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Discrete random variables



Discrete random variables

Example (Flipping a biased coin twice)

Ω := {HH, HT, TH, TT}

P(HH) = 0.3025 P(HT) = 0.2475 P(TH) = 0.2475 P(TT) = 0.2025

N := # of heads outcome HH HT TH TT

N 2 1 1 0

Q What is the mean value of N?

A1 We have

E[N] = P(HH)× 2 + P(HT)× 1 + P(TH)× 1 + P(TT)× 0

= 0.3025 × 2 + 0.2475 × 1 + 0.2475 × 1 + 0.2025 × 0

= 1.1
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Discrete random variables

Example (Flipping a biased coin twice)

Ω := {HH, HT, TH, TT}

P(HH) = 0.3025 P(HT) = 0.2475 P(TH) = 0.2475 P(TT) = 0.2025

N := # of heads outcome HH HT TH TT

N 2 1 1 0

Q What is the mean value of N?

A2 Using the distribution of N, we have

E[N] = P(N = 0)× 0 + P(N = 1)× 1 + P(N = 2)× 2

= 0.2025 × 0 + 0.4950 × 1 + 0.3025 × 2

= 1.1

k P(N = k)
0 0.2025
1 0.4950
2 0.3025



Discrete random variables

Example (Rolling two dice)

Ω := { , , , . . . , }

P( ) = P( ) = P( ) = · · · = P( ) = 1/36

X := sum of the numbers on the dice

Q What is the mean value of X?

A1 Since the distribution of X is symmetric around 7, E[X] = 7 .
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Discrete random variables

Example (Rolling two dice)

Ω := { , , , . . . , }

P( ) = P( ) = P( ) = · · · = P( ) = 1/36

X := sum of the numbers on the dice

Q What is the mean value of X?

A2 We have

E[X] = P( )× 2 + P( )× 3 + P( )× 4 + · · ·+ P( )× 12

=

values for each of the 36 possible outcomes︷ ︸︸ ︷
2 + 3 + 4 + · · ·+ 12

36

=
2 + 2 × 3 + 3 × 4 + 4 × 5 + 5 × 6 + 6 × 7 + 5 × 8 + 4 × 9 + 3 × 10 + 2 × 11 + 12

36

= 7



Discrete random variables

Example (Rolling two dice)

Ω := { , , , . . . , }

P( ) = P( ) = P( ) = · · · = P( ) = 1/36

X := sum of the numbers on the dice

Q What is the mean value of X?

A3 Using the distribution of X, we have

E[X] = P(X = 2)× 2 + P(X = 3)× 3 + P(X = 4)× 4 + · · ·
+ P(X = 12)× 12

=
1

36
× 2 +

2
36

× 3 +
3
36

× 4 + · · ·+
1

36
× 12

= 7

a P(X = a)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36

10 3/36
11 2/36
12 1/36



Discrete random variables

Example (Rolling two dice)

Ω := { , , , . . . , }

P( ) = P( ) = P( ) = · · · = P( ) = 1/36

X := sum of the numbers on the dice

Q What is the mean value of X?

A4 Note that

� The mean of the number on the 1st die is 3.5.
� The mean of the number on the 2nd die is 3.5.

Therefore,

� The mean of the sum of the two numbers is 3.5 + 3.5 = 7 .



Discrete random variables

Example (Rolling two dice)

Ω := { , , , . . . , }

P( ) = P( ) = P( ) = · · · = P( ) = 1/36

X := sum of the numbers on the dice

Q What is the mean value of X?

A4 More precisely,
X = X1 + X2

X1 := number on the 1st die

X2 := number on the 2nd die

Now, E[X1] = E[X2] = 3.5, hence

E[X] = E[X1] + E[X2] = 3.5 + 3.5 = 7



Expected value of discrete RVs

The expected value (a.k.a. the mean) of a discrete RV X is the
average value of X over all the possible outcomes of the experiment
weighted by their probabilities, and is denoted by E[X] or µ.

It is interpreted as the (approximate) mean of the values of X in
many many repeated experiments.

As in the case of the mean of a variable in a data set, the expected
value of a RV X can be calculated in two ways:

1. If the experiment has possible outcomes ω1, ω2, ω3, . . ., then

E[X] = P(ω1) · X(ω1) + P(ω2) · X(ω2) + P(ω3) · X(ω3) + · · ·

[similar to using the raw data]

2. If X has possible values a1, a2, a3, . . ., then

E[X] = P(X = a1) · a1 + P(X = a2) · a2 + P(X = a3) · a3 + · · ·

[similar to using the relative frequency table]
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Expected value of discrete RVs

The expected value (a.k.a. the mean) of a discrete RV X is the
average value of X over all the possible outcomes of the experiment
weighted by their probabilities, and is denoted by E[X] or µ.

It is interpreted as the (approximate) mean of the values of X in
many many repeated experiments.

Remark
If the experiment involves picking a member of a population
uniformly at random (i.e., all members being equally likely to be
picked), then the expected value of a RV X is the same as its
population mean.

Example

The expected weight of a bird chosen uniformly at random from
the population of all birds within a species is the same as the
population mean of the weight for that species.
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Standard deviation of discrete RVs

The variance of a discrete RV X is the expected value of the square
of the deviation of X from its mean, and is denoted by Var[X]
or σ2.

The standard deviation of a X is simply the square root of its
variance, and is denoted by SD[X] or σ.

In other words,

Var[X] := E[(X − µ)2]

= E[X2]− µ2

SD[X] :=
√
Var[X]

As before, the expected values of (X − µ)2 and X2 can be
calculated in two different ways, either by summing over the
possible outcomes of the experiment, or by summing over the
possible values of X.
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Standard deviation of discrete RVs

The variance of a discrete RV X is the expected value of the square
of the deviation of X from its mean, and is denoted by Var[X]
or σ2.

The standard deviation of a X is simply the square root of its
variance, and is denoted by SD[X] or σ.

Remark
If the experiments involves picking a member of a population
uniformly at random (i.e., all members being equally likely to be
picked), then the variance of X is the same as its population
variance.

Example

The variance of the weight of a bird chosen uniformly at random
from the population of all birds within a species is the same as the
population variance of the weight for that species.
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Discrete random variables

Some important types of discrete RVs:

▶ Bernoulli RVs (we will discuss if time permits)

▶ Binomial RVs

▶ Poisson RVs

▶ Geometric RVs (not covered in this course)

▶ Hypergeometric RVs (not covered in this course)

▶ . . .

These are identified by their distributions.
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Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q1 What is the distribution of X? (e.g., what is P(X = 7)?)

Q2 What is the expected value of X?

Q3 What is the standard deviation of X?
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Binomial RVs

Example (Flipping a biased coin)

A coin has a bias in favor of heads:

▶ 70% of the times the coin comes up heads.

▶ 30% of the times the coin comes up tails.

We flip the coin 10 times in a row.

X := # of heads

Q1 What is the distribution of X? (e.g., what is P(X = 7)?)

Q2 What is the expected value of X?

Q3 What is the standard deviation of X?

Do you notice something familiar??!
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Binomial RVs

Consider an experiment involving n trials (or subexperiments),
each with two possible results: success or failure. Suppose that

▶ Each trial is successful with probability p.
▶ The trials are independent of one another.

The random variable

X := # of successes

is called a binomial RV with parameters n and p.
The distribution of X is called the binomial distribution with
parameters n and p.

Clearly, in the last two examples, the two RVs

▶ X := # of sampled individuals with allele A
▶ X := # of heads

are both binomial RVs with parameters n = 10 and p = 0.7.
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▶ The trials are independent of one another.

The random variable
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The distribution of X is called the binomial distribution with
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Clearly, in the last two examples, the two RVs

▶ X := # of sampled individuals with allele A
▶ X := # of heads

are both binomial RVs with parameters n = 10 and p = 0.7.



Binomial RVs

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.
Q1 What is the distribution of X? (e.g., what is P(X = 7)?)

Q2 What is the expected value of X?

Q3 What is the standard deviation of X?

First, check out the following applet: [Kudos to Prof. Matt Bognar]

https://homepage.divms.uiowa.edu/~mbognar/

The same kind of computation/visualization (and much more) can
be done using statistical software such as R:

https://www.r-project.org/

https://homepage.divms.uiowa.edu/~mbognar/
https://www.r-project.org/
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Binomial RVs

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.
Q1 What is the distribution of X? (e.g., what is P(X = 7)?)

A The possible values of X are 0,1,2, . . . ,10.

If k is a possible value, then

P(X = k) =
(

10
k

)
(0.7)k(0.3)10−k

Binomial coefficient
The notation

(n
k

)
(or nCk) stands for the number of ways one can

select k distinct objects from a collection of n distinguishable
objects, disregarding the order of the selection.

It can be calculated as (
n
k

)
=

n!
k!(n − k)!
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(or nCk) stands for the number of ways one can

select k distinct objects from a collection of n distinguishable
objects, disregarding the order of the selection.

It can be calculated as (
n
k

)
=

n!
k!(n − k)!
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Suppose X is a binomial RV with parameters n = 10 and p = 0.7.
Q2 What is the expected value of X?

A The expected value is

µ = E[X] = 10 × 0.7 = 7
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Binomial RVs

Suppose X is a binomial RV with parameters n = 10 and p = 0.7.
Q3 What is the standard deviation of X?

A We have

σ2 = Var[X] = 10 × 0.7 × 0.3 = 2.1

Hence, the standard deviation is

σ = SD[X] =
√

Var[X] =
√

2.1 ≈ 1.449138
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σ2 = Var[X] = 10 × 0.7 × 0.3 = 2.1

Hence, the standard deviation is
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Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q1 What is the distribution of X? (e.g., what is P(X = 7)?)

A P(X = 7) = 0.2668279 .

Q2 What is the expected value of X?

A E[X] = 7 .

Q3 What is the standard deviation of X?

A SD[X] ≈ 1.449138 .
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Binomial RVs

In general, if X is a binomial RV with parameters n and p, then
▶ The possible values of X are 0,1,2, . . . ,n.

If k is a possible value, then

P(X = k) =
(

n
k

)
pk(1 − p)k

▶ The expected value of X is

E[X] = np

▶ The variance of X is

σ2 = Var[X] = np(1 − p)
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Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q4 What is the probability that at most 1 individual has A?

A We have

P(X ≤ 1)

= P(X = 0) + P(X = 1)

=
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)
(0.7)0(0.3)10 +

(
10
1

)
(0.7)1(0.3)9
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= 0.0001436859 ≈ 1.44 × 10−4
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Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A1 We have

P(X ≤ 8)

= P(X = 0) + P(X = 1) + · · ·+ P(X = 8)

=
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0
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= . . . (Ugh! Too much calculation!)
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X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A2 We have

P(X ≤ 8)

= 1 − P(X = 9)− P(X = 10)

= 1 −

(
10
9

)
(0.7)9(0.3)1 −

(
10
10

)
(0.7)10(0.3)0

= 1 − 0.121060821 − 0.0282475249

≈ 0.850692



Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A2 We have

P(X ≤ 8) = 1 − P(X = 9)− P(X = 10)

= 1 −

(
10
9

)
(0.7)9(0.3)1 −

(
10
10

)
(0.7)10(0.3)0

= 1 − 0.121060821 − 0.0282475249

≈ 0.850692



Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A2 We have

P(X ≤ 8) = 1 − P(X = 9)− P(X = 10)

= 1 −

(
10
9

)
(0.7)9(0.3)1 −

(
10
10

)
(0.7)10(0.3)0

= 1 − 0.121060821 − 0.0282475249

≈ 0.850692



Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A2 We have

P(X ≤ 8) = 1 − P(X = 9)− P(X = 10)

= 1 −

(
10
9

)
(0.7)9(0.3)1 −

(
10
10

)
(0.7)10(0.3)0

= 1 − 0.121060821 − 0.0282475249

≈ 0.850692



Binomial RVs

Example (Gene with two alleles)

A certain type of gene in humans has two alleles (versions) A
and B. Previous studies suggest that around 70% of the people
have allele A and the remaining 30% have allele B. A random
sample of 10 individuals are selected.

X := # of sampled individuals with allele A

Q5 What is the probability that at most 8 individual have A?

A2 We have

P(X ≤ 8) = 1 − P(X = 9)− P(X = 10)

= 1 −

(
10
9

)
(0.7)9(0.3)1 −

(
10
10

)
(0.7)10(0.3)0

= 1 − 0.121060821 − 0.0282475249

≈ 0.850692


	Discrete random variables

