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SSyyllllaabbuuss::
• math307K-syllabus

TTiimmee  aanndd  llooccaattiioonn::
• MWF 11:00am–11:50am
• Bliss Hall 206
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• Email: st71@aub.edu.lb

OOff��ccee  hhoouurrss::
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NNootteess

AAssssiiggnnmmeennttss

Kac's recurrence theorem

Von Neumann's ergodic theorem

Birkhoff's ergodic theorem

Last update: March 7, 2022

Mixing

(partial)

Last update: March 10, 2022

Assignment 1

To be discussed on Friday, February 4

Note [2022-01-30]: For Problem 3(b), you may use Weyl's theorem if needed.  There was a typo in Problem 6(b) which is
now �xed (namely, it should be  instead of ).f : X → R f : X → X

Assignment 2

To be discussed on Friday, February 25 Monday, February 28

Assignment 3

To be discussed on Friday, March 18
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PPrroojjeeccttss

PPoollllss

FFiinnaall  pprreesseennttaattiioonnss

Note [2022-03-09]: A new question is added.

Guidelines

Some suggested topics for presentation/�nal paper

Last update: March 17, 2022

Time of extra session (Weeks 6-7)

Please respond by Tuesday, March 1, evening.

Time of extra session (Week 12)

Please respond by Monday, April 11, noon.

Poll results (week 12)

Time of extra session (Week 13)

Please respond by Wednesday, April 13, noon.

Poll results (week 13)

Doodle poll for the presentation sessions

Please respond by Sunday, May 1, evening.

SScchheedduullee  [updated: 2022-05-06]:

• Roa and Jana: Monday 10:15-11:00
• Estepan: Monday 11:00-11:45
• Zeinab and Lara: Monday 11:45-12:30
• Youmna: Tuesday 13:00-13:30
• Hiba and Sara: Tuesday 13:30-14:15
• Ali: Tuesday 14:15-14:45
• Hadi: Tuesday 14:45-15:15

LLooccaattiioonn [updated: 2022-05-05]:
• Monday: Bliss 206 (booked)
• Tuesday: Bliss 206 (if available; if not, check my of�ce)
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Note [2022-04-29]: A poll for the schedule of the presentation sessions is posted (see the Polls section above).  Please
respond by Sunday evening.

FFrriiddaayy  22002222--0044--2299

• Let  be a probability space.
◦ The entropy of a discrete random variable  is

with the convention .
◦ The conditional entropy of discrete RV  given a discrete RV  is

• Basic properties of entropy and conditional entropy
• The conditional entropy  of a RV  given a sub-σ-algebra  is

• An information source can be thought of as a process

with values in a �nite set .
• The entropy rate  of a process  can be de�ned as

or as

• Theorem: For a stationary process, the above two de�nitions are (well-de�ned and) equivalent.
• The entropy of a measure-preserving dynamical system is de�ned in terms of the processes obtained by partially

observing the system.
• De�nition (Kolmogorov-Sinai entropy): Let  be an invertible measure-preserving dynamical system. Let

 be a �nite-valued observable (i.e., a measurable map into a �nite set ). The entropy rate of 
with respect to  is

where . The Kolmogorov-Sinai entropy of  is

• Isomorphism between measure-preserving dynamical systems
• Remark: The KS-entropy is invariant under isomorphisms.
• Exercise 1: Show that the KS-entropy of a Bernoulli shift  is .

• Exercise 2: Show that the KS-entropy of every (rational or irrational) rotation is .

(Ω, F , P)
X : Ω → Γ

H(X) := − P(X = a) log P(X = a) ,∑
a∈Γ

0 log 0 = 0
X : Ω → Γ Y : Ω → Λ

H(X | Y ) := − P(X = a, Y = b) log P(X = a)∑
b∈Λ

∑
a∈Γ

= H(X | Y = b) .∑
b∈Λ

H(X | A ) X A ⊆ F

H(X | A ) := − ∫ P(X = a | A ) log P(X = a | A ) dP .∑
a∈Γ

… , , , , , , …W−2 W−1 W0 W1 W2

Γ
h (( )Wn)n∈Z (Wn)n∈Z

H( , , … , ) ,lim
n→∞

1
2n + 1

W−n W−n+1 Wn

H ( | … , , ) .Wm Wm−2 Wm−1

(X , F , μ, T )
φ : X → Γ Γ (X , F , μ, T )

φ

(X , T ; φ) := h (( )hμ Wn)n∈Z

:= φ ∘Wn T n (X , F , μ, T )

(X , T ) := sup { (X , T ; φ) : φ a finite-valued observable} .hμ hμ

( , F , , σ)ΣZ μp H(p)
0

WWeeddnneessddaayy  22002222--0044--2277
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• Completion of the proof of the ergodic decomposition theorem (when  is not continuous).
• Proposition: The unique invariant measure of every uniquely ergodic system is ergodic.
• Proposition: In a uniquely ergodic system, every point is generic for the unique invariant measure.
• Remark: Let  be a uniquely ergodic system with unique invariant measure .  If  is not continuous,

then  need not converge to  for every , even though it does for -a.e. .

• Theorem (Characterizations of unique ergodicity): Let  be a topological system.  The following are equivalent:
a.  is uniquely ergodic.
b. There exists  such that every point  is generic for .

c. For every , the sequence  converges pointwise to a constant.

d. For every , the sequence  converges uniformly to a constant.

• The concepts of
◦ The entropy  of a discrete RV  (a measure of "uncertainty" about the value of ).
◦ The conditional entropy  of a discrete RV  given another discrete RV  (on

average, how much "uncertainty" is left about  if we learn the value of ).
◦ The mutual information  between  and  (on average, how much information

does  have about , or vice versa).
• An axiomatic de�nition of entropy based on its desired properties leads to the expression

where  denotes the (�nite/countable) set of possible values of .
• Theorem (an interpretation of entropy): Let  denote the smallest average number of yes-no questions needed to

determine . Then, . (Proof can be found in any information theory textbook.)
• In particular, if  are independent copies of  and  denotes the smallest average number of yes-no

questions needed to determine , then .

f

(X , T ) π f : X → R
f( (x))1

n
∑n−1

k=0 T k π(f) x π x

(X , T )
(X , T )

π ∈ P(X , T ) x ∈ X π

f ∈ C(X) f ∘1
n

∑n−1
k=0 T k

f ∈ C(X) f ∘1
n

∑n−1
k=0 T k

H(X) X X

H(X | Y ) = H(X, Y ) − H(Y ) X Y

X Y

I(X; Y ) = H(X) − H(X | Y ) X Y

Y X

H(X) = − P(X = a) log P(X = a)∑
a∈Γ

Γ X

L

X H(X) ≤ L ≤ H(X) + 1
, , … ,X1 X2 Xn X Ln

, , … ,X1 X2 Xn /n = H(X)limn→∞ Ln

MMoonnddaayy  22002222--0044--2255

• Holiday; no class

FFrriiddaayy  22002222--0044--2222

• Holiday; no class

WWeeddnneessddaayy  22002222--0044--2200

• Proof of the theorem from last time: In a topological system , the set  of points that are generic for
some ergodic measure is measurable and has measure one with respect to every invariant measure.

• Proof of the ergodic decomposition theorem (topological variant).
• Example (uniquely ergodic and minimal):

◦ Every irrational rotation is uniquely ergodic with the Lebesgue measure as the unique invariant measure.
◦ The dyadic adding machine is uniquely ergodic with the uniform Bernoulli measure as the unique invariant

measure.
• Example (uniquely ergodic but not minimal):

◦ Recall: If  is uniquely ergodic and its invariant measure has full support, then  is also minimal.
◦ The �nite system with space  and transformation  is uniquely ergodic but not

minimal.
• There are also systems that are minimal but not uniquely ergodic.  (Stay tuned for the presentation of Zeinab and Lara.)

(X , T ) E(X , T )

(X , T ) (X , T )
X := {0, 1} (0 ↦ 1; 1 ↦ 1)

TTuueessddaayy  22002222--0044--1199  (extra session)

• In the analogy between measure-preserving and topological settings, generic points to ergodic systems are like
transitive points to transitive systems.

• Exercise: Let  be a topological system and suppose  is a full-support ergodic measure.  We have(X , T ) μ ∈ P(X , T )

Firefox https://lms.aub.edu.lb/course/view.php?id=16170
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already seen that the system is necessarily transitive.  Prove that every generic point for  is transitive.  In particular, the
set of transitive points has measure .

• Generic points in shift dynamical systems: Let  be a full shift. A con�guration  is generic for a shift-invariant
measure  if and only if for every �nite word , the asymptotic frequency of the occurrences of  in  is .

• Example 1 (An explicit example of a generic point): Let  be the uniform Bernoulli measure on . The

following con�guration is -generic:

• Example 2 (A measure with a null set of generic points): Let  where  are Bernoulli

measures on  with parameters , and . Then, -almost every point is generic for either 

or . In particular, the set of generic points for  is a -null set.  However, this set is still non-empty.

• Example 3 (An example of a point which is generic for a non-ergodic measure): Let  where

 and . he following con�guration is -generic:

• Example 4 (A measure with no generic point): Consider a �nite system with two distinct cycles (e.g., the one in
Assignment 1). Let  and  be two ergodic measure supported at two distinct cycles. Then, any invariant measure
which is a non-trivial convex combination of  and  has no generic point.

• Proposition: Let  be a topological system and . Then, -almost every point is generic for some
measure in . (Proof sketched.)

• Theorem: Let  be a topological system and . Then, -almost every point is generic for some ergodic
measure in . (Proof to come.)

• The recording (password: ) and the board of the session

μ

1
( , σ)ΣN x

μ u ∈ Σ∗ u x μ([u])
μ1/2 {0, 1}N

μ1/2

x := 0 1 00 01 10 11 000 001 ⋯

μ := λ + (1 − λ)μ1/3 μ2/3 ,μ1/3 μ2/3

{0, 1}N 1/3, 2/3 0 < λ < 1 μ μ1/3

μ2/3 μ μ

μ := +1
2 δ0––

1
2 δ1––

:= 0000 ⋯0–– := 1111 ⋯1–– μ

x := 0 1 0000 1111 000000000 111111111 ⋯

μ1 μ2

μ1 μ2

X , T μ ∈ P(X , T ) μ

P(X , T )
X , T μ ∈ P(X , T ) μ

P(X , T )

MMoonnddaayy  22002222--0044--1188

• Holiday; no class

Note [2022-04-15]: Following the poll, the extra session will be on Tuesday, April 19, 15:00-16:00 (online).

FFrriiddaayy  22002222--0044--1155

• Holiday; no class

Note [2022-04-13]: Please note that due to personal engagements, I will not be able to have of�ce hours this Thursday.  Feel
free to contact me by email, or drop by on a different day.

WWeeddnneessddaayy  22002222--0044--1133

• Example: In a �nite dynamical system (e.g., the one in Problem 6 of Assignment 1), there is an ergodic measure
corresponding to each cycle in the transition graph, and each invariant measure can be written as a convex combination
of such measures.

• Ergodic decomposition theorem (topological variant): Let  be a compact metric space and  a continuous
map. There exists a measurable set  and a map  such that

i.  for every ,
ii. For every , the measure  is ergodic,

iii.  and  for each ,

iv. For every bounded measurable ,
a. The map  is measurable,

b. For every ,

X T : X → X

X0 x ∈ ↦ ∈ P(X , T )X0 νx

μ( ) = 1X0 μ ∈ P(X , T )
x ∈ X0 νx

=T −1X0 X0 =νT(x) νx x ∈ X0

f : X → R
x ↦ (f) = ∫ f dνx νx

μ ∈ P(X , T )

∫ f dμ = (∫ f d ) dμ(x)∫
X0

νx
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• Remark: The above theorem says that every invariant measure  can be written as a convex mixture of ergodic measures

Compare this with
1. The earlier theorem (based on Krein-Milman theorem) which said that every invariant measure is a limit of convex

linear combinations of ergodic measures,
2. The earlier observation that every (non-invariant) measure is a convex mixture of Dirac measures.

• Generic points: Let  be a topological system. We say that a point  is generic for a measure  if
for every , we have

Equivalently,  is ergodic for  if

We denote by  the set of all points that are generic for .

• Proposition: Let  be a topological system and  be an ergodic measure. Then, -a.e. point is generic
for . More speci�cally,  is measurable and .

• Theorem (Characterizations of ergodicity; topological setting): Let  be a topological system and . The
following are equivalent:

i.  is ergodic.

ii. For -a.e. , we have .

iii. For -a.e.  and every , we have .

iv. For every  and -a.e. , we have .

μ

μ(⋅) = (⋅) dμ(x) .∫
X0

νx

X , T x ∈ X μ ∈ P(X , T )
f ∈ C(X)

f( (x)) → ∫ f dμ as n → ∞ .
1
n

∑
k=0

n−1

T k

x μ

→ μ in weak* as n → ∞ .
1
n

∑
k=0

n−1

T kδx

Gμ μ

X , T μ ∈ P(X , T ) μ

μ Gμ μ( ) = 1Gμ

X , T μ ∈ P(X , T )

μ

μ x ∈ X → μ1
n

∑n−1
k=0 δ (x)T k

μ x ∈ X f ∈ C(X) f( (x)) → μ(f)1
n

∑n−1
k=0 T k

f ∈ C(X) μ x ∈ X f( (x)) → μ(f)1
n

∑n−1
k=0 T k

TTuueessddaayy  22002222--0044--1122 (extra session)

• Proposition: If  is a compact metric space and  is a continuous map, then the set  of -invariant
Borel probability measures on  is non-empty and compact.

• Theorem (geometry of ): Let  be a measurable space and  a measurable map.  Then, (a)
 is convex, (b)  is ergodic if and only if it is extremal, (c) Distinct ergodic measures

 are mutually singular.
• Theorem: Let  be a compact metric space and  a continuous map. Then,  is the closed convex

hull of the set  of ergodic measures.  (This is a corollary of the Krein-Milman theorem.)
• The recording (password: ) and the board of the session

X T : X → X P(X , T ) T

X

P(X , T ) X T : X → X

P(X , T ) μ ∈ P(X , T )
μ, ν ∈ P(X , T )

X T : X → X P(X , T )
(X , T )Pe

Note [2022-04-11]: Following the poll, the extra session will be on Tuesday, April 12, 14:00-15:00 (online).

MMoonnddaayy  22002222--0044--1111

• Portmanteau theorem (characterizations of weak* convergence): Remark (3) on page 149 of Walters, or Wikipedia
• Theorem: Let  be a compact metric space.  Then,  is also compact and metrizable.
• Remarks: Let  be a compact metric space.  Then, (a)  is an embedding of  into , (b)  is convex,

(c) The Dirac measures are precisely the extremal elements of , (d) Every  can be approximated by
convex combinations of Dirac measures, (e) Every  is a convex mixture of Dirac measures, in the sense that,
for every bounded measurable , we have

• Exercise: Prove the missing arguments for the latter remarks.
• Proposition: Let  be a compact metric space,  a continuous map, and  a probability measure. 

X P(X)
X x ↦ δx X P(X) P(X)

P(X) μ ∈ P(X)
μ ∈ P(X)

f : X → R

∫ f dμ = ∫ (∫ f d ) dμ(x) .δx

X T : X → X μ ∈ P(X)
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Then,  if and only if  for every .
• Proposition: Let  be a compact metric space and  a continuous map. The map  on  is

continuous and af�ne.

Tμ = μ μ(f ∘ T ) = μ(f) f ∈ C(X)
X T : X → X μ ↦ Tμ P(X)

Note [2022-04-10]: Two polls for the schedule of the extra sessions in Weeks 12 and 13 are posted (see the Polls section
above).  Please respond the �rst by Monday noon and the second by Wednesday noon.

FFrriiddaayy  22002222--0044--0088

• Notation: We denote by  the set of Borel probability measures on a topological space .  We write  the
Banach space of bounded continuous functions  on a topological space  (with the uniform norm).  Recall: if

 is compact, then all continuous functions are bounded.
• Proposition: Let  be a metric space and  with .  Then, there exists an  such that

.  Exercise: Prove this.
• A linear function  is (1) positive if  whenever  and (2) normalized if .
• Proposition: Let  be a metric space.  Every positive linear functional  is continuous.
• Riesz representaiton theorem: Let  be a compact metric space. For every normalized positive linear functional

, there exists a (unique) Borel probability measure  such that  for every .
• The weak* topology on  is the smallest topology that makes all the maps  (for ) continuous.
• Convergence in weak* topology:  if and only if  for every .
• Proposition: Let  be a compact metric space.  Then, the weak* topology on  is metrizable.
• Remark (follows from the Stone-Weierstrass theorem): If  is a compact metric space, then  contains a countable

dense subset.

P(X) X C(X)
f : X → R X

X

X μ, ν ∈ P(X) μ ≠ ν f ∈ C(X)
μ(f) ≠ ν(f)

J : C(X) → R J(f) ≥ 0 f ≥ 0 J( ) = 11X

X J : C(X) → R
X

J : C(X) → R μ μ(f) = J(f) f ∈ C(X)
P(X) μ ↦ μ(f) f ∈ C(X)

→ μμn (f) → μ(f)μn f ∈ C(X)
X P(X)

X C(X)

WWeeddnneessddaayy  22002222--0044--0066

• Proposition: Every topological system has a minimal subsystem (proof via Zorn's lemma).
• Birkhoff's recurrence theorem: Every topological system has at least one almost periodic point.
• Poincaré's recurrence theorem (topological version): Let  be a compact metric space,  a continuous map,

and  a Borel probability measure on  that is invariant under .  Then, -a.e. point in  is (topologically) recurrent.
• Proposition (proof comes later): Every topological system admits at least one invariant probability measure.
• Topological support of a positive Borel measure  on a topological space  is

We say that  has full support if .
• Exercise: If  is a compact metric space and  a Borel probability measure on , then .
• Proposition: Let  be a topological system and  a -invariant Borel probability measure on  which has full

support.  (1) If  is ergodic, then  is transitive.  (2) If  is the only -invariant Borel probability measure on , then 
is minimal.

• A topological system is called uniquely ergodic if it admits exactly one -invariant Borel probability measure.

X T : X → X

μ X T μ X

μ X

supp(μ) := {x ∈ X : μ(B) > 0 for every open B ∋ x} .

μ supp(μ) = X

X μ X μ(supp(μ)) = 1
(X , T ) μ T X

μ T μ T X T

T

MMoonnddaayy  22002222--0044--0044

• Updates on the projects:
• EEsstteeppaann: An example of a weakly mixing system which is not strongly mixing.
• HHiibbaa  and SSaarraa: An ergodic-theoretic proof of van der Waerden's theorem.
• JJaannaa  and RRooaa: Spectral methods and applications to isomorphism problem.
• AAllii: Fourier analytic proof of Weyl's theorem and similar results on compact Abelian groups.
• HHaaddii: The randomization property of the XOR cellular automaton.
• YYoouummnnaa: An alternative proof of the pointwise ergodic theorem.
• ZZeeiinnaabb  and LLaarraa: An example of a minimal system which is not uniquely ergodic.
• Theorem (Birkhoff): In every minimal system, every point is almost periodic.
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FFrriiddaayy  22002222--0044--0011

• Minimal systems

• The orbit closure  of a point  in a topological system  is non-empty, closed and forward-invariant,
hence de�nes a subsystem .

• Theorem (characterizations of minimality): Let  be a topological system.  The following are equivalent: (a)  is
minimal.  (b) Every point in  is a transitive point for .  (c) For every non-empty open set , we have

.

• Exercise: Prove the latter theorem.
• Example: Irrational rotations are minimal.  (This is Kronecker's theorem.)
• Example: A vertex shift is minimal if and only if its underlying graph consists of a single cycle.
• Example: The XOR cellular automaton is not minimal because  is a �xed point.
• Example: The dyadic adding machine is minimal.
• Recurrent points, almost periodic points and quasi-periodic points.
• Example: Every point in the dyadic adding machine is quasi-periodic.  Every point in an irrational rotation is almost-

periodic (but not quasi-periodic).

E := (z)O+¯ ¯¯̄¯̄¯̄¯̄ ¯̄¯
z (X , T )

(E, T )
(X , T ) T

X T A ⊆ X

A = X⋃n≥1 T −n

x = ⋯ 000 ⋯

WWeeddnneessddaayy  22002222--0033--3300

• Theorem (characterizations of transitivity): Let  be a topological system.  The following are equivalent: (a)  is
transitive. (b) Every closed, forward invariant subset of  is either nowhere dense or the entire  itself. (c)  has a
transitive point. (d)  has a residual set of transitive points.

(X , T ) T

X X T

T

Note [2022-03-28]: The Monday, April 4 session is dedicated to discussing the progress in your projects.  We will have a
couple of extra sessions in the coming weeks.

MMoonnddaayy  22002222--0033--2288

• Topological transitivity and topological mixing
• Example: The golden-mean shift is topologically mixing.
• Proposition: (1) A vertex/edge shift is topologically transitive if and only if the underlying graph is strongly connected.

(2) A vertex/edge shift is topologically mixing if and only if the underlying graph is strongly connected and aperiodic.
• Exercise: The XOR cellular automaton is topologically mixing.  Hint: use the fact that , where

 stands for site-wise addition modulo .
• Example: The dyadic adding machine is topologically transitive but not mixing.
• A point  in a topological dynamical system  is called a (forward) transitive point if for every non-empty open set

, there exists an  such that .
• Example: A transitive point in the full shift.
• Exercise: Find a transitive point in the golden-mean shift.
• Proposition: The trajectory of every transitive point visits every non-empty open set in�nitely many times.

T (x ⊕ y) = T (x) ⊕ T (y)
⊕ 2

x (X , T )
A ⊆ X n ≥ 1 (x) ∈ AT n

MMoonnddaayy  22002222--0033--2255

• Holiday; no class

WWeeddnneessddaayy  22002222--0033--2233

• Exercise session

MMoonnddaayy  22002222--0033--2211

• Exercise session
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FFrriiddaayy  22002222--0033--1188

• A subsystem of a full shift is called a subshift (or a shift), and its underlying space a shift space.
• Example: Golden-mean shift
• Example: Vertex and edge shifts associated to a �nite directed graph 
• Example: The subshift de�ned by forbidding the words in a set , that is,  where

(provided the latter set is non-empty).
• Exercise: Every sbushift is of the above form.  (Note: the choice of  is not unique.)
• If  is �nite, then  is called a subshift of �nite type (SFT).
• Example: The XOR cellular automaton is the system  where .  Exercise:

Show that (1)  is continuous, (2) , and (3)  is onto but not one-to-one.
• Example: The dyadic adding machine is the system  where

Exercise: Verify that  is continuous.
• A topological system  is (topologically) transitive if for every pair of non-empty open sets , there exists

an  such that .  Exercise: Verify that for  modifying the condition  into  gives
an equivalent de�nition.

• Example: Irrational rotations are transitive; rational rotations are not.
• Example: Every full shift is transitive.
• Example: The golden-mean shift is transitive.

G = (V , E)
F ⊆ Σ∗ ( , σ)XF

:= {x ∈ : ⋯ ∉ F  for all k, ℓ}XF ΣZ xkxk+1 xk+ℓ−1

F

F XF

{0, 1 , T}Z T (x := + (mod 2))k xk xk+1

T T ∘ σ = σ ∘ T T

{0, 1 , T}Z

T (x := {)k
+ 1 (mod 2)xk

xk

if  = = ⋯ = = 1xk−1 xk−2 x0

otherwise.

T

(X , T ) A, B ⊆ X

n ≥ 0 A ∩ B ≠ ∅T −n k ∈ N n ≥ 0 n ≥ k

WWeeddnneessddaayy  22002222--0033--1166

• Interpretation of a Markov shift associated to a stochastic matrix  and a probability distribution  satisfying 
• Theorem 1: If  is irreducible, then (1)  has a unique stationary distribution  and (2) the Markov shift associated to 

and  is ergodic.
• Theorem 2: Suppose  is irreducible.  The following are equivalent: (1)  is aperiodic. (2) The Markov shift de�ned by 

is weakly mixing. (3) The Markov shift de�ned by  is strongly mixing.
• Introduction to topological dynamics
• Example: one-sided full shift  and two-sided full shift 
• Exercise: Verify that the shift map is continuous.
• Subsystems of a topological dynamical system

Q p pQ = p

Q Q p Q

p

Q Q Q

Q

, σΣN , σΣZ

MMoonnddaayy  22002222--0033--1144

• Proof of "if  is ergodic, then  is weakly mixing."
• Theorem:  is strongly mixing if and only if for every measurable , we have  as . 

Similar statements hold for weak mixing and ergodicity.
• Example: Markov measures

T × T T

T A μ(A ∩ A) → μ(AT −n )2 n → ∞

FFrriiddaayy  22002222--0033--1111

• Proof of Theorem 1.20 of Walters via the full-density diagonal lemma
• Theorem: Characterization of weak mixing in terms of convergence in density
• Proposition: The product of any two weakly mixing systems is again weakly mixing.
• Theorem: A measure-preserving map  is weakly mixing if and only if  is ergodic.T T × T

Note [2022-03-10]: Partial notes on mixing properties are posted (see the Notes section above).
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Note [2022-03-10]: Partial notes on mixing properties are posted (see the Notes section above).

WWeeeekk  66

WWeeeekk  55

Note [2022-03-09]: The 3rd assignment is updated with a new question (see the Assignments section above).

WWeeddnneessddaayy  22002222--0033--0099

• Density of sets  in 
• Lemma (full density diagonal sequence): Given a sequence  of full density sets, there exist a

full density set  which is "eventually a subset" of each  (i.e.,  is �nite for each ).
• An application of the lemma: Theorem 1.20 of Walters

J ⊆ N N
N = ⊇ ⊇ ⊇ ⋯J0 J1 J2

J ⊆ N Jn J ∖ Jn n

TTuueessddaayy  22002222--0033--0088 (extra session)

• "Mixing" characterization of ergodicity
• Weak and strong mixing
• Exercise: Irrational rotations are not weakly mixing.
• Every Bernoulli shift is strongly mixing (argument via approximation).
• The recording (password: ) and the board of the session

Note [2022-03-08]: The 3rd assignment is posted (see the Assignments section above).

MMoonnddaayy  22002222--0033--0077

• Proof of the  decomposition lemma

• Characterizations of  and 

L1

I1 B
¯ ¯¯̄

1

FFrriiddaayy  22002222--0033--0044

• Notion of conditional expectation and its basic properties
• Exercise: Let  be a measure-preserving system.  Verify that

is a -algebra.

(X , F , μ, T )

:= {E ∈ F : μ(EΔ E) = 0}Iμ T −1

σ

Note [2022-03-03]: Notes on Birkhoff's ergodic theorem are updated so as to include the decomposition lemma (see the
Notes section above).

Note [2022-02-28]: Following the poll, the extra session will be on Tuesday, March 8, 14:00-15:00 (online).

WWeeddnneessddaayy  22002222--0033--0022

• Exercise session

Note [2022-02-28]: A poll for the schedule of the extra session is posted (see the Polls section above).  Please respond by
Tuesday evening.

MMoonnddaayy  22002222--0022--2288

• Exercise session
• Problem 3(b) onward are left for Wednesday.

Note [2022-02-27]: Guidelines and suggested topics for the presentation/�nal paper are posted (see the Projects section
above).
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WWeeeekk  44

WWeeeekk  33

Note [2022-02-26]: Notes on Birkhoff's ergodic theorem are posted (see the Notes section above).

• The proof of the decomposition lemma is to be added.
• The proof of the maximal ergodic inequality (variant II) as presented in class had a bug, which is �xed in the notes.

FFrriiddaayy  22002222--0022--2255

• Proof of the maximal ergodic inequality (two variants)

WWeeddnneessddaayy  22002222--0022--2233

• Proof of the  decomposition lemma
• Statement of the  decomposition lemma
• Statement of the maximal ergodic inequality
• Proof of Birkhoff's theorem using the decomposition lemma and the maximal ergodic inequality

L2

L1

MMoonnddaayy  22002222--0022--2211

• Characterizations of ergodicity: Proof of the remaining implication
• Proof of von Neumann's ergodic theorem (except the decomposition lemma)
• Notes on von Neumann's theorem are posted (see the Notes section above).

FFrriiddaayy  22002222--0022--1188

• Characterizations of ergodicity (Theorems 1 and 2 from Wednesday): Proof of all implications except one

WWeeddnneessddaayy  22002222--0022--1166

• When is  almost everywhere constant?  case of �nite dynamical systems.

• Ergodicity: A measure-preserving DS  is ergodic if every strictly invariant set  is trivial (i.e.,
 or ).

• Terminology for measurable sets: strictly -invariant, forward -invariant, backward -invariant, -invariant modulo 
• Exercise: Identify the [strictly/forward/backward] invariant sets and invariant sets mod  in the �nite system of Problem

6 from Assignment 1.
• Terminology for measurable functions: -invariant and -invariant modulo 
• Theorem 1: Five extra characterizations of ergodicity in terms of measurable sets (Theorem 1.5 of Walter's book).
• Theorem 2: Two extra characterizations of ergodicity in terms of measurable functions  (Theorem 1.6 of

Walter's book).
• Corollary of Birkhoff's ergodic theorem for ergodic systems.

(x) := f( (x))f
¯̄̄ limn→∞

1
n

∑n−1
k=0 T k ⇝

(X , F , μ, T ) E ⊆ X

μ(E) = 0 μ(E) = 1
T T T T μ

μ

T T μ

f : X → R

Note [2022-02-15]: The 2nd assignment is posted (see the Assignments section above).

MMoonnddaayy  22002222--0022--1144

• Holiday; no class

FFrriiddaayy  22002222--0022--1111

• Exercise session

WWeeddnneessddaayy  22002222--0022--0099

• Holiday; no class

MMoonnddaayy  22002222--0022--0077
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• Exercise session
• Problems 5 and 6(partial) are left for Friday.

FFrriiddaayy  22002222--0022--0044

• Birkhoff's (pointwise) ergodic theorem
• Von Neumann's  ergodic theorem
•  ergodic theorem
• The asymptotic average is invariant over each orbit.
• Proof of  ergodic theorem using Birkhoff's theorem (via approximation)

L2

Lp

Lp

Note [2022-02-02]: The 1st exercise session is moved from Friday to Monday, February 7.  On Friday, we will have a normal
lecture.

WWeeddnneessddaayy  22002222--0022--0022

• Is Poincaré's theorem consistent with the Second Law of Thermodynamics?
• Kac's recurrence theorem and its "proof"
• The recording (password: ) and the board of the session
• Notes on Kac's recurrence theorem are posted (see the Notes section above).  (They include the exercises mentioned

during the lecture.)

MMoonnddaayy  22002222--0011--3311

• More examples of measure-preserving dynamical systems: Bernoulli shifts, stationary processes, rotations on a compact
group.

• Poincaré's Recurrence Theorem: Let  be a measure-preserving dynamical system.  Let  be a
measure set with .  Then, for -a.e. , there exists a time  such that .  In fact, the
orbit of -a.e.  returns to  in�nitely many times.  (Note: Recall that  is a probability measure.) 

• Exercise: Prove the 2nd claim in Poincaré's Recurrence Theorem (either by adapting the proof of the 1st part, or using the
1st part as a lemma).

(X , F , μ, T ) A ⊆ X

μ(A) > 0 μ x ∈ A n > 0 (x) ∈ AT n

μ x ∈ A A μ

Note [2022-01-29]: The 1st assignment is posted (see the Assignments section above).

FFrriiddaayy  22002222--0011--2288

• A measure-preserving dynamical system is described by (1) a measurable space , (2) a probability measure  on
, and (3) a map  that preserves .

• De�nition: If  is a measurable map between two measurable spaces, the every (probability) measure  on 
induces (via ) a measure  on , where  for every measurable .  Interpretation (when

 is a probability measure): if  is picked at random from  according to distribution , then  is a random element
of  with distribution .

• Review of some facts from measure theory: semi-algebras and how they make life easier
• Exercise: Every rotation  preserves the Lebesgue measure.
• Exercise: The multiplication-by-  map on  preserves the Lebesgue measure.

(X , F) μ

(X , F) T : X → X μ

φ : X → Y μ X

φ φμ Y (φμ)(B) := μ( B)φ−1 B ⊆ Y

μ x X μ φ(x)
Y φμ

Rα

2 R/Z
WWeeddnneessddaayy  22002222--0011--2266

• Formulation of Example 3 in terms of a dynamical system (the Bernoulli shift).
• In which sense are Example 3 (with ) and Example 2 equivalent?
• Example 4 (rotation):  We have a wheel with an arrow.  At every time-step, the wheel rotates by  radians. 

p = 1/2
2πα
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Asymptotically, how often will the arrow point to somewhere inside a given interval ?
• If  is rational, then the asymptotic frequency exists but depends on the initial state.
• Exercise: What are the possible values of the asymptotic frequency when  is rational?
• Kronecker's Theorem: If  is irrational, then the orbit of every point eventually enters every open interval.
• Weyl's Theorem: If  is irrational, then the asymptotic frequency of times at which the arrow points to somewhere inside

given interval  is proportional to the length of , irrespective of the initial state.

I

α

α = ℓ/m

α

α

I I

MMoonnddaayy  22002222--0011--2244

• Example 2 (Normal numbers): What is the density of s in the binary expansion of a "typical" ?
• Exercise: The binary expansion of a real number  is eventually periodic if and only if  is rational.
• Remark: All real numbers in  have unique binary expansions except those that are rational with a power of two as

the denominator.
• Borel's theorem (without proof): Almost every  is normal.
• Example 3 (Bernoulli shift): What is the frequency of s in an in�nite sequence of independent Bernoulli RVs with

parameter ?
• Law of Large Numbers (Weak and Strong versions)

1 x ∈ [0, 1)
x ∈ [0, 1) x

[0, 1)

x ∈ [0, 1)
1

p

FFrriiddaayy  22002222--0011--2211

• Formulation of discrete-time and continuous-time dynamical systems in terms (semigroups of) transformations of the
space of all possible states

• Ergodic Theory is (primarily) about the "statistical properties" of the orbits of dynamical systems.
• Example 1 (Billiard): A hard ball moving on a friction-less billiard table
• Sinai's theorem (informal and inaccurate statement): Assuming the table has a a certain property, for almost every

starting position and velocity, the fraction of times at which the ball is inside any given region  on the table is
proportional to the area of .

B

B
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