-1937), who used Student as his pen name.

6Standard software such as R and Python have routines for computing the pdf and the cdf of the t-distribution.

7To be specific, the variance of T(df) is df /(df — 2) when df > 2. When df < 2, the variance does not exist.

8More specifically, compared to a N(0,1) random variable, a T(df) random variable typically has a larger absolute value. This is
consistent with the fact that the variance of T(df) is larger than the variance of N(0, 1).


https://en.wikipedia.org/wiki/William_Sealy_Gosset
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Figure 11.4: The pdf of the T(df) distribution for a few values of the parameter df, compared with the pdf of
the standard normal distribution.
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