
American University of Beirut STAT 210: Elementary Statistics for Sciences 2022–2023 Fall

Siamak Taati

Chapter 3
Measures of center and variation
Part 3

Measures of center and variation

Measures of spread: variance and standard deviation

The variance and standard deviation measure the "typical" deviation of the data values from the mean.

deviation from the population mean $= x - \mu$ deviation from the sample mean $= x - \overline{x}$

Measures of spread: variance

Sample vs. population variance For a numerical variable x,

population variance of
$$x$$
:
$$\sigma^2 \coloneqq \frac{\sum (x-\mu)^2}{N}$$
 sample variance of x :
$$s^2 \coloneqq \frac{\sum (x-\overline{x})^2}{n-1}$$

where N is the population size and n is the sample size.

Measures of spread: variance

Sample vs. population variance For a numerical variable x,

population variance of
$$x$$
:
$$\sigma^2 \coloneqq \frac{\sum (x-\mu)^2}{N}$$
 sample variance of x :
$$s^2 \coloneqq \frac{\sum (x-\bar{x})^2}{n-1}$$

where N is the population size and n is the sample size.

An alternative way to calculate the variances:

population variance of
$$x$$
:
$$\sigma^2 = \frac{\sum x^2 - (\sum x)^2/N}{N}$$
 sample variance of x :
$$s^2 := \frac{\sum x^2 - (\sum x)^2/n}{n-1}$$

Measures of spread: variance

Sample vs. population variance For a numerical variable x,

population variance of
$$x$$
:
$$\sigma^2 \coloneqq \frac{\sum (x - \mu)^2}{N}$$
 sample variance of x :
$$s^2 \coloneqq \frac{\sum (x - \overline{x})^2}{n - 1}$$

where N is the population size and n is the sample size.

An alternative way to calculate the variances:

population variance of
$$x$$
:
$$\sigma^2 = \frac{\sum x^2 - (\sum x)^2 / N}{N}$$
 sample variance of x :
$$s^2 := \frac{\sum x^2 - (\sum x)^2 / n}{n-1}$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

Q What is the sample variance?

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

We calculated before: | mean = 3.7 |.

value	frequency
1	2
3	2
4	1
5	5

Q) What is the sample variance?

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^2 = \frac{(1-3.7)^2 + (4-3.7)^2 + (5-3.7)^2 + (5-3.7)^2 + (5-3.7)^2}{+(5-3.7)^2 + (1-3.7)^2 + (5-3.7)^2 + (3-3.7)^2 + (3-3.7)^2}{10-1} \approx \boxed{2.6778}$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^2 = \frac{(1-3.7)^2 + (4-3.7)^2 + (5-3.7)^2 + (5-3.7)^2 + (5-3.7)^2}{10-1} \approx \boxed{2.6778}$$

Method 2 (definition + frequency table):

$$s^2 = \frac{2 \times (1 - 3.7)^2 + 2 \times (3 - 3.7)^2 + 1 \times (4 - 3.7)^2 + 5 \times (5 - 3.7)^2}{10 - 1} \approx \boxed{2.6778} \; .$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^{2} = \frac{\frac{(1-3.7)^{2}}{(1-3.7)^{2}} + (4-3.7)^{2} + (5-3.7)^{2} + (5-3.7)^{2} + (5-3.7)^{2} + (5-3.7)^{2} + (5-3.7)^{2} + (5-3.7)^{2} + (3-3.7)^{2} + (3-3.7)^{2}}{10-1} \approx \boxed{2.6778}.$$

 $\underline{\mathsf{Method}\ 2}\ (\mathsf{definition} + \mathsf{frequency\ table})$:

$$s^2 = \frac{2 \times (1 - 3.7)^2 + 2 \times (3 - 3.7)^2 + 1 \times (4 - 3.7)^2 + 5 \times (5 - 3.7)^2}{10 - 1} \approx \boxed{2.6778} \, .$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^2 = \frac{(1-3.7)^2 + (4-3.7)^2 + (5-3.7)^2 + (5-3.7)^2 + (5-3.7)^2}{+(5-3.7)^2 + (1-3.7)^2 + (5-3.7)^2 + \frac{(3-3.7)^2}{(3-3.7)^2} + \frac{(3-3.7)^2}{(3-3.7)^2}}{10-1} \approx \boxed{2.6778}.$$

Method 2 (definition + frequency table):

$$s^2 = \frac{2 \times (1 - 3.7)^2 + \frac{2 \times (3 - 3.7)^2 + 1 \times (4 - 3.7)^2 + 5 \times (5 - 3.7)^2}{10 - 1} \approx \boxed{2.6778}.$$

Example

A list of values and its corresponding frequency table:

1 4 5 5 5 5 1 5 3 3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^2 = \frac{(1-3.7)^2 + \frac{(4-3.7)^2}{(4-3.7)^2 + (5-3.7)^2 + (5-3.7)^2 + (5-3.7)^2}{+(5-3.7)^2 + (1-3.7)^2 + (5-3.7)^2 + (3-3.7)^2 + (3-3.7)^2}{10-1} \approx \boxed{2.6778}$$

Method 2 (definition + frequency table):

$$s^2 = \frac{2 \times (1 - 3.7)^2 + 2 \times (3 - 3.7)^2 + \frac{1 \times (4 - 3.7)^2}{10 - 1} + 5 \times (5 - 3.7)^2}{10 - 1} \approx \boxed{2.6778}.$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

Method 1 (definition):

$$s^{2} = \frac{(1 - 3.7)^{2} + (4 - 3.7)^{2} + (5 - 3.7)^{2} + (5 - 3.7)^{2} + (5 - 3.7)^{2}}{10 - 1} \approx \boxed{2.6778}$$

 $\underline{\mathsf{Method}\ 2}\ (\mathsf{definition}\ +\ \mathsf{frequency}\ \mathsf{table})$:

$$s^2 = \frac{2 \times (1 - 3.7)^2 + 2 \times (3 - 3.7)^2 + 1 \times (4 - 3.7)^2 + \frac{5 \times (5 - 3.7)^2}{10 - 1} \approx \boxed{2.6778} \,.$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

We calculated before: mean = 3.7.

value	frequency
1	2
3	2
4	1
5	5

Q What is the sample variance?

Example

A list of values and its corresponding frequency table:

1 4 5 5 5 5 1 5 3 3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 1 + 4 + 5 + 5 + 5 + 5 + 1 + 5 + 3 + 3 = 37$$

$$(\sum x)^2 = \sum x^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} = \frac{\sum x}{n} = \frac{\sum x}{n} = \frac{n}{n}$$

Example

A list of values and its corresponding frequency table:

1 4 5 5 5 5 1 5 3 3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 1 + 4 + 5 + 5 + 5 + 5 + 1 + 5 + 3 + 3 = 37$$
$$(\sum x)^2 = 37^2 = 1369$$
$$\sum x^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} = \frac{\sum x}{n -$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 1 + 4 + 5 + 5 + 5 + 5 + 1 + 5 + 3 + 3 = 37$$

$$(\sum x)^2 = 37^2 = 1369$$

$$\sum x^2 = 1^2 + 4^2 + 5^2 + 5^2 + 5^2 + 5^2 + 1^2 + 5^2 + 3^2 + 3^2 = 161$$

$$s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} =$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3	

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 1 + 4 + 5 + 5 + 5 + 5 + 1 + 5 + 3 + 3 = 37$$

$$(\sum x)^2 = 37^2 = 1369$$

$$\sum x^2 = 1^2 + 4^2 + 5^2 + 5^2 + 5^2 + 5^2 + 1^2 + 5^2 + 3^2 + 3^2 = 161$$

$$s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} = \frac{161 - 1369 / 10}{9} \approx \boxed{2.6778}.$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

We calculated before: mean = 3.7.

value	frequency
1	2
3	2
4	1
5	5

Q What is the sample variance?

$$\sum x = (\sum x)^2 = \sum x^2 =$$

$$\sum x^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} =$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 2 \times 1 + 2 \times 3 + 1 \times 4 + 5 \times 5 = 37$$
$$(\sum x)^{2} = \sum x^{2} = s^{2} = \frac{\sum x^{2} - (\sum x)^{2} / n}{n - 1} = s^{2}$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

We calculated before: $\boxed{\text{mean} = 3.7}$.

value	frequency
1	2
3	2
4	1
5	5

(Q) What is the sample variance?

$$\sum x = 2 \times 1 + 2 \times 3 + 1 \times 4 + 5 \times 5 = 37$$
$$(\sum x)^2 = 37^2 = 1369$$
$$\sum x^2 = s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} = s^2$$

Example

A list of values and its corresponding frequency table:

1	4	5	5	5	5	1	5	3	3

value	frequency
1	2
3	2
4	1
5	5

We calculated before: mean = 3.7.

Q What is the sample variance?

$$\sum x = 2 \times 1 + 2 \times 3 + 1 \times 4 + 5 \times 5 = 37$$
$$(\sum x)^2 = 37^2 = 1369$$
$$\sum x^2 = 2 \times 1^2 + 2 \times 3^2 + 1 \times 4^2 + 5 \times 5^2 = 161$$
$$s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} =$$

Example

A list of values and its corresponding frequency table:

val										
	3	3	5	1	5	5	5	5	4	1
		3.7	n = 3	near	e: r	efore	ed b	ulate	calc	We

 value
 frequency

 1
 2

 3
 2

 4
 1

 5
 5

Q What is the sample variance?

$$\sum x = 2 \times 1 + 2 \times 3 + 1 \times 4 + 5 \times 5 = 37$$

$$(\sum x)^2 = 37^2 = 1369$$

$$\sum x^2 = 2 \times 1^2 + 2 \times 3^2 + 1 \times 4^2 + 5 \times 5^2 = 161$$

$$s^2 = \frac{\sum x^2 - (\sum x)^2 / n}{n - 1} = \frac{161 - 1369 / 10}{9} \approx \boxed{2.6778}.$$

Scenario

A group of marine biologists are studying two species of fish. The population mean and standard deviation of the length of the fish in the two species are:

Species 1	Species 2
$\mu_1=5\mathrm{cm}$	$\mu_2=20\mathrm{cm}$
$\sigma_1=0.7\mathrm{cm}$	$\sigma_2=2\mathrm{cm}$

Scenario

A group of marine biologists are studying two species of fish. The population mean and standard deviation of the length of the fish in the two species are:

Species 1	Species 2
$\mu_1=5\mathrm{cm}$	$\mu_2=20\mathrm{cm}$
$\sigma_1=0.7\mathrm{cm}$	$\sigma_2=2{ m cm}$

Q The length of which species of fish has more variations?

Scenario

A group of marine biologists are studying two species of fish. The population mean and standard deviation of the length of the fish in the two species are:

Species 1	Species 2
$\mu_1=5\mathrm{cm}$	$\mu_2=20\mathrm{cm}$
$\sigma_1=0.7\mathrm{cm}$	$\sigma_2=2{ m cm}$

- Q The length of which species of fish has more variations?
- \longrightarrow The absolute standard deviation of the length is larger for the 2nd species,

Scenario

A group of marine biologists are studying two species of fish. The population mean and standard deviation of the length of the fish in the two species are:

Species 1	Species 2
$\mu_1=5\mathrm{cm}$	$\mu_2=20\mathrm{cm}$
$\sigma_1=0.7\mathrm{cm}$	$\sigma_2=2{ m cm}$

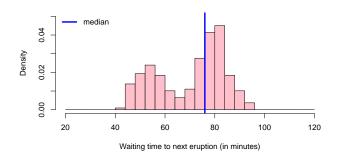
- Q The length of which species of fish has more variations?
- → The absolute standard deviation of the length is larger for the 2nd species, but relative to the mean length, there is more variation within the 1st species:

$$\frac{\sigma_1}{\mu_1} = \frac{0.7}{5} = \boxed{14\%}$$
 $\frac{\sigma_2}{\mu_2} = \frac{2}{20} = \boxed{10\%}$

The coefficient of variation of a variable x is the ratio of its standard deviation over its mean:

population
$$\mathsf{CV} \coloneqq \frac{\sigma}{\mu}$$
 sample $\mathsf{CV} \coloneqq \frac{s}{\bar{x}}$

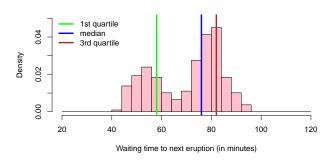
and is often written in percentage format.


The coefficient of variation of a variable x is the ratio of its standard deviation over its mean:

population
$$CV := \frac{\sigma}{\mu}$$
 sample $CV := \frac{s}{\bar{x}}$

and is often written in percentage format.

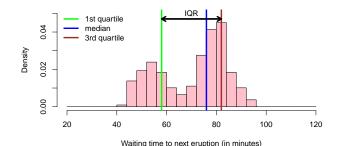
population CV for species 1=14% population CV for species 2=10%


Recall that median of a list of data values divides the values into two halves: those <u>larger than</u> the median and those <u>smaller than</u> the median.

Old Faithful geyser

Recall that median of a list of data values divides the values into two halves: those <u>larger than</u> the median and those <u>smaller than</u> the median.

The quartiles further divide the data values into quarters.


Old Faithful geyser

Recall that median of a list of data values divides the values into two halves: those <u>larger than</u> the median and those <u>smaller than</u> the median.

The quartiles further divide the data values into quarters.

The difference between the 1st and the 3rd quartiles is a measure of <u>variation</u>. It is called the <u>inter-quartile range</u> (IQR).

Old Faithful geyser

The quartiles partition the data values into three equal parts.

- ▶ The 2nd quartile (denoted by Q_2) is the same as the median.
- ▶ The 1st quartile (denoted by Q_1) is the median of the data values that are smaller than the median.
- The 3rd quartile (denoted by Q_3) is the median of the data values that are larger than the median.

The inter-quartile range is the difference between the 1st and the 3rd quartiles:

$$IQR := Q_3 - Q_1$$
.

It is a measure of spread.

Back to the birds data set . . .

Weight of females

```
98.8
      92.5
            87.3
                   103.5
                         98.3
                               99.1
                                    96.9
                                          103.0
                                                96.5
                                                     93.4
102.9
      101.1
            100.9
                   95.6
                         96.1
                               99.3
                                    93.3
                                          95.4
                                                88.5
                                                     97.6
92.2
      98.0
```

Back to the birds data set . . .

```
87.3
       88.5
             92.2
                  92.5 93.3
                              93.4
                                    95.4
                                          95.6
                                                 96.1
                                                       96.5
96.9 97.6
             98.0
                  98.3 98.8
                              99.1
                                    99.3
                                         100.9
                                                101.1
                                                       102.9
103.0
      103.5
```

Back to the birds data set . . .

```
87.3
       88.5
             92.2
                  92.5 93.3
                              93.4
                                    95.4
                                          95.6
                                                 96.1
                                                       96.5
96.9 97.6
             98.0
                  98.3 98.8
                              99.1
                                    99.3
                                         100.9
                                                101.1
                                                       102.9
103.0
      103.5
```

Back to the birds data set . . .

```
87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5 Q_2 = \text{median} = \frac{96.9 + 97.6}{2} = \boxed{97.25} \text{ grams}
```

Back to the birds data set . . .

87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
$$Q_2 = \text{median} = \frac{96.9 + 97.6}{2} = \boxed{97.25} \text{ grams}$$

$$Q_1 = \boxed{93.4} \text{ grams}$$

Back to the birds data set . . .

87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
$$Q_2 = \text{median} = \frac{96.9 + 97.6}{2} = \boxed{97.25} \text{ grams}$$

$$Q_1 = \boxed{93.4} \text{ grams}$$

$$Q_3 = \boxed{99.3} \text{ grams}$$

Back to the birds data set . . .

87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
$$Q_2 = \text{median} = \frac{96.9 + 97.6}{2} = \boxed{97.25} \text{ grams}$$

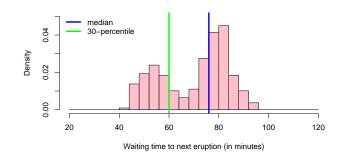
$$Q_1 = \boxed{93.4} \text{ grams}$$

$$Q_3 = \boxed{99.3} \text{ grams}$$

$$IQR = Q_3 - Q_1 = 99.3 - 93.4 = \boxed{5.9} \text{ grams}$$

Back to the birds data set . . .

Weight of females (sorted)


87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
$$Q_2 = \text{median} = \frac{96.9 + 97.6}{2} = \boxed{97.25} \text{ grams}$$

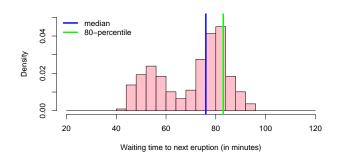
$$Q_1 = \boxed{93.4} \text{ grams}$$

$$Q_3 = \boxed{99.3} \text{ grams}$$

$$IQR = Q_3 - Q_1 = 99.3 - 93.4 = \boxed{5.9} \text{ grams}$$

Exercise: Compare the IQR for the sampled male and female birds.

The percentiles are similar to quartiles, but with other ratios.


The 30-percentile divides the data values into the lower 30% and the upper 70%.

Old Faithful geyser

The percentiles are similar to quartiles, but with other ratios.

The 30-percentile divides the data values into the lower 30% and the upper 70%.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

Sort all the data values.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

- Sort all the data values.
- ▶ Let k be $\frac{30}{100} \times n$ rounded up to the next whole number.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

- Sort all the data values.
- ▶ Let k be $\frac{30}{100} \times n$ rounded up to the next whole number.
- ▶ The 30-percentile is the *k*-th element in the sorted list.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

- Sort all the data values.
- ▶ Let k be $\frac{30}{100} \times n$ rounded up to the next whole number.
- ▶ The 30-percentile is the *k*-th element in the sorted list.

Remarks

- ▶ 25-percentile $\approx Q_1$.
- ▶ 50-percentile $\approx Q_2 = \text{median}$.
- ▶ 75-percentile $\approx Q_3$.

The 30-percentile of a list of data values is a value q with the following property:

▶ 30-percent of the data values are smaller than (or equal to) q 70-percent of them are larger (or equal to) than q.

The 30-percentile of a list of n data values can be calculated as follows:

- Sort all the data values.
- ▶ Let k be $\frac{30}{100} \times n$ rounded up to the next whole number.
- ▶ The 30-percentile is the *k*-th element in the sorted list.

Remarks

- ▶ 25-percentile $\approx Q_1$.
- ▶ 50-percentile $\approx Q_2 = \text{median}$.
- ▶ 75-percentile $\approx Q_3$.
- ▶ In our convention, the values might be somewhat different!

Back to the birds data set . . .

Weight of females

```
98.8
      92.5
             87.3
                   103.5 98.3
                               99.1
                                    96.9
                                          103.0
                                                96.5
                                                     93.4
102.9
      101.1
            100.9
                   95.6
                         96.1
                               99.3
                                    93.3
                                          95.4
                                                88.5
                                                     97.6
92.2
      98.0
```

Q What is the 30-percentile of the data values?

Back to the birds data set . . .

Weight of females (sorted)

```
87.3
      88.5
           92.2
                  92.5 93.3
                             93.4
                                  95.4
                                        95.6
                                               96.1
                                                     96.5
96.9 97.6
           98.0
                  98.3 98.8
                             99.1
                                  99.3
                                        100.9
                                              101.1
                                                     102.9
103.0
      103.5
```

What is the 30-percentile of the data values?

 \longrightarrow Sort the values!

Back to the birds data set . . .

```
87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
```

- What is the 30-percentile of the data values?
 - \longrightarrow Sort the values!
 - $\longrightarrow \frac{30}{100} \times 22 = 6.6$, which is rounded up to 7.

Back to the birds data set . . .

```
87.3 88.5 92.2 92.5 93.3 93.4 <mark>95.4</mark> 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
```

- What is the 30-percentile of the data values?
 - \longrightarrow Sort the values!
 - $\longrightarrow \frac{30}{100} \times 22 = 6.6$, which is rounded up to 7.
 - \rightarrow 30-percentile = 95.4 grams.

Back to the birds data set . . .

```
88.5
           92.2
                                  95.4 95.6
                                               96.1
87.3
                  92.5 93.3 93.4
                                                     96.5
96.9 97.6
           98.0
                  98.3 98.8
                             99.1
                                  99.3
                                        100.9
                                              101.1
                                                     102.9
103.0
      103.5
```

- What is the 30-percentile of the data values?
 - \longrightarrow Sort the values!
 - $\longrightarrow \frac{30}{100} \times 22 = 6.6$, which is rounded up to 7.
 - \rightarrow 30-percentile = 95.4 grams.
- Q What is the percentile rank of 98.3?

Back to the birds data set . . .

```
88.5
           92.2
                                  95.4 95.6
                                              96.1
87.3
                  92.5 93.3 93.4
                                                     96.5
96.9 97.6
           98.0
                  98.3 98.8
                            99.1
                                  99.3
                                       100.9
                                              101.1
                                                     102.9
103.0
      103.5
```

- What is the 30-percentile of the data values?
 - \longrightarrow Sort the values!
 - $\longrightarrow \frac{30}{100} \times 22 = 6.6$, which is rounded up to 7.
 - \rightarrow 30-percentile = 95.4 grams.
- Q What is the percentile rank of 98.3?
 - \longrightarrow There are 13 values smaller than 98.3.

Back to the birds data set . . .

```
87.3 88.5 92.2 92.5 93.3 93.4 95.4 95.6 96.1 96.5 96.9 97.6 98.0 98.3 98.8 99.1 99.3 100.9 101.1 102.9 103.0 103.5
```

- \mathbb{Q} What is the 30-percentile of the data values?
 - \longrightarrow Sort the values!
 - $\longrightarrow \frac{30}{100} \times 22 = 6.6$, which is rounded up to 7.
 - \rightarrow 30-percentile = 95.4 grams.
- Q What is the percentile rank of 98.3?
 - \longrightarrow There are 13 values smaller than 98.3.
 - \longrightarrow percentile rank of $98.3 = \frac{13}{22} \approx \boxed{59.1\%}$.

The percentile rank of a value q in a list of n data values is the percentage of the values in the list that are smaller than q:

```
(percentile rank of q) := (percentage of data values < q)
```

The percentile rank of a value q in a list of n data values is the percentage of the values in the list that are smaller than q:

```
(percentile rank of q) := (percentage of data values < q)
```

In other words, the percentage rank of q is simply the cumulative percentage at q.

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

 \bigcirc What is the percentile rank of -4?

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \ \tfrac{2}{10} = \boxed{20\%}.$$

 \bigcirc What is the percentile rank of -4?

$$\longrightarrow \frac{1}{10} = \boxed{10\%}.$$

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

 \bigcirc What is the percentile rank of -4?

$$\longrightarrow \frac{1}{10} = \boxed{10\%}$$
.

Q What is the 20-percentile?

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

 \bigcirc What is the percentile rank of -4?

$$\longrightarrow \frac{1}{10} = \boxed{10\%}$$
.

Q What is the 20-percentile?

 $\longrightarrow \frac{20}{100} \times 10 = 2$, which does not require rounding.

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

 \bigcirc What is the percentile rank of -4?

$$\longrightarrow \frac{1}{10} = \boxed{10\%}$$
.

Q What is the 20-percentile?

 $\longrightarrow \frac{20}{100} \times 10 = 2$, which does not require rounding.

 \longrightarrow Hence, the 20-percentile is |-4|.

Remark (slight inconsistency)

Consider the following (sorted) list of 10 data values:

$$-5$$
 -4 -3 -1 -1 0 0 1 2 4

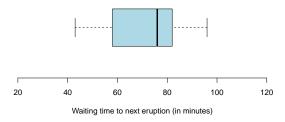
 \bigcirc What is the percentile rank of -3?

$$\longrightarrow \frac{2}{10} = 20\%$$
.

 \bigcirc What is the percentile rank of -4?

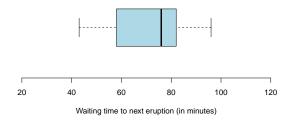
$$\longrightarrow \frac{1}{10} = \boxed{10\%}$$
.

Q What is the 20-percentile?

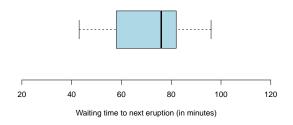

 $\longrightarrow \frac{20}{100} \times 10 = 2$, which does not require rounding.

 \longrightarrow Hence, the 20-percentile is $\left| -4 \right|$.

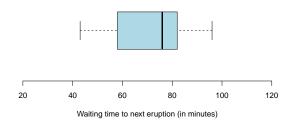
This inconsistency is partly due to our (simplifying) convention, and partly inevitable.

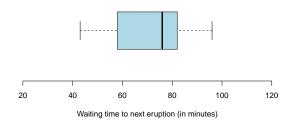

Summarizing and visualizing data: box plots

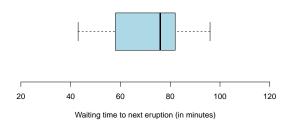
Old Faithful geyser

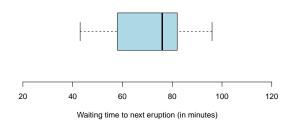


Summarizing and visualizing data: box plots

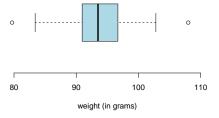

Old Faithful geyser


Q What does the thick vertical line stand for?

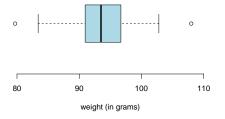

- What does the thick vertical line stand for?
 - \longrightarrow Median


- Q What does the thick vertical line stand for?
 - --> Median
- Q What does the box stand for?

- Q What does the thick vertical line stand for?
 - --> Median
- What does the box stand for?
 - → The 1st and the 3rd quartiles

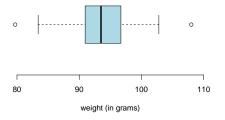


- Q What does the thick vertical line stand for?
 - --> Median
- Q What does the box stand for?
 - \longrightarrow The 1st and the 3rd quartiles
- Q What do the whiskers stand for?



- Q What does the thick vertical line stand for?
 - → Median
- Q What does the box stand for?
 - \longrightarrow The 1st and the 3rd quartiles
- Q What do the whiskers stand for?
 - → The minimum and the maximum

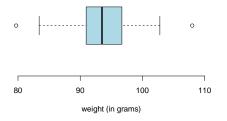
Sampled male birds



Sampled male birds

What do the small circles stand for?

Sampled male birds

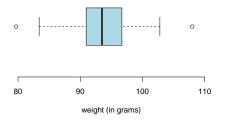


Q What do the small circles stand for?

→ The outliers

[Mild outliers; Tukey's convention]

Sampled male birds

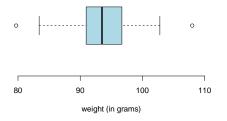


- Q What do the small circles stand for?
 - \longrightarrow The outliers

[Mild outliers; Tukey's convention]

Q What do the whiskers stand for?

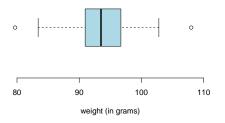
Sampled male birds



- Q What do the small circles stand for?
 - \longrightarrow The outliers

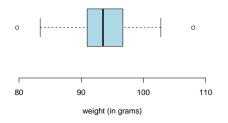
[Mild outliers; Tukey's convention]

- What do the whiskers stand for?
 - \longrightarrow The minimum and the maximum excluding the outliers


Sampled male birds

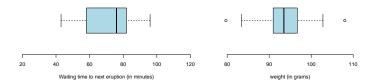
Identifying outliers (Tukey's convension)

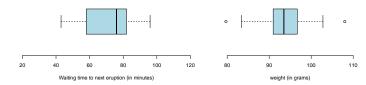
Outliers are those observations that are farther than 1.5 IQR from the box.


Sampled male birds

Identifying outliers (Tukey's convension)

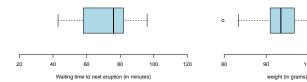
- Outliers are those observations that are farther than 1.5 IQR from the box.
- ► The observations that are farther than 3 IQR from the box are considered extreme outliers.


Sampled male birds



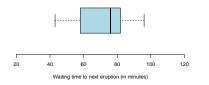
Identifying outliers (Tukey's convension)

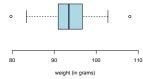
- Outliers are those observations that are farther than 1.5 IQR from the box.
- ► The observations that are farther than 3 IQR from the box are considered extreme outliers.
- The non-extreme outliers are considered mild outliers.



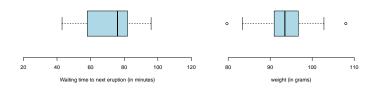
The box plot, visually summarizes:

► The center (median)

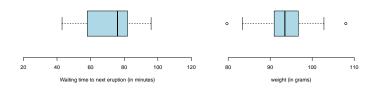



The box plot, visually summarizes:

- ▶ The center (median)
- The spread (IQR)


100

110



- The center (median)
- ▶ The spread (IQR)
- The skew

- The center (median)
- The spread (IQR)
- The skew
 - $\circ~Q_3-Q_2$ vs. Q_2-Q_1
 - o Distances of the left and right whiskers from the box

- The center (median)
- ▶ The spread (IQR)
- ▶ The skew
 - $\circ \ Q_3 Q_2 \ \text{vs.} \ Q_2 Q_1$
 - o Distances of the left and right whiskers from the box
- ▶ The outliers