American University of Beirut STAT 210: Elementary Statistics for Sciences 2022–2023 Fall

Siamak Taati

Chapter 5
Discrete random variables
Part 1

Language of probabilities: random variables

We saw how probabilities and probability models provide a simple, precise and unambiguous language to help us discuss and reason about chance and randomness.

Random variables are another element of the language of probabilities. They provide the vocabulary for talking and reasoning about random quantities in a random experiment.

Language of probabilities: random variables

Examples of random quantities

- ▶ The height of a randomly picked student from this class
- ▶ The weight of a randomly picked bird from a species of birds
- ▶ The number of students in this class who will get an A
- ▶ The number of spam emails you will receive during November
- The time until you receive the next spam email
- ► Tomorrow's temperature in Beirut
- **...**

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 1

Experiment: flip a coin twice.

A random variable: N := # of heads

The value of N is determined by the outcome:

outcome	HH	HT	TH	TT
N	2	1	1	0

Possible values: 0, 1, 2.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 2

Experiment: Roll two 6-sided dice.

A random variable: X := sum of the numbers on the dice

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 2

Experiment: Roll two 6-sided dice.

A random variable: X := sum of the numbers on the dice

 \bigcirc What are the possible values of X?

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 2

Experiment: Roll two 6-sided dice.

A random variable: X := sum of the numbers on the dice

 \bigcirc What are the possible values of X?

 $A 2, 3, 4, \dots, 12.$

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 2

Experiment: Roll two 6-sided dice.

A random variable: X := sum of the numbers on the dice

<i>X</i> :	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
	·	4	5	6	7	8	9
		3	4	5	6	7	8
	•	2	3	4	5	6	7
	die * die *	. •		Ŀ	∷	∷	!!
	/ lie						

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 3

A random variable:

 $N \coloneqq \#$ of spam emails you will receive during November

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 3

A random variable:

 $N \coloneqq \#$ of spam emails you will receive during November

Experiment: Monitor your mailbox during November.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 3

A random variable:

 $N \coloneqq \#$ of spam emails you will receive during November

Experiment: Monitor your mailbox during November.

<u>Sample space</u>: All possible lists of emails you could receive during November

Spam	Time	Sender	Subject
	November 1	Mom	Come home early!
	November 1	Instructor	Reminder: midterm 2 will be
*	November 2	Mr. Joe	BEST deal!!!
	November 3	Ali	What's up?
	November 4	L.	Miss you <3
	l .	l .	
		•	
*	November 30	Mr. H. Benjamin	DEAR, BENEFICIARY!

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 3

A random variable:

 $N \coloneqq \#$ of spam emails you will receive during November

Experiment: Monitor your mailbox during November.

<u>Sample space</u>: All possible lists of emails you could receive during November

 \bigcirc What are the possible values of N?

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 3

A random variable:

 $N \coloneqq \#$ of spam emails you will receive during November

Experiment: Monitor your mailbox during November.

<u>Sample space</u>: All possible lists of emails you could receive during November

 \bigcirc What are the possible values of N?

 $A 0, 1, 2, 3, \dots$

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 4

A random variable:

T := time until you receive the next spam email (measured in seconds)

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 4

A random variable:

T := time until you receive the next spam email
 (measured in seconds)

Experiment: Start a timer and monitor your mailbox until a spam arrives.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 4

A random variable:

T := time until you receive the next spam email (measured in seconds)

Experiment: Start a timer and monitor your mailbox until

a spam arrives.

Sample space: ???

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 4

A random variable:

T := time until you receive the next spam email (measured in seconds)

Experiment: Start a timer and monitor your mailbox until

a spam arrives.

Sample space: ???

 \bigcirc What are the possible values of T?

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 4

A random variable:

T := time until you receive the next spam email (measured in seconds)

Experiment: Start a timer and monitor your mailbox until

a spam arrives.

Sample space: ???

 \bigcirc What are the possible values of T?

 \overline{A} All (real) numbers larger than or equal to 0.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut (measured in centigrade)

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut (measured in centigrade)

(More precisely: average of 10 different measurements at different locations during the day.)

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut (measured in centigrade)

Experiment: ???

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut (measured in centigrade)

Experiment: ???

Sample space: ???

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut(measured in centigrade)

Experiment: ???

Sample space: ???

 \mathbb{Q} What are the possible values of T?

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Example 5

A random variable:

T := tomorrow's temperature in Beirut (measured in centigrade)

Experiment: ???

Sample space: ???

 \bigcirc What are the possible values of T?

All (real) numbers between say -50 and 50.

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Two types of random variables

A discrete random variable is one which has only finitely many or countably many possible values.

A continuous random variable is one whose values range over an entire interval (or intervals).

A random variable within a random experiment is a variable \boldsymbol{X} (often numerical) whose value is determined by the outcome of the experiment.

Two types of random variables

A discrete random variable is one which has only finitely many or countably many possible values.

For example:

- → Number of heads in two flips a coin
- → Sum of the numbers on two dice
- → Number of spam emails during November
- A continuous random variable is one whose values range over an entire interval (or intervals).

For example:

- → Time until the next spam email
- → Tomorrow's temperature in Beirut

Example (Flipping a biased coin twice)

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH}, \mathtt{HT}, \mathtt{TH}, \mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N := \#$$
 of heads

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N := \#$$
 of heads

 ${f Q}$ What is the probability that N takes each of its possible values?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N \coloneqq \# \text{ of heads}$$

 ${f Q}$ What is the probability that N takes each of its possible values?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH}, \mathtt{HT}, \mathtt{TH}, \mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N \coloneqq \#$$
 of heads

 \bigcirc What is the probability that N takes each of its possible values?

A We have

$$\mathbb{P}(N=0) = \mathbb{P}(\mathsf{TT}) = \boxed{0.2025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N \coloneqq \#$$
 of heads

 \bigcirc What is the probability that N takes each of its possible values?

$$\begin{split} \mathbb{P}(N=0) &= \mathbb{P}(\text{TT}) = \boxed{0.2025} \\ \mathbb{P}(N=1) &= \mathbb{P}(\text{HT}) + \mathbb{P}(\text{TH}) \\ &= 0.2475 + 0.2475 = \boxed{0.4950} \end{split}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N \coloneqq \# \text{ of heads}$$

 \bigcirc What is the probability that N takes each of its possible values?

$$\begin{split} \mathbb{P}(N=0) &= \mathbb{P}(\text{TT}) = \boxed{0.2025} \\ \mathbb{P}(N=1) &= \mathbb{P}(\text{HT}) + \mathbb{P}(\text{TH}) \\ &= 0.2475 + 0.2475 = \boxed{0.4950} \\ \mathbb{P}(N=2) &= \mathbb{P}(\text{HH}) = \boxed{0.3025} \end{split}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the random variable:

$$N \coloneqq \# \text{ of heads}$$

 \bigcirc What is the probability that N takes each of its possible values?

$$\begin{split} \mathbb{P}(N=0) &= \mathbb{P}(\text{TT}) = \boxed{0.2025} \\ \mathbb{P}(N=1) &= \mathbb{P}(\text{HT}) + \mathbb{P}(\text{TH}) \\ &= 0.2475 + 0.2475 = \boxed{0.4950} \\ \mathbb{P}(N=2) &= \mathbb{P}(\text{HH}) = \boxed{0.3025} \end{split}$$

The function $p(k) := \mathbb{P}(N = k)$ is called the probability distribution of N.

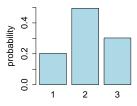
Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$\mathbb{P}(\mathtt{HH})$	= 0.3025	$\mathbb{P}(\mathtt{HT}) = 0.2475$	$\mathbb{P}(\mathtt{TH}) = 0.2$	2475	I	$\mathbb{P}(TT)$	= 0.2025
	$N \coloneqq \#$	outcome	HH	HT	TH	TT	
	//		N	2	1	1	Λ

k	$\mathbb{P}(N=k)$
0	0.2025
1	0.4950
2	0.3025

Distribution of N



Distribution of N

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \mathbb{P}(\mathbf{OO}) = \cdots = \mathbb{P}(\mathbf{OO}) = 1/36$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

 $X := \mathsf{sum} \mathsf{\ of\ } \mathsf{the\ } \mathsf{numbers\ } \mathsf{on\ } \mathsf{the\ } \mathsf{dice}$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \ldots, \bullet \bullet \}$$

$$\mathbb{P}(\bullet \bullet) = \mathbb{P}(\bullet \bullet) = \mathbb{P}(\bullet \bullet) = \cdots = \mathbb{P}(\bullet \bullet) = 1/36$$

 $X := \mathsf{sum} \mathsf{ of the numbers on the dice}$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \ldots, \mathbf{ \bullet \bullet \bullet } \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

 $X := \mathsf{sum} \mathsf{ of the numbers on the dice}$

 \mathbb{Q} What is the probability that X takes each of its possible values?

•	7	8	9	10	11	12
\boxtimes	6	7	8	9	10	11
::	5	6	7	8	9	10
\mathbf{c}	4	5	6	7	8	9
	3	4	5	6	7	8
·	2	3	4	5	6	7
die **	•		•	::	∷	11

X:

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \ldots, \mathbf{ | i | i | } \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

 $X := \mathsf{sum} \mathsf{ of the numbers on the dice}$

$$\mathbb{P}(X=2)=1/36$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{...}, \mathbf{...}, \mathbf{...}, \ldots, \mathbf{...} \}$$

$$\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\cdots=\mathbb{P}(\mathbf{\cdot\cdot\cdot})=1/36$$

X := sum of the numbers on the dice

$$\mathbb{P}(X = 2) = 1/36$$

 $\mathbb{P}(X = 3) = 2 \times (1/36) = 2/36$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{\cdot \cdot \cdot \cdot}) = 1/36$$

X := sum of the numbers on the dice

	•	7	8	9	10	11	12
v.	$\mathbf{\Xi}$	6	7	8	9	10	11
		5	6	7	8	9	10
<i>X</i> :	·	4	5	6	7	8	9
		3	4	5	6	7	8
	•	2	3	4	5	6	7
	die **			\cdot	::	\mathbf{x}	•
	/ 8ie						

$$\mathbb{P}(X = 2) = 1/36$$

 $\mathbb{P}(X = 3) = 2 \times (1/36) = 2/36$
 $\mathbb{P}(X = 4) = 3 \times (1/36) = 3/36$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\widehat{...}}) = \mathbb{P}(\mathbf{\widehat{...}}) = \mathbb{P}(\mathbf{\widehat{...}}) = \cdots = \mathbb{P}(\mathbf{\widehat{...}}) = 1/36$$

X := sum of the numbers on the dice

	•	7	8	9	10	11	12
<i>X</i> :	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
	·	4	5	6	7	8	9
		3	4	5	6	7	8
	<u>.</u>	2	3	4	5	6	7
	die #2	. 🖸		·	::	∷	::
	/ lie						

$$P(X = 2) = 1/36$$

$$P(X = 3) = 2 \times (1/36) = 2/36$$

$$P(X = 4) = 3 \times (1/36) = 3/36$$

$$P(X = 5) = 4 \times (1/36) = 4/36$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{...}, \mathbf{...}, \mathbf{...}, \ldots, \mathbf{IIII} \}$$

$$\mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \cdots = \mathbb{P}(\textbf{...}) = 1/36$$

X := sum of the numbers on the dice

<i>X</i> :	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
Λ.	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2			\odot		\mathbf{x}	••
	1 816						

$$\begin{aligned} \mathbb{P}(X = 2) &= 1/36 \\ \mathbb{P}(X = 3) &= 2 \times (1/36) = 2/36 \\ \mathbb{P}(X = 4) &= 3 \times (1/36) = 3/36 \\ \mathbb{P}(X = 5) &= 4 \times (1/36) = 4/36 \\ \mathbb{P}(X = 6) &= 5 \times (1/36) = 5/36 \end{aligned}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\widehat{...}}) = \mathbb{P}(\mathbf{\widehat{...}}) = \mathbb{P}(\mathbf{\widehat{...}}) = \cdots = \mathbb{P}(\mathbf{\widehat{...}}) = 1/36$$

X := sum of the numbers on the dice

<i>X</i> :	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
	·	4	5	6	7	8	9
		3	4	5	6	7	8
	<u>.</u>	2	3	4	5	6	7
	die **			\odot	::	∷	••
	/ 8/						

$$P(X = 2) = 1/36$$

$$P(X = 3) = 2 \times (1/36) = 2/36$$

$$P(X = 4) = 3 \times (1/36) = 3/36$$

$$P(X = 5) = 4 \times (1/36) = 4/36$$

$$P(X = 6) = 5 \times (1/36) = 5/36$$

$$P(X = 7) = 6 \times (1/36) = 6/36$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{...}, \mathbf{...}, \mathbf{...}, \ldots, \mathbf{...} \}$$

$$\mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \cdots = \mathbb{P}(\textbf{...}) = 1/36$$

X := sum of the numbers on the dice

<i>X</i> :	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
Λ.	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2	. 🖸		•	::	∷	11
	/ lie						

$$\begin{split} \mathbb{P}(X=2) &= 1/36 \\ \mathbb{P}(X=3) &= 2 \times (1/36) = 2/36 \\ \mathbb{P}(X=4) &= 3 \times (1/36) = 3/36 \\ \mathbb{P}(X=5) &= 4 \times (1/36) = 4/36 \\ \mathbb{P}(X=6) &= 5 \times (1/36) = 5/36 \\ \mathbb{P}(X=7) &= 6 \times (1/36) = 5/36 \\ \mathbb{P}(X=8) &= 5 \times (1/36) = 5/36 \end{split}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \cdots = \mathbb{P}(\textbf{...}) = 1/36$$

X := sum of the numbers on the dice

V.	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
<i>X</i> :	·	4	5	6	7	8	9
		3	4	5	6	7	8
	·	2	3	4	5	6	7
	die #2	. 🖸		·	::	∷	11
	/ lie						

$$\begin{split} \mathbb{P}(X=2) &= 1/36 \\ \mathbb{P}(X=3) &= 2 \times (1/36) = 2/36 \\ \mathbb{P}(X=4) &= 3 \times (1/36) = 3/36 \\ \mathbb{P}(X=5) &= 4 \times (1/36) = 4/36 \\ \mathbb{P}(X=6) &= 5 \times (1/36) = 5/36 \\ \mathbb{P}(X=7) &= 6 \times (1/36) = 5/36 \\ \mathbb{P}(X=8) &= 5 \times (1/36) = 5/36 \\ \mathbb{P}(X=9) &= 4 \times (1/36) = 4/36 \end{split}$$

Example (Rolling two dice)

$$\Omega\coloneqq\{\bullet\bullet,\bullet\bullet,\bullet\bullet,\dots,\bullet\bullet\}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i \cdot i \cdot}) = 1/36$$

X := sum of the numbers on the dice

<i>X</i> :	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
Λ.	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2			$\mathbf{\cdot}$::	∷	::
	/ 9/16						

$$\begin{array}{c} \mathbb{P}(X=2) = 1/36 \\ \mathbb{P}(X=3) = 2 \times (1/36) = 2/36 \\ \mathbb{P}(X=4) = 3 \times (1/36) = 3/36 \\ \mathbb{P}(X=5) = 4 \times (1/36) = 4/36 \\ \mathbb{P}(X=6) = 5 \times (1/36) = 5/36 \\ \mathbb{P}(X=7) = 6 \times (1/36) = 6/36 \\ \mathbb{P}(X=8) = 5 \times (1/36) = 5/36 \\ \mathbb{P}(X=9) = 4 \times (1/36) = 4/36 \\ \mathbb{P}(X=10) = 3 \times (1/36) = 3/36 \end{array}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \ldots, \mathbf{ | i | i | } \}$$

$$\mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \mathbb{P}(\textbf{...}) = \cdots = \mathbb{P}(\textbf{...}) = 1/36$$

X := sum of the numbers on the dice

V .	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
<i>X</i> :	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2			\odot	∷	\mathbf{x}	•
	/ lie						

$$\begin{array}{l} \mathbb{P}(X=2)=1/36 \\ \mathbb{P}(X=3)=2\times(1/36)=2/36 \\ \mathbb{P}(X=4)=3\times(1/36)=3/36 \\ \mathbb{P}(X=5)=4\times(1/36)=4/36 \\ \mathbb{P}(X=6)=5\times(1/36)=5/36 \\ \mathbb{P}(X=7)=6\times(1/36)=6/36 \\ \mathbb{P}(X=8)=5\times(1/36)=5/36 \\ \mathbb{P}(X=9)=4\times(1/36)=4/36 \\ \mathbb{P}(X=10)=3\times(1/36)=3/36 \\ \mathbb{P}(X=11)=2\times(1/36)=2/36 \end{array}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \bullet \bullet, \bullet \bullet, \bullet \bullet, \dots, \bullet \bullet \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{i i i i}) = 1/36$$

X := sum of the numbers on the dice

V.	•	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
<i>X</i> :	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2			•	::	\mathbf{x}	!!
	/ lie						

$$\begin{array}{l} \mathbb{P}(X=2)=1/36 \\ \mathbb{P}(X=3)=2\times(1/36)=2/36 \\ \mathbb{P}(X=4)=3\times(1/36)=3/36 \\ \mathbb{P}(X=5)=4\times(1/36)=4/36 \\ \mathbb{P}(X=5)=4\times(1/36)=5/36 \\ \mathbb{P}(X=7)=6\times(1/36)=5/36 \\ \mathbb{P}(X=7)=6\times(1/36)=5/36 \\ \mathbb{P}(X=8)=5\times(1/36)=5/36 \\ \mathbb{P}(X=9)=4\times(1/36)=4/36 \\ \mathbb{P}(X=10)=3\times(1/36)=3/36 \\ \mathbb{P}(X=11)=2\times(1/36)=2/36 \\ \mathbb{P}(X=12)=1/36 \end{array}$$

Example (Rolling two dice)

$$\Omega \coloneqq \{ \mathbf{ \bullet \bullet }, \mathbf{ \bullet \bullet \bullet }, \ldots, \mathbf{ \parallel \parallel \parallel } \}$$

$$\mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = \cdots = \mathbb{P}(\mathbf{\cdot \cdot \cdot}) = 1/36$$

X := sum of the numbers on the dice

<i>X</i> :	••	7	8	9	10	11	12
	∷	6	7	8	9	10	11
	::	5	6	7	8	9	10
	⋰	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	oie ** die **			·	::	\mathbf{x}	::
	/ O'						

а	$\mathbb{P}(X=a)$
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

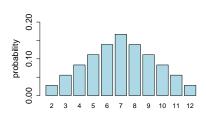
Example (Rolling two dice)

$$\Omega\coloneqq\{oldsymbol{\odot},oldsymbol{\odot},oldsymbol{\odot},\ldots,oldsymbol{\square}\}$$

$$\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\mathbb{P}(\mathbf{\cdot\cdot\cdot})=\cdots=\mathbb{P}(\mathbf{iii})=1/36$$

X := sum of the numbers on the dice

<i>X</i> :	11	7	8	9	10	11	12
	\boxtimes	6	7	8	9	10	11
	::	5	6	7	8	9	10
	·	4	5	6	7	8	9
		3	4	5	6	7	8
		2	3	4	5	6	7
	die #2	• •		\cdot	\Box	\mathbf{x}	::
	die						



Distribution of discrete random variables

The probability distribution (a.k.a. the probability mass function) of a discrete RV X is the function $p(a) := \mathbb{P}(X = a)$ that assigns, to each possible value of X, the probability that X takes that value.

The information in the distribution of X can be summarized in a table, a <u>bar chart</u>, or a <u>formula</u>.

Distribution of discrete random variables

The probability distribution (a.k.a. the probability mass function) of a discrete RV X is the function $p(a) := \mathbb{P}(X = a)$ that assigns, to each possible value of X, the probability that X takes that value.

The information in the distribution of X can be summarized in a table, a bar chart, or a formula.

Properties of probability distribution

The distribution of every discrete RV X satisfies the following:

 \triangleright For each value a,

$$0 \le p(a) \le 1$$
.

▶ If X has possible values $a_1, a_2, a_3, ...$, then

$$p(a_1) + p(a_2) + p(a_3) + \cdots = 1$$
.

