American University of Beirut STAT 210: Elementary Statistics for Sciences 2022–2023 Fall

Siamak Taati

Chapter 4 Probability Part 2

Probability

Terminology

Terminology

Suppose we want to talk about a particular random experiment.

Terminology

Suppose we want to talk about a particular random experiment.

The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- ► Any event concerning the experiment can be identified by the collection of outcomes that realize that event.

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- ► Any event concerning the experiment can be identified by the collection of outcomes that realize that event.
 - An elementary event is an event which is realized by exactly one possible outcome.

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- Any event concerning the experiment can be identified by the collection of outcomes that realize that event.
 - An elementary event is an event which is realized by exactly one possible outcome.

- ► The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.
- ▶ An (non-elementary) event: $A := \{ : : , : : : , : : : \}$
- ▶ An (elementary) event: $B := \{ \boxdot \}$.

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- ► Any event concerning the experiment can be identified by the collection of outcomes that realize that event.
 - An elementary event is an event which is realized by exactly one possible outcome.
 - Two trivial events:

- ▶ The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- ▶ An (non-elementary) event: $A := \{ : : , : : : , : : : \}$
- ▶ An (elementary) event: $B := \{ \boxdot \}$.

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- ► Any event concerning the experiment can be identified by the collection of outcomes that realize that event.
 - An elementary event is an event which is realized by exactly one possible outcome.
 - Two trivial events:

```
\varnothing \coloneqq \{\} \ (\underline{\mathsf{nothing}} \ \mathsf{happens})
```

- ► The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- ▶ An (non-elementary) event: $A := \{ : :, : :, : : : \}$
- ▶ An (elementary) event: $B := \{ \boxdot \}$.

Terminology

Suppose we want to talk about a particular random experiment.

- The collection of all possible outcomes of the experiment is called the sample space and is often denoted by Ω .
- ► Any event concerning the experiment can be identified by the collection of outcomes that realize that event.
 - An elementary event is an event which is realized by exactly one possible outcome.
 - Two trivial events:

```
arnothing \coloneqq \{\} \ ( \underline{\mathsf{nothing}} \ \mathsf{happens}) \ \mathsf{and} \ \Omega \ ( \underline{\mathsf{something}} \ \mathsf{happens})
```

- ► The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- ▶ An (non-elementary) event: $A := \{ : :, : :, : : : \}$
- ▶ An (elementary) event: $B := \{ \boxdot \}$.

Terminology

The probability of an event A is a number $\mathbb{P}(A)$ between 0 and 1, which indicates how likely it is for that event to occur.

Example (Rolling a die)

▶ The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.

Terminology

The probability of an event A is a number $\mathbb{P}(A)$ between 0 and 1, which indicates how likely it is for that event to occur.

- ▶ The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- $\blacktriangleright \mathbb{P}(\{:,:],:]) = 1/2.$

Terminology

- The probability of an event A is a number $\mathbb{P}(A)$ between 0 and 1, which indicates how likely it is for that event to occur.
- ▶ In particular, if a is a <u>possible outcome</u>, we write $\mathbb{P}(a)$ for the <u>probability</u> that a becomes the <u>actual outcome</u> of the experiment.

- ▶ The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- $\blacktriangleright \mathbb{P}(\{\square,\square,\square\}) = 1/2.$

Terminology

- The probability of an event A is a number $\mathbb{P}(A)$ between 0 and 1, which indicates how likely it is for that event to occur.
- ▶ In particular, if a is a <u>possible outcome</u>, we write $\mathbb{P}(a)$ for the <u>probability</u> that a becomes the <u>actual outcome</u> of the experiment.

- ▶ The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- $\blacktriangleright \mathbb{P}(\{\square,\square,\square\}) = 1/2.$
- $\blacktriangleright \mathbb{P}(\mathbf{\Xi}) = 1/6.$

Consistency of probabilities

Example (Rolling a die)

► The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.

Consistency of probabilities

▶ If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1.$$

(In words: The probabilities of the possible outcomes add up to 1.)

Example (Rolling a die)

▶ The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.

Consistency of probabilities

• If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1.$$

(In words: The probabilities of the possible outcomes add up to 1.)

- ▶ The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.
- $\mathbb{P}(\bigcirc) + \mathbb{P}(\bigcirc) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1.$

Consistency of probabilities

▶ If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\boxed{\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1}$$

(In words: The probabilities of the possible outcomes add up to 1.)

► For every event $A = \{a_1, a_2, a_3, ...\}$,

$$\mathbb{P}(A) = \mathbb{P}(a_1) + \mathbb{P}(a_2) + \mathbb{P}(a_3) + \cdots$$

(In words: The probability of an event is the sum of the probabilities of the possible outcomes that realize that event.)

- ▶ The sample space is $\Omega := \{ \odot, \odot, \odot, \odot, \odot, \odot, \odot, \odot \}$.
- $\mathbb{P}(\bigcirc) + \mathbb{P}(\bigcirc) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1.$

Consistency of probabilities

• If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1.$$

(In words: The probabilities of the possible outcomes add up to 1.)

► For every event $A = \{a_1, a_2, a_3, ...\}$,

$$|\mathbb{P}(A)| = \mathbb{P}(a_1) + \mathbb{P}(a_2) + \mathbb{P}(a_3) + \cdots$$

(In words: The probability of an event is the sum of the probabilities of the possible outcomes that realize that event.)

- ▶ The sample space is $\Omega := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$.
- $\mathbb{P}(\boxdot) + \mathbb{P}(\boxdot) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1.$
- $\mathbb{P}(\{\mathbb{C},\mathbb{C},\mathbb{H}\}) = \mathbb{P}(\mathbb{C}) + \mathbb{P}(\mathbb{H}) + \mathbb{P}(\mathbb{H}) = 1/6 + 1/6 + 1/6 = 1/2.$

Consistency of probabilities

▶ If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1.$$

(In words: The probabilities of the possible outcomes add up to 1.)

▶ For every event $A = \{a_1, a_2, a_3, ...\}$,

$$|\mathbb{P}(A)| = \mathbb{P}(a_1) + \mathbb{P}(a_2) + \mathbb{P}(a_3) + \cdots$$

(In words: The probability of an event is the sum of the probabilities of the possible outcomes that realize that event.)

ho $\mathbb{P}(\varnothing)=0$. (The probability that nothing happens is zero. Duh!)

Consistency of probabilities

• If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\boxed{\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1}$$
 .

(In words: The probabilities of the possible outcomes add up to 1.)

▶ For every event $A = \{a_1, a_2, a_3, ...\}$,

$$\mathbb{P}(A) = \mathbb{P}(a_1) + \mathbb{P}(a_2) + \mathbb{P}(a_3) + \cdots$$

(In words: The probability of an event is the sum of the probabilities of the possible outcomes that realize that event.)

- ho $\mathbb{P}(arnothing)=0.$ (The probability that nothing happens is zero. Duh!)
- $ightharpoonup \mathbb{P}(\Omega)=1.$ (With probability 1, something happens. Duh!)

Consistency of probabilities

▶ If the sample space is $\Omega = \{c_1, c_2, c_3, \ldots\}$, then

$$\mathbb{P}(c_1) + \mathbb{P}(c_2) + \mathbb{P}(c_3) + \cdots = 1.$$

(In words: The probabilities of the possible outcomes add up to 1.)

▶ For every event $A = \{a_1, a_2, a_3, ...\}$,

$$|\mathbb{P}(A)| = \mathbb{P}(a_1) + \mathbb{P}(a_2) + \mathbb{P}(a_3) + \cdots$$

(In words: The probability of an event is the sum of the probabilities of the possible outcomes that realize that event.)

- $\mathbb{P}(\varnothing)=0.$ (The probability that nothing happens is zero. Duh!) Terminology: A null event is an event which occurs with probability 0.
- ho $\mathbb{P}(\Omega)=1$. (With probability 1, something happens. Duh!) Terminology: A sure event is an event which occurs with probability 1.

Constructing a probability model for a random experiment involves <u>assigning</u> a probability $\mathbb{P}(A)$ to each event A in such a way that the probabilities of different events are consistent.

Q How should we assign probabilities to events?

Constructing a probability model for a random experiment involves <u>assigning</u> a probability $\mathbb{P}(A)$ to each event A in such a way that the probabilities of different events are consistent.

Q How should we assign probabilities to events?

Q How can we ensure the consistency of the probabilities?

Constructing a probability model for a random experiment involves <u>assigning</u> a probability $\mathbb{P}(A)$ to each event A in such a way that the probabilities of different events are consistent.

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios.

Q How can we ensure the consistency of the probabilities?

Constructing a probability model for a random experiment involves <u>assigning</u> a probability $\mathbb{P}(A)$ to each event A in such a way that the probabilities of different events are consistent.

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:

Q How can we ensure the consistency of the probabilities?

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:
 - \longrightarrow Based on symmetry
- Q How can we ensure the consistency of the probabilities?

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:
 - → Based on symmetry
 - → Probabilities as idealized frequencies
- Q How can we ensure the consistency of the probabilities?

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:
 - → Based on symmetry
 - → Probabilities as idealized frequencies
 - → Based on subjective judgment
- Q How can we ensure the consistency of the probabilities?

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:
 - \longrightarrow Based on symmetry
 - → Probabilities as idealized frequencies
 - → Based on subjective judgment
- Q How can we ensure the consistency of the probabilities?
- A In general, verifying consistency can be rather complicated. However, . . .

- Q How should we assign probabilities to events?
- A Unfortunately, there is no universal recipe that fits all scenarios. Some conceptual approaches:
 - → Based on symmetry
 - → Probabilities as idealized frequencies
 - → Based on subjective judgment
- Q How can we ensure the consistency of the probabilities?
- A In general, verifying consistency can be rather complicated. However, for experiments that are "simple enough", we <u>only</u> need to choose the probabilities of <u>individual outcomes</u> in a consistent way.

Working with a probability model

Working with a probability model

Example (Flipping a biased coin twice)

Working with a probability model

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH}, \mathtt{HT}, \mathtt{TH}, \mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

 $A \coloneqq \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A \coloneqq \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

We earlier saw that

$$P(A) = 0.5050$$

 \mathbb{Q} What is the probability that A does not happen?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$

- \mathbb{Q} What is the probability that \underline{A} does not happen?
- $\boxed{\mathsf{A1}}\ \langle \mathsf{A}\ \mathsf{does}\ \mathsf{not}\ \mathsf{happen}
 angle = \{\mathtt{HT},\mathtt{TH}\}.$ Hence,

$$\mathbb{P}(\text{not } A) = \mathbb{P}(\text{HT}) + \mathbb{P}(\text{TH}) = 0.2475 + 0.2475 = \boxed{0.4950}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$

- \mathbb{Q} What is the probability that \underline{A} does not happen?
- $\fbox{A2}$ The probabilities of possible outcomes must add up to 1. Hence,

$$\mathbb{P}(\text{not } A) = 1 - \mathbb{P}(A) = 1 - 0.5050 = \boxed{0.4950}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following event:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$

- \bigcirc What is the probability that \underline{A} does not happen?
- A2 The probabilities of possible outcomes must add up to 1. Hence,

$$\mathbb{P}(\text{not } A) = 1 - \mathbb{P}(A) = 1 - 0.5050 = \boxed{0.4950}$$

The event $\langle \text{not } A \rangle$ is called the complement of A.

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

$$A \coloneqq \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

$$C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$

 \bigcirc What is the probability that both A and C happen?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{flip} \mathsf{comes} \mathsf{up} \mathsf{heads} \rangle = \{\mathsf{HH}, \mathsf{TH}\}$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$

 \bigcirc What is the probability that both A and C happen?

 $oxed{\mathsf{A}}\ \langle \mathsf{both}\ A\ \mathsf{and}\ C\ \mathsf{happen} \rangle = \{\mathtt{HH}\}.\ \mathsf{Hence},$

$$\mathbb{P}(A \text{ and } C) = \mathbb{P}(\mathtt{HH}) = \boxed{0.3025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{flip} \mathsf{comes} \mathsf{up} \mathsf{heads} \rangle = \{\mathsf{HH}, \mathsf{TH}\}$

We earlier saw that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$

What is the probability that both A and C happen?

 $oxed{\mathsf{A}}\ \langle \mathsf{both}\ A\ \mathsf{and}\ C\ \mathsf{happen} \rangle = \{\mathtt{HH}\}.\ \mathsf{Hence},$

$$\mathbb{P}(A \text{ and } C) = \mathbb{P}(\mathtt{HH}) = \boxed{0.3025}$$

The event $\langle A \text{ and } C \rangle$ is called the intersection of A and C.

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following three events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $B := \langle 1 \text{st flip comes up heads} \rangle = \{ \text{HH}, \text{HT} \}$

 $\mathit{C} \coloneqq \langle \mathsf{2nd} \mathsf{\ flip\ comes\ up\ heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(B) = \mathbb{P}(C) = 0.5500$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH}, \mathtt{HT}, \mathtt{TH}, \mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following three events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $B := \langle 1 \text{st flip comes up heads} \rangle = \{ \text{HH}, \text{HT} \}$

 $\mathit{C} \coloneqq \langle \mathsf{2nd} \mathsf{\ flip\ comes\ up\ heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(B) = \mathbb{P}(C) = 0.5500$

 \bigcirc What is the probability that both B and C happen?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following three events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $B := \langle 1 \text{st flip comes up heads} \rangle = \{ \text{HH}, \text{HT} \}$

 $\mathit{C} \coloneqq \langle \mathsf{2nd} \mathsf{\ flip\ comes\ up\ heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(B) = \mathbb{P}(C) = 0.5500$

 \bigcirc What is the probability that both B and C happen?

 $\boxed{\mathsf{A1}}\ \langle \mathsf{both}\ B\ \mathsf{and}\ C\ \mathsf{happen}
angle = \{\mathtt{HH}\}.\ \mathsf{Hence},$

$$\mathbb{P}(B \text{ and } C) = \mathbb{P}(\mathtt{HH}) = \boxed{0.3025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following three events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $B := \langle 1 \text{st flip comes up heads} \rangle = \{ \text{HH}, \text{HT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(B) = \mathbb{P}(C) = 0.5500$

 \bigcirc What is the probability that both B and C happen?

A2 The occurrence of B does not affect C or vice versa. Hence,

$$\mathbb{P}(B \text{ and } C) = \mathbb{P}(B)\,\mathbb{P}(C) = 0.55 \times 0.55 = \boxed{0.3025}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following three events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $B \coloneqq \langle 1 \text{st flip comes up heads} \rangle = \{ \text{HH}, \text{HT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(B) = \mathbb{P}(C) = 0.5500$

- \bigcirc What is the probability that both B and C happen?
- A2 The occurrence of B does not affect C or vice versa. Hence,

$$\mathbb{P}(B \text{ and } C) = \mathbb{P}(B)\,\mathbb{P}(C) = 0.55 \times 0.55 = \boxed{0.3025}$$

We say that B and C are independent.

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \ \mathsf{flips} \ \mathsf{show} \ \mathsf{same} \ \mathsf{side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{flip} \mathsf{comes} \mathsf{up} \mathsf{heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$ $\mathbb{P}(A \text{ and } C) = 0.3025$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} | \mathsf{flips} | \mathsf{show} | \mathsf{same} | \mathsf{side} \rangle = \{\mathsf{HH}, \mathsf{TT}\}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{flip} \mathsf{comes} \mathsf{up} \mathsf{heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$

We already know that

$$\mathbb{P}(A) = 0.5050 \qquad \mathbb{P}(C) = 0.5500 \qquad \mathbb{P}(A \text{ and } C) = 0.3025$$

 \mathbb{Q} What is the probability that either A or C (or both) happens?

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{flip} \mathsf{comes} \mathsf{up} \mathsf{heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$

We already know that

$$\mathbb{P}(A) = 0.5050 \qquad \mathbb{P}(C) = 0.5500 \qquad \mathbb{P}(A \text{ and } C) = 0.3025$$

 \mathbb{Q} What is the probability that either A or C (or both) happens?

 $\boxed{\texttt{A1}}\ \langle \texttt{either}\ A\ \texttt{or}\ C\ \texttt{happens} \rangle = \{\texttt{HH}, \texttt{TH}, \texttt{TT}\}.\ \mathsf{Hence},$

$$\mathbb{P}(A \text{ or } C) = \mathbb{P}(\mathtt{HH}) + \mathbb{P}(\mathtt{TH}) + \mathbb{P}(\mathtt{TT}) = 0.3025 + 0.2475 + 0.2025 = \boxed{0.7525}$$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

 $A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$

 $C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$ $\mathbb{P}(A \text{ and } C) = 0.3025$

- \mathbb{Q} What is the probability that either A or C (or both) happens?
- $oxed{\mathsf{A1}}$ $\langle \mathsf{either}\ A\ \mathsf{or}\ C\ \mathsf{happens}
 angle = \{\mathtt{HH}, \mathtt{TH}, \mathtt{TT}\}.$ Hence,

$$\mathbb{P}(A \text{ or } C) = \mathbb{P}(HH) + \mathbb{P}(TH) + \mathbb{P}(TT) = 0.3025 + 0.2475 + 0.2025 = \boxed{0.7525}$$

The event $\langle A \text{ or } C \rangle$ is called the union of A and C.

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

$$C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{\mathtt{HH}, \mathtt{TH}\}$$

We already know that

$$\mathbb{P}(A) = 0.5050 \qquad \mathbb{P}(C) = 0.5500 \qquad \mathbb{P}(A \text{ and } C) = 0.3025$$

 \mathbb{Q} What is the probability that either A or C (or both) happens?

$$A2$$
 \langle neither A nor C happens $\rangle = \{HT\}$. Hence,

$$\mathbb{P}(A \text{ or } C) = 1 - \mathbb{P}(\text{neither } A \text{ nor } C) = 1 - \mathbb{P}(\text{HT})$$
 $= 1 - 0.2475 = \boxed{0.7525}$

Example (Flipping a biased coin twice)

$$\Omega \coloneqq \{\mathtt{HH},\mathtt{HT},\mathtt{TH},\mathtt{TT}\}$$

$$\boxed{\mathbb{P}(\mathtt{HH}) = 0.3025 \qquad \mathbb{P}(\mathtt{HT}) = 0.2475 \qquad \mathbb{P}(\mathtt{TH}) = 0.2475 \qquad \mathbb{P}(\mathtt{TT}) = 0.2025}$$

Consider the following two events:

$$A := \langle \mathsf{both} \mathsf{ flips} \mathsf{ show} \mathsf{ same} \mathsf{ side} \rangle = \{ \mathsf{HH}, \mathsf{TT} \}$$

$$C \coloneqq \langle 2\mathsf{nd} \mathsf{ flip} \mathsf{ comes} \mathsf{ up} \mathsf{ heads} \rangle = \{ \mathsf{HH}, \mathsf{TH} \}$$

We already know that

$$\mathbb{P}(A) = 0.5050$$
 $\mathbb{P}(C) = 0.5500$ $\mathbb{P}(A \text{ and } C) = 0.3025$

 \mathbb{Q} What is the probability that either A or C (or both) happens?

A3 Note the double counting:

$$\mathbb{P}(A \text{ or } C) = \mathbb{P}(A) + \mathbb{P}(C) - \mathbb{P}(A \text{ and } C)$$
$$= 0.5050 + 0.5500 - 0.3025 = \boxed{0.7525}$$

Events described in terms of other events

Events described in terms of other events

► The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- ► The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.
- ► The complement of an event A is the event that A does not happen. It is denoted by $\langle \text{not } A \rangle$ or \overline{A} or A^c .

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.
- The complement of an event A is the event that A does not happen. It is denoted by $\langle \text{not } A \rangle$ or \overline{A} or A^c .

General relations

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.
- The complement of an event A is the event that A does not happen. It is denoted by $\langle \text{not } A \rangle$ or \overline{A} or A^c .

General relations

I. For every event A,

$$\Big| \mathbb{P}(\mathsf{not} \ A) = 1 - \mathbb{P}(A) \Big|$$

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.
- The complement of an event A is the event that A does not happen. It is denoted by $\langle \text{not } A \rangle$ or \overline{A} or A^c .

General relations

I. For every event A,

$$\Big| \mathbb{P}(\mathsf{not} \ A) = 1 - \mathbb{P}(A) \Big|$$

II. For every two events A and B, [The inclusion-exclusion principle]

$$oxedsymbol{\mathbb{P}}(A ext{ or } B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A ext{ and } B)$$

Events described in terms of other events

- The intersection of two events A and B is the event that both A and B occur. It is denoted by $\langle A \text{ and } B \rangle$ or $A \cap B$.
- The union of two events A and B is the event that either A or B (or both) happen. It is denoted by $\langle A \text{ or } B \rangle$ or $A \cup B$.
- The complement of an event A is the event that A does not happen. It is denoted by $\langle \text{not } A \rangle$ or \overline{A} or A^c .

General relations

I. For every event A,

$$\mathbb{P}(\mathsf{not}\,A) = 1 - \mathbb{P}(A)$$

II. For every two events A and B, [The inclusion-exclusion principle]

$$\boxed{\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \text{ and } B)} \leq \mathbb{P}(A) + \mathbb{P}(B)$$

Mutually exclusive events

Two events A and B are said to be mutually exclusive (or disjoint) if they cannot occur simultaneously, that is, if $\langle A \text{ and } B \rangle = \varnothing$ (no outcome realizes both A and B).

Independent events

Two events A and B are said to be independent if the occurrence of one does not affect the occurrence of the other.

Mutually exclusive events

Two events A and B are said to be mutually exclusive (or disjoint) if they cannot occur simultaneously, that is, if $\langle A \text{ and } B \rangle = \emptyset$ (no outcome realizes both A and B).

▶ If *A* and *B* are mutually exclusive, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Independent events

Two events *A* and *B* are said to be independent if the occurrence of one does not affect the occurrence of the other.

Mutually exclusive events

Two events A and B are said to be mutually exclusive (or disjoint) if they cannot occur simultaneously, that is, if $\langle A \text{ and } B \rangle = \emptyset$ (no outcome realizes both A and B).

▶ If A and B are mutually exclusive, then

$$\mathbb{P}(A \text{ or } B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Independent events

Two events A and B are said to be independent if the occurrence of one does not affect the occurrence of the other.

▶ If A and B are independent, then

$$\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \, \mathbb{P}(B)$$

