American University of Beirut STAT 210: Elementary Statistics for Sciences 2022–2023 Fall

Siamak Taati

Chapter 5
Discrete random variables
Part 2

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$\mathbb{P}(\mathtt{HH}) = 0.3025$	$\mathbb{P}(\mathtt{HT}) = 0.2475$	$\mathbb{P}(\mathtt{TH}) = 0.2475$		$\mathbb{P}(\mathtt{TT}) = 0.2025$			
$N \coloneqq \#$ of heads		outcome	HH	HT	TH	TT	
		N	2	1	1	0	

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

 \bigcirc What is the mean value of N?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

 \bigcirc What is the mean value of N?

A1 We have

$$\begin{split} \mathbb{E}[N] &= \mathbb{P}(\mathtt{HH}) \times 2 + \mathbb{P}(\mathtt{HT}) \times 1 + \mathbb{P}(\mathtt{TH}) \times 1 + \mathbb{P}(\mathtt{TT}) \times 0 \\ &= 0.3025 \times 2 + 0.2475 \times 1 + 0.2475 \times 1 + 0.2025 \times 0 \\ &= \boxed{1.1} \end{split}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

- \bigcirc What is the mean value of N?
- A2 Using the distribution of N, we have

$$\begin{array}{c|c} \mathbb{E}[N] = \mathbb{P}(N=0) \times 0 + \mathbb{P}(N=1) \times 1 + \mathbb{P}(N=2) \times 2 & k & \mathbb{P}(N=k) \\ = 0.2025 \times 0 + 0.4950 \times 1 + 0.3025 \times 2 & 0 & 0.2025 \\ = \boxed{1.1} & 1 & 0.4950 \\ 2 & 0.3025 \end{array}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

 $X := \mathsf{sum} \mathsf{\ of\ the\ numbers\ on\ the\ dice}$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bigcirc \cdot }, \mathbf{ \bigcirc \cdot }, \mathbf{ \bigcirc \cdot }, \ldots, \mathbf{ \boxminus \mid } \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

X := sum of the numbers on the dice

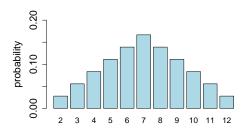
 \bigcirc What is the mean value of X?

Example (Rolling two dice)

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{iii}) = 1/36$$

X := sum of the numbers on the dice

- \bigcirc What is the mean value of X?
- A1 Since the distribution of X is symmetric around 7, $\mathbb{E}[X] = \boxed{7}$.



Example (Rolling two dice)

$$\Omega\coloneqq\{\bullet\bullet,\bullet\bullet,\bullet\bullet,\dots,\bullet\bullet\}$$

$$\mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \cdots = \mathbb{P}(\mathbf{OO}) = \frac{1}{36}$$

 $X := \mathsf{sum} \mathsf{ of the numbers on the dice}$

- \bigcirc What is the mean value of X?
- A2 We have

$$\begin{split} \mathbb{E}[X] &= \mathbb{P}(\boxdot) \times 2 + \mathbb{P}(\boxdot) \times 3 + \mathbb{P}(\boxdot) \times 4 + \dots + \mathbb{P}(\boxminus) \times 12 \\ \text{values for each of the 36 possible outcomes} \\ &= \frac{2+3+4+\dots+12}{36} \\ &= \frac{2+2\times3+3\times4+4\times5+5\times6+6\times7+5\times8+4\times9+3\times10+2\times11+12}{36} \end{split}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \ldots, \mathbf{ \bullet \bullet \bullet } \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{iii}) = 1/36$$

X := sum of the numbers on the dice

What is the mean value of X?

Using the distribution of X, we have

 $\mathbb{P}(X=a)$

1/36

Example (Rolling two dice)

$$\Omega \coloneqq \{ ullet ullet, ullet ullet, ullet ullet, ullet,$$

$$\mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \cdots = \mathbb{P}(\mathbf{OO}) = 1/36$$

X := sum of the numbers on the dice

- \bigcirc What is the mean value of *X*?
- A4 Note that
 - The mean of the number on the 1st die is 3.5.
 - The mean of the number on the 2nd die is 3.5.

Therefore,

• The mean of the sum of the two numbers is 3.5 + 3.5 = 7.

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

X := sum of the numbers on the dice

 \bigcirc What is the mean value of X?

A4 More precisely,

$$X = X_1 + X_2$$

 $X_1 := \text{number on the 1st die}$

 $X_2 := \text{number on the 2nd die}$

Now,
$$\mathbb{E}[X_1] = \mathbb{E}[X_2] = 3.5$$
, hence

$$\mathbb{E}[X] = \mathbb{E}[X_1] + \mathbb{E}[X_2] = 3.5 + 3.5 = \boxed{7}$$

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of X in many many repeated experiments.

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of X in many many repeated experiments.

As in the case of the mean of a variable in a data set, the expected value of a RV X can be calculated in two ways:

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of X in many many repeated experiments.

As in the case of the mean of a variable in a data set, the expected value of a RV X can be calculated in two ways:

1. If the experiment has possible outcomes $\omega_1, \omega_2, \omega_3, \ldots$, then

$$\mathbb{E}[X] = \mathbb{P}(\omega_1) \cdot X(\omega_1) + \mathbb{P}(\omega_2) \cdot X(\omega_2) + \mathbb{P}(\omega_3) \cdot X(\omega_3) + \cdots$$

[similar to using the raw data]

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of \boldsymbol{X} in many many repeated experiments.

As in the case of the mean of a variable in a data set, the expected value of a RV X can be calculated in two ways:

1. If the experiment has possible outcomes $\omega_1, \omega_2, \omega_3, \ldots$, then

$$\mathbb{E}[X] = \mathbb{P}(\omega_1) \cdot X(\omega_1) + \mathbb{P}(\omega_2) \cdot X(\omega_2) + \mathbb{P}(\omega_3) \cdot X(\omega_3) + \cdots$$

[similar to using the raw data]

2. If X has possible values a_1, a_2, a_3, \ldots , then

$$\mathbb{E}[X] = \mathbb{P}(X = a_1) \cdot a_1 + \mathbb{P}(X = a_2) \cdot a_2 + \mathbb{P}(X = a_3) \cdot a_3 + \cdots$$

[similar to using the relative frequency table]

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of X in many many repeated experiments.

Remark

If the experiment involves picking a member of a population uniformly at random (i.e., all members being equally likely to be picked), then the expected value of a RV X is the same as its population mean.

The expected value (a.k.a. the mean) of a discrete RV X is the average value of X over all the possible outcomes of the experiment weighted by their probabilities, and is denoted by $\mathbb{E}[X]$ or μ .

It is interpreted as the (approximate) mean of the values of X in many many repeated experiments.

Remark

If the experiment involves picking a member of a population uniformly at random (i.e., all members being equally likely to be picked), then the expected value of a RV X is the same as its population mean.

Example

The expected weight of a bird chosen uniformly at random from the population of all birds within a species is the same as the population mean of the weight for that species.

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

In other words,

$$\mathbb{V}\operatorname{ar}[X] := \mathbb{E}[(X - \mu)^2]$$

 $\mathbb{SD}[X] := \sqrt{\mathbb{V}\operatorname{ar}[X]}$

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

In other words,

$$\mathbb{V}\operatorname{ar}[X] := \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

 $\mathbb{SD}[X] := \sqrt{\mathbb{V}\operatorname{ar}[X]}$

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

In other words,

$$\mathbb{V}\operatorname{ar}[X] := \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$$

 $\mathbb{SD}[X] := \sqrt{\mathbb{V}\operatorname{ar}[X]}$

As before, the expected values of $(X - \mu)^2$ and X^2 can be calculated in two different ways, either by summing over the possible outcomes of the experiment, or by summing over the possible values of X.

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

Remark

If the experiments involves picking a member of a population uniformly at random (i.e., all members being equally likely to be picked), then the variance of X is the same as its population variance.

The variance of a discrete RV X is the expected value of the square of the deviation of X from its mean, and is denoted by Var[X] or σ^2 .

The standard deviation of a X is simply the square root of its variance, and is denoted by $\mathbb{SD}[X]$ or σ .

Remark

If the experiments involves picking a member of a population uniformly at random (i.e., all members being equally likely to be picked), then the variance of X is the same as its population variance.

Example

The variance of the weight of a bird chosen uniformly at random from the population of all birds within a species is the same as the population variance of the weight for that species.

Some important types of discrete RVs:

- Binomial RVs
- Poisson RVs

Some important types of discrete RVs:

- ► Bernoulli RVs (we will discuss if time permits)
- Binomial RVs
- ► Poisson RVs

Some important types of discrete RVs:

- ► Bernoulli RVs (we will discuss if time permits)
- Binomial RVs
- Poisson RVs
- ► Geometric RVs (not covered in this course)
- Hypergeometric RVs (not covered in this course)

Some important types of discrete RVs:

- ► Bernoulli RVs (we will discuss if time permits)
- Binomial RVs
- Poisson RVs
- ► Geometric RVs (not covered in this course)
- Hypergeometric RVs (not covered in this course)

These are identified by their distributions.

Some important types of discrete RVs:

- ► Bernoulli RVs (we will discuss if time permits)
- Binomial RVs
- Poisson RVs
- Geometric RVs (not covered in this course)
- Hypergeometric RVs (not covered in this course)

These are identified by their distributions.

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

 \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $\overline{\mathbb{Q}^2}$ What is the expected value of X?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- \mathbb{Q}^2 What is the expected value of X?
- $\mathbb{Q}3$ What is the standard deviation of X?

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

- ightharpoonup 70% of the times the coin comes up heads.
- ightharpoonup 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

 $X \coloneqq \#$ of heads

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

- ▶ 70% of the times the coin comes up heads.
- ightharpoonup 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

$$X \coloneqq \#$$
 of heads

 $\overline{\mathbb{Q}1}$ What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

- ▶ 70% of the times the coin comes up heads.
- ightharpoonup 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

$$X \coloneqq \#$$
 of heads

- $\overline{\mathrm{Q1}}$ What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $\overline{\mathbb{Q}^2}$ What is the expected value of X?

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

- ightharpoonup 70% of the times the coin comes up heads.
- ightharpoonup 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

$$X \coloneqq \#$$
 of heads

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- (Q2) What is the expected value of X?
- (Q3) What is the standard deviation of X?

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

- ightharpoonup 70% of the times the coin comes up heads.
- ightharpoonup 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

$$X \coloneqq \#$$
 of heads

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- (Q2) What is the expected value of X?
- (Q3) What is the standard deviation of X?

Do you notice something familiar??!

Consider an experiment involving n trials (or subexperiments), each with two possible results: success or failure. Suppose that

- Each trial is successful with probability p.
- The trials are independent of one another.

The random variable

$$X := \#$$
 of successes

is called a binomial RV with parameters n and p.

The distribution of X is called the binomial distribution with parameters n and p.

Consider an experiment involving n trials (or subexperiments), each with two possible results: success or failure. Suppose that

- Each trial is successful with probability p.
- The trials are independent of one another.

The random variable

$$X := \#$$
 of successes

is called a binomial RV with parameters n and p.

The distribution of X is called the binomial distribution with parameters n and p.

Clearly, in the last two examples, the two RVs

- $ightharpoonup X \coloneqq \#$ of sampled individuals with allele A
- $ightharpoonup X \coloneqq \#$ of heads

are both binomial RVs with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $\overline{\mathbb{Q}^2}$ What is the expected value of X?
- \mathbb{Q} 3 What is the standard deviation of X?

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- \mathbb{Q}^2 What is the expected value of X?
- \bigcirc What is the standard deviation of *X*?

First, check out the following applet: [Kudos to Prof. Matt Bognar]

https://homepage.divms.uiowa.edu/~mbognar/

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- \mathbb{Q}^2 What is the expected value of X?
- \mathbb{Q} 3) What is the standard deviation of X?

First, check out the following applet: [Kudos to Prof. Matt Bognar]

```
https://homepage.divms.uiowa.edu/~mbognar/
```

The same kind of computation/visualization (and much more) can be done using statistical software such as R:

https://www.r-project.org/

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)

A The possible values of X are $0, 1, 2, \ldots, 10$.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- A The possible values of X are 0, 1, 2, ..., 10. If k is a possible value, then

$$\mathbb{P}(X = k) = {10 \choose k} (0.7)^k (0.3)^{10-k}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $oxed{A}$ The possible values of X are $0,1,2,\ldots,10$. If k is a possible value, then

$$\mathbb{P}(X=k) = \binom{10}{k} (0.7)^k (0.3)^{10-k}$$

Binomial coefficient

The notation $\binom{n}{k}$ (or ${}_{n}C_{k}$) stands for the number of ways one can select \underline{k} distinct objects from a collection of \underline{n} distinguishable objects, disregarding the order of the selection.

It can be calculated as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $oxed{A}$ The possible values of X are $0,1,2,\ldots,10$. If k is a possible value, then

$$\mathbb{P}(X = k) = \binom{10}{k} (0.7)^k (0.3)^{10-k}$$

Binomial coefficient

The notation $\binom{n}{k}$ (or ${}_{n}C_{k}$) stands for the number of ways one can select \underline{k} distinct objects from a collection of \underline{n} distinguishable objects, disregarding the order of the selection.

It can be calculated as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- ${f Q1}$ What is the distribution of X? (e.g., what is ${\Bbb P}(X=7)$?)
- A The possible values of X are $0, 1, 2, \ldots, 10$. If k is a possible value, then

$$\mathbb{P}(X=k) = \binom{10}{k} (0.7)^k (0.3)^{10-k}$$

Binomial coefficient

The notation $\binom{n}{k}$ (or ${}_{n}C_{k}$) stands for the number of ways one can select \underline{k} distinct objects from a collection of \underline{n} distinguishable objects, disregarding the order of the selection.

It can be calculated as

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
 - A The possible values of X are 0, 1, 2, ..., 10. If k is a possible value, then

$$\mathbb{P}(X = k) = {10 \choose k} (0.7)^k (0.3)^{10-k}$$

e.g.,

$$\mathbb{P}(X=7) = \binom{10}{7} (0.7)^7 (0.3)^3$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- Q1) What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
 - A The possible values of X are 0, 1, 2, ..., 10. If k is a possible value, then

$$\mathbb{P}(X = k) = {10 \choose k} (0.7)^k (0.3)^{10-k}$$

e.g.,

$$\mathbb{P}(X=7) = \binom{10}{7} (0.7)^7 (0.3)^3 \approx \boxed{0.2668279}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

 \mathbb{Q}^2 What is the expected value of X?

- \mathbb{Q}^2 What is the expected value of X?
 - A The expected value is

$$\mu = \mathbb{E}[X] = 10 \times 0.7 = \boxed{7}$$

- \mathbb{Q}^2 What is the expected value of X?
 - A The expected value is

$$\mu = \mathbb{E}[X] = \frac{10}{10} \times 0.7 = \boxed{7}$$

- $\overline{\mathbb{Q}^2}$ What is the expected value of X?
 - A The expected value is

$$\mu = \mathbb{E}[X] = 10 \times \frac{0.7}{} = \boxed{7}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

 \mathbb{Q} 3 What is the standard deviation of X?

- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - A We have

$$\sigma^2 = \mathbb{V}\operatorname{ar}[X] = 10 \times 0.7 \times 0.3 = \boxed{2.1}$$

- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - A We have

$$\sigma^2 = \mathbb{V}\operatorname{ar}[X] = \frac{10}{10} \times 0.7 \times 0.3 = \boxed{2.1}$$

- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - A We have

$$\sigma^2 = \mathbb{V}\mathrm{ar}[X] = 10 \times \frac{0.7}{0.7} \times 0.3 = \boxed{2.1}$$

- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - A We have

$$\sigma^2 = \mathbb{V}\operatorname{ar}[X] = 10 \times 0.7 \times 0.3 = \boxed{2.1}$$

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.

- \mathbb{Q} 3 What is the standard deviation of X?
 - A We have

$$\sigma^2 = \mathbb{V}\operatorname{ar}[X] = 10 \times 0.7 \times 0.3 = \boxed{2.1}$$

Hence, the standard deviation is

$$\sigma = \mathbb{SD}[X] = \sqrt{\mathbb{V}ar[X]} = \sqrt{2.1} \approx \boxed{1.449138}$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- $\overline{\mathbb{Q}^2}$ What is the expected value of X?
- $\overline{(Q3)}$ What is the standard deviation of X?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- A $\mathbb{P}(X = 7) = 0.2668279$.
- $\overline{\mathbb{Q}^2}$ What is the expected value of X?
- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
 - A $\mathbb{P}(X = 7) = 0.2668279$.
- \mathbb{Q}^2 What is the expected value of X?
- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- A $\mathbb{P}(X = 7) = 0.2668279$.
- \mathbb{Q}^2 What is the expected value of X?
- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - ASD $[X] <math> \approx$ 1.449138.

In general, if X is a binomial RV with parameters n and p, then

The possible values of X are 0, 1, 2, ..., n. If k is a possible value, then

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^k$$

► The expected value of *X* is

$$\mathbb{E}[X]=np$$

► The variance of *X* is

$$|\sigma^2 = \mathbb{V}\mathrm{ar}[X] = np(1-p)|$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- \bigcirc What is the distribution of X? (e.g., what is $\mathbb{P}(X=7)$?)
- A $\mathbb{P}(X = 7) = 0.2668279$.
- \mathbb{Q}^2 What is the expected value of X?
- $\overline{\mathbb{Q}3}$ What is the standard deviation of X?
 - $\boxed{\mathsf{A}} \ \mathbb{SD}[X] \approx \boxed{1.449138}.$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{\mathbb{Q}4}$ What is the probability that at most 1 individual has A?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{{\sf Q4}}$ What is the probability that at most 1 individual has A?

A We have

 $\mathbb{P}(X \leq 1)$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{{\sf Q4}}$ What is the probability that at most 1 individual has A?

A We have

$$\mathbb{P}(X \leq 1) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1)$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{{\sf Q4}}$ What is the probability that at most 1 individual has A?

A We have

$$\mathbb{P}(X \le 1) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1)$$

$$= \binom{10}{0} (0.7)^0 (0.3)^{10} + \binom{10}{1} (0.7)^1 (0.3)^9$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{{\sf Q4}}$ What is the probability that at most 1 individual has A?

A We have

$$\mathbb{P}(X \le 1) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1)$$

$$= \binom{10}{0} (0.7)^0 (0.3)^{10} + \binom{10}{1} (0.7)^1 (0.3)^9$$

$$= 0.0000059049 + 0.000137781$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

 $X \coloneqq \#$ of sampled individuals with allele A

 $\overline{\mathbb{Q}4}$ What is the probability that at most 1 individual has A?

A We have

$$\mathbb{P}(X \le 1) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1)$$

$$= \binom{10}{0} (0.7)^0 (0.3)^{10} + \binom{10}{1} (0.7)^1 (0.3)^9$$

$$= 0.0000059049 + 0.000137781$$

$$= 0.0001436859 \approx \boxed{1.44 \times 10^{-4}}$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

 $\overline{\text{Q5}}$ What is the probability that at most 8 individual have A?

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- $\overline{\text{Q5}}$ What is the probability that at most 8 individual have A?
- A1 We have

$$\mathbb{P}(X \leq 8)$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- $\overline{\text{Q5}}$ What is the probability that at most 8 individual have A?
- A1 We have

$$\mathbb{P}(X \le 8) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \dots + \mathbb{P}(X = 8)$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

- $\overline{\rm Q5}$ What is the probability that at most 8 individual have A?
- A1 We have

$$\begin{split} \mathbb{P}(X \leq 8) &= \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \dots + \mathbb{P}(X = 8) \\ &= \binom{10}{0} (0.7)^0 (0.3)^{10} + \binom{10}{1} (0.7)^1 (0.3)^9 + \dots + \binom{10}{8} (0.7)^8 (0.3)^2 \end{split}$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

X := # of sampled individuals with allele A

 $\overline{\mathrm{Q5}}$ What is the probability that at most 8 individual have A?

A1 We have

$$\begin{split} \mathbb{P}(X \leq 8) &= \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \dots + \mathbb{P}(X = 8) \\ &= \binom{10}{0} (0.7)^0 (0.3)^{10} + \binom{10}{1} (0.7)^1 (0.3)^9 + \dots + \binom{10}{8} (0.7)^8 (0.3)^2 \\ &= \dots \qquad \text{(Ugh! Too much calculation!)} \end{split}$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- $\overline{\mathbb{Q}5}$ What is the probability that at most 8 individual have A?
- A2 We have

$$\mathbb{P}(X \leq 8)$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- $\overline{\mathbb{Q}5}$ What is the probability that at most 8 individual have A?
- A2 We have

$$\mathbb{P}(X \le 8) = 1 - \mathbb{P}(X = 9) - \mathbb{P}(X = 10)$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- $\overline{\text{Q5}}$ What is the probability that at most 8 individual have A?
- A2 We have

$$\mathbb{P}(X \le 8) = 1 - \mathbb{P}(X = 9) - \mathbb{P}(X = 10)$$
$$= 1 - \binom{10}{9} (0.7)^9 (0.3)^1 - \binom{10}{10} (0.7)^{10} (0.3)^0$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- $\overline{\mathsf{Q5}}$ What is the probability that at most 8 individual have A?
- A2 We have

$$\mathbb{P}(X \le 8) = 1 - \mathbb{P}(X = 9) - \mathbb{P}(X = 10)$$

$$= 1 - \binom{10}{9} (0.7)^9 (0.3)^1 - \binom{10}{10} (0.7)^{10} (0.3)^0$$

$$= 1 - 0.121060821 - 0.0282475249$$

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A and B. Previous studies suggest that around 70% of the people have allele A and the remaining 30% have allele B. A random sample of 10 individuals are selected.

- $\overline{\text{Q5}}$ What is the probability that at most 8 individual have A?
- A2 We have

$$\mathbb{P}(X \le 8) = 1 - \mathbb{P}(X = 9) - \mathbb{P}(X = 10)$$

$$= 1 - \binom{10}{9} (0.7)^9 (0.3)^1 - \binom{10}{10} (0.7)^{10} (0.3)^0$$

$$= 1 - 0.121060821 - 0.0282475249$$

$$\approx \boxed{0.850692}$$

