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One-factor analysis of variance

Analysis of variance (ANOVA for short) is an approach to testing
the influence of factors (i.e., categorical variables) on a numerical
variable.

For instance, we may want to test:
» Whether the BMI (body mass index) of adults is associated
with their ethnicity.
» Whether there is a difference in income among three different
professions.
> ...
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» Whether the BMI (body mass index) of adults is associated
with their ethnicity.
» Whether there is a difference in income among three different
professions.
> ...

Here, we only consider the influence of a single factor. The
method can be extended to multiple factors.
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which instead of testing the dependence of two categorical
variables on each other, we test the dependence of a
numerical variable on one (or more) categorical variables.




One-factor analysis of variance

Analysis of variance (ANOVA for short) is an approach to testing
the influence of factors (i.e., categorical variables) on a numerical
variable.

We can view analysis of variance as

e an analogue of the “chi-squared test of independence” in
which instead of testing the dependence of two categorical
variables on each other, we test the dependence of a
numerical variable on one (or more) categorical variables.

Alternatively, we can view analysis of variance as
e an extension of the “t-test for comparing the means of two
populations based on independent samples”, where we wish to
compare the means of more than two populations.




One-factor analysis of variance

The strategy will be as usual:
We use a statistic F and compare
1. The observed value of F,
2. The distribution of F as suggested by .
We ask ourselves:

@ Is the observed value of F too extreme for to be plausible?

The statistics we will use turns out to have the so-called
F-distribution under the null hypothesis.
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The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density

0 1

A continuous RV with an F-distribution is called an F-RV.

The F-distribution is unimodal and right-skewed. An F-RV can
only take non-negative values.

The possible values of an F-RV are all non-negative
numbers 0 < f < +o0.
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The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi =5,df =8
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Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— di=1dr=1

0 1 f
Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi =2,dfr =3

0 1 f
Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi=3,df2=5

~_

0 1
Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi =5,df =8

0 1 f
Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi =8,df» =20

0 1 f
Remark 1
The mean of an F-RV is ;2. [less than 1]
The mode of an F-RV is dfész X dfjfiz [less than the mean]

The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
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Remark 1
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The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.
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probapiNty density
— df; = 50,df> = 50
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The larger df; and dfy, the less skewed the F-distribution, and the
more shifted towards right.
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probability density
— dfi =5,df =8

0 1

Remark 2 (for those curious)
The F-distribution is inter-connected with the chi-squared distribution.

If X7 and X, are independent chi-squared RVs with 5 and 8 degrees of
freedom respectively, then

X1/5
X5/8
has the F-distribution with parameters df; = 5 and df; = 8.




The F-distribution

The F-distribution with parameters df; and dfy (# of degrees of
freedom for the numerator and denominator):

probability density
— dfi =5,df =8

0 1

Remark 2 (for those curious)
The F-distribution is inter-connected with the chi-squared distribution.

If X1 and X, are independent chi-squared RVs with df; and df; degrees of
freedom respectively, then
X1/dfy

Xa/dfy
has the F-distribution with parameters df; and dfs.




One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Nutrition researchers have conducted an experiment on a sample
of 29 rats. Each of the 29 subjects is randomly assigned one of
four possible diets A, B, C, D. The following table contains the

liver weight expressed as percentage of body weight.

diet A 3.42
diet B 3.17
diet C 3.34
diet D 3.64

3.96
3.63
3.72
3.93

3.87
3.38
3.81
3.77

4.19
3.47
3.66
4.18

3.58
3.39
3.55
4.21

3.76 3.84
3.41 355 344
3.51

388 396 391

The researchers would like to know whether the diet influences the

liver weight.



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Nutrition researchers have conducted an experiment on a sample
of 29 rats. Each of the 29 subjects is randomly assigned one of
four possible diets A, B, C, D. The following table contains the
liver weight expressed as percentage of body weight.

diet A 342 396 387 4.19 358 376 3.84

diet B 3.17 3.63 338 347 339 341 355 344
diet C 334 372 381 366 355 351

diet D 3.64 393 377 418 421 388 396 3091

The researchers would like to know whether the diet influences the
liver weight.

Remark

Since this is a randomized experiment, we can potentially conclude
causality from it. In this context, the categories are often called
treatments.
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@ What are the competing hypotheses?
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distributed, each with the same (unknown) standard deviation o.



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

The researchers would like to know whether the diet influences the

liver weight.

@ What are the competing hypotheses?

Liver weight is not influenced by diet. [i.e., is independent of]
@ Liver weight is influenced by diet. [i.e., is not independent of]

We will assume that the population in each category is normally
distributed, each with the same (unknown) standard deviation o.

With these assumptions, the competing hypotheses can be
rephrased as follows:

KA = pB = HC = HUD-

@ Not all population means are the same.

(pa is the population mean liver weight within category A, etc.)
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One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ What is a suitable test statistic?

@ Where should we look to find evidence against the null
hypothesis?
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Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]
liver weight of sampled rats according to diet
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One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]
liver weight of sampled rats according to diet

4.5

weight

3.0

diet
If the variations between categories are “large” compared to the
variations within categories, then we have evidence in favor of the
influence of diet on liver weight.



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]
liver weight of sampled rats according to diet
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If the variations between categories are “large” compared to the
variations within categories, then we have evidence in favor of the
influence of diet on liver weight.

@ How can we quantify such a comparison?
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Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]
liver weight of sampled rats according to diet
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Two “variance-like" quantities to be introduced soon:

e MSB (mean square between samples)
measures the variations between categories.

e MSW (mean square within samples)
measures the variations within categories.



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]
liver weight of sampled rats according to diet
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If MSB is “large” compared to MSW, then that counts as evidence
against the null hypothesis.

[i.e., in favor of the influence of the diet on liver weight]
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Example (Effect of diet on liver weight)
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@ What is a suitable test statistic?
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Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ What is a suitable test statistic?

The statistic
_ MSB
T MSW
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variations within categories.
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One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ What is a suitable test statistic?

The statistic
_ MSB
T MSW
measures the variations between categories relative to the
variations within categories.

@ What is the distribution of F according to

It turns out that F has the F-distribution with
dfi =4 — 1 (number of categories minus 1) and
dfy = 29 — 4 (total sample size minus number of categories).



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ What is the observed value of F?



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ What is the observed value of F?

We should first introduce MSB and MSW and learn how to
calculate them.



Partition of sum of squares

Consider a sample of size n from a population with k distinct
categories.

In our example, n = 29 and k = 4.

diet A 342 396 387 419 358 376 3.84

diet B 3.17 3.63 338 347 339 341 355 344
diet C 334 372 381 366 355 351

diet D 364 393 377 418 421 383 396 3091
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Partition of sum of squares

Consider a sample of size n from a population with k distinct
categories.

> Let X;; be the jth sampled entity within category i.
» Let X; be the mean of the sampled entities within category i.
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Consider a sample of size n from a population with k distinct
categories.

> Let X;; be the jth sampled entity within category i.

» Let X; be the mean of the sampled entities within category i.

» Let n; be the number of sampled entities within category i.

In our example, n = 29 and k = 4.

diet A 3.42 396 387 419 358 376 3.84

diet B 3.17 3.63 338 347 339 341 355 344
diet C 334 372 381 366 355 351
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> X3 = 3.38 and X3, = 3.64.
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» n; =7 and ny =8.



Partition of sum of squares

Consider a sample of size n from a population with k distinct
categories.

> Let X;; be the jth sampled entity within category i.

» Let X; be the mean of the sampled entities within category i.

» Let n; be the number of sampled entities within category i.

In our example, n = 29 and k = 4.

diet A 342 396 387 419 358 376 3.84

diet B 3.17 3.63 338 347 339 341 355 344
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Consider a sample of size n from a population with k distinct
categories.

In this setting, the sample variance is
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Partition of sum of squares

Consider a sample of size n from a population with k distinct
categories.

In this setting, the sample variance is
2 1 72
=D Xy-X)7.
Lo
A straightforward algebraic manipulation shows that

ZZXU -X)? ZZ i)2+;ni(Xl—

SST SSW SSB

e SST: total sum of squares
e SSW:sum of squares within samples

e SSB: sum of squares between samples



Partition of sum of squares

Consider a sample of size n from a population with k distinct
categories.

In this setting, the sample variance is
2 1 72
=D Xy-X)7.
Lo
A straightforward algebraic manipulation shows that

ZZXIJ X ZZ ij — i)2+zni()?l_7

SST SSW SSB

This is a variant of the so-called law of total variance.



Mean squares between and within samples

Consider a sample of size n from a population with k distinct
categories.

]

DD X=X =D G —X) 4D X —X)?
i i

SST SSW SSB



Mean squares between and within samples

Consider a sample of size n from a population with k distinct
categories.

]

DY X=X =D (X —X)P+ ) X —X)* .
i l.

SST SSW SSB

The mean squares between and within samples are

SSB MSW = SSW

MSB :=1— n—k




Computing the sums of squares

The sums of squares between and within sample can alternatively
be calculated as follows:

SSB — ;;(]ZXI.J)Z _ i(;}Zle)z
SSW = Zgj:x%, - Z;(szi,,-)z

i

The above formulas are somewhat more efficient than the original
definitions. [i.e., they take less computation]
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In our example,
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i total S x
1 diet A 3.42 3.96 3.87 4.19 3.58 3.76 3.84 26.62 101.6106
2 diet B 3.17 3.63 3.38 3.47 3.39 3.41 3.55 3.44 27.44 94.2474
3 dietC 334 372 381 366 355 351 21.59 77.8283
4 diet D 3.64 3.93 3.77 4.18 4.21 3.88 3.96 3.91 31.48 124.1280
total 107.13 397.8143
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2 diet B 3.17 3.63 3.38 3.47 3.39 3.41 3.55 3.44 27.44 94.2474
3 dietC 334 372 381 366 355 351 21.59 77.8283
4 diet D 3.64 3.93 3.77 4.18 4.21 3.88 3.96 3.91 31.48 124.1280
total 107.13 397.8143
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Computing the sums of squares

In our example,
2

i total S x
1 diet A 3.42 3.96 3.87 4.19 3.58 3.76 3.84 26.62 101.6106
2 diet B 3.17 3.63 3.38 3.47 3.39 3.41 3.55 3.44 27.44 94.2474
3 dietC 334 372 381 366 355 351 21.59 77.8283
4 diet D 3.64 3.93 3.77 4.18 4.21 3.88 3.96 3.91 31.48 124.1280
total 107.13 397.8143
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Computing the sums of squares

In our example,

2

i total S x

T | dietA 342 396 387 419 358 3.76 3.84 26.62 | 101.6106

2 | dietB 317 363 338 347 339 341 355 344 27.44 94.2474

3 | dietC 334 372 38 366 355 3.51 21.59 77.8283

4 | dietD 364 393 377 418 421 388 396 391 31.48 | 124.1280
total 107.13 | 397.8143

i

s -3 1(5x) -1 (X x)

1 1 1 1 1
= |2 x26.622 + = x 27.44% + = x 21.59% + = x 31.48%| — | — x 107.13%
{7 X + 3 X + 6 X 9% + 8 2
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1 2 1 2 1 2 1 2
= 397.8143 — | = x 26.62° + & x 27.44% + = x 21.59% + = x 31.48



Computing the sums of squares

In our example,

i total X2
1 diet A 3.42 3.96 3.87 4.19 3.58 3.76 3.84 26.62 101.6106
2 diet B 3.17 3.63 3.38 3.47 3.39 3.41 3.55 3.44 27.44 94.2474
3 dietC 334 372 381 366 355 351 21.59 77.8283
4 diet D 3.64 3.93 3.77 4.18 4.21 3.88 3.96 3.91 31.48 124.1280
total 107.13 397.8143
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Computing the sums of squares

In our example,

i total X2
1 diet A 3.42 3.96 3.87 4.19 3.58 3.76 3.84 26.62 101.6106
2 diet B 3.17 3.63 3.38 3.47 3.39 3.41 3.55 3.44 27.44 94.2474
3 dietC 334 372 381 366 355 351 21.59 77.8283
4 diet D 3.64 3.93 3.77 4.18 4.21 3.88 3.96 3.91 31.48 124.1280
total 107.13 397.8143

1 2 1 2
ss0 31 (L) - H(E )
= [; X 26.62% + % x 27.44% + é x 21.59% + % X 31.482] — {% X 107.132}
ssw=3"3"x% - 30 1 (Sox)
i it

1 2 1 2 1 2 1 2
= 397.8143 — | = x 26.62° + & x 27.44% + = x 21.59% + = x 31.48



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. (H1) Liver weight is influenced by diet.

@ What is the observed value of F?



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. (H1) Liver weight is influenced by diet.

@ What is the observed value of F?
The mean squares between and within samples are

SSB 1.160077
1= 4-1 ~ 0.3866924

SSW  0.9012262
n—-k  29-4

MSB =

MSW = ~ 0.03604905

Therefore, the observed value of F is

MSB  0.3866924
f= MSW "~ 0.03604905 10.72684 .




One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ At significance level 1%, how should the researchers conclude?



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ At significance level 1%, how should the researchers conclude?

We have

p-value = P(F > 10.72684 | (Ho)) ~

using the app for the F-distribution with df; =4 — 1 and
dfy =29 — 4.
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[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ At significance level 1%, how should the researchers conclude?

We have
p-value = P(F > 10.72684 | (Ho)) ~

using the app for the F-distribution with df; =4 — 1 and
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One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ At significance level 1%, how should the researchers conclude?

We have
p-value = P(F > 10.72684 | (Ho)) ~

using the app for the F-distribution with df; =4 — 1 and
dfs = 29 — 4.

Since p-value < «, the researchers must reject the null
hypothesis.



One-factor analysis of variance

Example (Effect of diet on liver weight)
[This example is taken from S.C. Campbell, Statistics for Biologists, Cambridge, 1989]

Liver weight is not influenced by diet. @ Liver weight is influenced by diet.

@ At significance level 1%, how should the researchers conclude?
We have
p-value = P(F > 10.72684 | (Ho)) ~|0.0001

using the app for the F-distribution with df; =4 — 1 and

dfs =29 — 4.

Since p-value < «, the researchers must reject the null
hypothesis.

Conclusion: The evidence is statistically significant

(p-value ~ 0.01%) in favor of the claim that the liver weight
of the rats is influenced by their diets.



One-factor analysis of variance (formulation 1)

Suppose C is a categorical variable with k possible values,
and X is a numerical variable.
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Suppose C is a categorical variable with k possible values,
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Competing hypotheses (v1)

X is independent on C. [X is not influenced by C]
X is dependent on C. [X is influenced by C]
Evidence

The values of C and X for a random sample of size n.



One-factor analysis of variance (formulation 1)

Suppose C is a categorical variable with k possible values,
and X is a numerical variable.

Competing hypotheses (v1)

X is independent on C. [X is not influenced by C]
@ X is dependent on C. [X is influenced by C]
Evidence

The values of C and X for a random sample of size n.

Test statistic
_ MSB
T MSW

where
e MSB :=SSB/(k — 1) is the mean square between samples,
e MSW := SSW/(n — k) is the mean square within samples.
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Suppose C is a categorical variable with k possible values,
and C is a numerical variable.

Competing hypotheses (v1)
X is independent on C. [X is not influenced by C]
@ X is dependent on C. [X is influenced by C]

Covered scenario

The population in each category is normal with the same

(unknown) variance 2.
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Suppose C is a categorical variable with k possible values,
and C is a numerical variable.

Competing hypotheses (v1)

X is independent on C. [X is not influenced by C]
@ X is dependent on C. [X is influenced by C]

Covered scenario

The population in each category is normal with the same

(unknown) variance 2.

Strategy

We compare the observed value of F against the F-distribution
with df; = k — 1 and dfy = n — k. We can follow either the
rejection region approach or the p-value approach.



One-factor analysis of variance (formulation 1)

Suppose C is a categorical variable with k possible values,
and C is a numerical variable.

Competing hypotheses (v1)
X is independent on C. [X is not influenced by C]
@ X is dependent on C. [X is influenced by C]

Covered scenario

The population in each category is normal with the same

(unknown) variance 2.

Strategy

We compare the observed value of F against the F-distribution
with df; = k — 1 and dfy = n — k. We can follow either the
rejection region approach or the p-value approach.

Remark
We always use a right-tailed test.



One-factor analysis of variance (formulation 2)

Suppose X is a numerical variable, and the means of X in k distinct
populations are 1, p2, - - ., k-
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populations are 1, p2, - - ., k-

Competing hypotheses (v2)

Ho) p1=p2 =+ = .

Not all k means are equal.
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Suppose X is a numerical variable, and the means of X in k distinct
populations are 1, p2, - - ., k-
Competing hypotheses (v2)

@ M1 = 2 = = Uk

(H1) Not all k means are equal.

Evidence
k random samples, one from each population, with total size n.



One-factor analysis of variance (formulation 2)

Suppose X is a numerical variable, and the means of X in k distinct
populations are 1, p2, - - ., k-

Competing hypotheses (v2)

(Ho) jin = p2 = -+ = .

@ Not all k means are equal.

Evidence
k random samples, one from each population, with total size n.

Test statistic
_ MSB
T MSW

where
e MSB :=SSB/(k — 1) is the mean square between samples,
e MSW := SSW/(n — k) is the mean square within samples.
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@ Not all k means are equal.

Covered scenario

The samples are independent of one another. Each population is

normal. All populations have the same (unknown) variance o2.
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Suppose X is a numerical variable, and the means of X in k distinct
populations are 1, p2, - - ., k-

Competing hypotheses (v2)

(Ho) p1 =2 =+ = pux.
@ Not all k means are equal.

Covered scenario
The samples are independent of one another. Each population is

normal. All populations have the same (unknown) variance o2.

Strategy

We compare the observed value of F against the F-distribution
with df; = k — 1 and dfy = n — k. We can follow either the
rejection region approach or the p-value approach.

Remark
We always use a right-tailed test.
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