American University of Beirut

Introduction to Ergodic Theory

MATH 307K (2024-2025 Spring)

Assignment 1

Problem 1 (Binary expansions). Prove that the binary expansion of a real number $x \in [0,1)$ is eventually periodic if and only if x is rational.

Problem 2 (Rational rotation). Let $R_{\alpha}: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ denote the *rotation-by-* α transformation given by $R_{\alpha}(x) \coloneqq x + \alpha \pmod{1}$. Suppose that $\alpha = \ell/m$ is a rational ($\ell \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$ are relatively prime). During the lecture, we saw that for every interval $(a,b) \subseteq \mathbb{R}/\mathbb{Z}$ and every point $x \in \mathbb{R}/\mathbb{Z}$, the asymptotic frequency

$$d_{(a,b)}(x) \coloneqq \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{(a,b)} \left(R_{\alpha}^{k}(x) \right)$$

of time steps at which the orbit of x enters (a,b) exists. What are the possible values of $d_{(a,b)}(x)$ when we vary x?

Problem 3 (Invariant measures: Rotation). Let R_{α} denote the *rotation-by-* α map as in the previous problem.

- (a) Prove that irrespective of the value of $\alpha \in \mathbb{R}$, the map R_{α} preserves the Lebesgue measure on \mathbb{R}/\mathbb{Z} .
- (b) Can you find another probability measure on \mathbb{R}/\mathbb{Z} that is preserved by R_{α} ?

 Hint: Consider the cases in which α is rational and irrational separately. You may use Weyl's theorem if needed.

Problem 4 (Invariant measures: Multiplication by 2). Let $T: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ denote the *multiplication-by-*2 transformation given by $T(x) \coloneqq 2x \pmod{1}$. Prove that T preserves the Lebesgue measure on \mathbb{R}/\mathbb{Z} .

Problem 5 (Bernoulli shift). Let Γ be a finite alphabet, and $\mathcal{X} := \Gamma^{\mathbb{N}}$ the space of all infinite sequences $x = x_0 x_1 x_2 \cdots$ of symbols from Γ . A *cylinder set* in \mathcal{X} is a set of the form

$$[u] := \{x \in \mathcal{X} : x_0 x_1 \cdots x_{\ell-1} = u_0 u_1 \cdots u_{\ell-1}\}$$

where $u = u_0 u_1 \cdots u_{\ell-1} \in \Gamma^{\ell}$ is a word of length $\ell \in \mathbb{N}$ on Γ . The product σ -algebra on \mathcal{X} is the σ -algebra generated by the cylinder sets.

(a) Verify that, together with the empty set, the cylinder sets form a semi-algebra.

The *product topology* on \mathcal{X} is the topology generated by the cylinder sets.

- (b) Verify that, in the product topology, the cylinder sets are both open and closed.
- (c) Verify that the product topology on \mathcal{X} is compact. *Hint*: Tychonoff's theorem.
- (d) Verify that the product σ -algebra on \mathcal{X} coincides with the Borel σ -algebra corresponding to the product topology.

Let $p:\Gamma \to [0,1]$ be a probability distribution on Γ (i.e., a function satisfying $\sum_{a\in\Gamma} p(a)=1$).

(e) Show that there exists a unique probability measure π_p on \mathcal{X} such that

$$\pi_p([u]) = \prod_{k=0}^{\ell-1} p(u_k)$$

for every word $u = u_0 u_1 \cdots u_{\ell-1} \in \Gamma^{\ell}$ with $\ell \in \mathbb{N}$. This is called the *Bernoulli* measure (a.k.a. the *product* measure) with marginal p.

Hint: Verify that π_p defined as above is finitely additive on the semi-algebra of cylinder sets and argue that countable additivity follows trivially.

1

Let $\sigma: \mathcal{X} \to \mathcal{X}$ be the *shift* map defined by $\sigma(x)_k := x_{k+1}$.

(f) Verify that the shift map preserves every Bernoulli measure on \mathcal{X} .

Problem 6 (Finite dynamical systems). Let $\mathcal{X} \coloneqq \{0,1,2,3,4\}$ and consider the map $T: \mathcal{X} \to \mathcal{X}$, where $T(0) \coloneqq 1$, $T(1) \coloneqq 2$, $T(2) \coloneqq 3$, and $T(3) \coloneqq 1$, $T(4) \coloneqq 4$.

- (a) Identify all the probability measures on \mathcal{X} that are preserved by T.
- (b) Prove that for every function $f: \mathcal{X} \to \mathbb{R}$ and every point $x \in \mathcal{X}$, the limit

$$\overline{f}(x)\coloneqq \lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}f\big(T^k(x)\big)$$

exists, and find its value.

Problem 7 (Proof of Poincaré's recurrence theorem). Prove the second claim in Poincaré's theorem. Namely, let μ be a probability measure on a measurable space $\mathcal X$ and $T\colon \mathcal X\to \mathcal X$ a measurable map that preserves μ . Let $A\subseteq \mathcal X$ be a measurable set with $\mu(A)>0$. Prove that the orbit of μ -a.e. $x\in A$ returns to A infinitely many times.

Hint: Either adapt the proof of the 1st claim, or use the 1st claim as a lemma.