American University of Beirut

Introduction to Ergodic Theory

MATH 307K - Spring 2022

Assignment 2 (for Friday, February 25)

Problem 1 (Proof of Poincaré's recurrence theorem). Prove the second claim in Poincaré's theorem. Namely, let μ be a probability measure on a measurable space $\mathcal X$ and $T\colon \mathcal X\to \mathcal X$ a measurable map that preserves μ . Let $A\subseteq \mathcal X$ be a measurable set with $\mu(A)>0$. Prove that the orbit of μ -a.e. $x\in A$ returns to A infinitely many times

Hint: Either adapt the proof of the 1st claim, or use the 1st claim as a lemma.

Problem 2 (Proof of Kac's recurrence theorem). Complete the proof of Kac's theorem discussed in class. Namely,

- (a) Verify that the first return time τ_A^+ to a measurable set $A \subseteq \mathcal{X}$ is measurable.
- (b) Verify that $\widetilde{A} \cap T^{-1}A^c = T^{-1}(\widetilde{A} \setminus A)$, where $\widetilde{A} := \{x \in \mathcal{X} : T^n(x) \in A \text{ for some } n \geq 0\}$.
- (c) Fix the bug in the "proof", namely, remove the unjustified assumption that τ_A^+ is integrable over \widetilde{A} .

Hint: Let M be a large number and repeat the reasoning for $\int_{\widetilde{A}} (\tau_A^+ \wedge M) d\mu$ instead of $\int_{\widetilde{A}} \tau_A^+ d\mu$. At the end, let $M \to \infty$. (Here, $a \wedge b$ stands for the minimum of a and b.)

Problem 3 (A variant of Poincaré's theorem). Let μ be a probability measure on a measurable space \mathcal{X} and $T \colon \mathcal{X} \to \mathcal{X}$ a measurable map that preserves μ . Let $A \subseteq \mathcal{X}$ be a measurable set with $\mu(A) > 0$.

- (a) Prove that there exist a k with $0 < k \le \lfloor 1/\mu(A) \rfloor$ such that $\mu(A \cap T^{-k}A) > 0$. Hint: Consider $A, T^{-1}A, T^{-2}A, \ldots$
- (b) Use the previous result to give an alternative proof of the 1st claim in the standard version of Poincaré's theorem.

Problem 4 (True or False). Let $T: \mathcal{X} \to \mathcal{X}$ be a map on a set \mathcal{X} . Verify whether each of the following statements is true or false.

- (a) Let $E \subseteq \mathcal{X}$. Then, $TE \subseteq E$ if and only if $T^{-1}E \supseteq E$.
- (b) For every $A, B, C \subseteq \mathcal{X}$, we have $A \setminus C \subseteq (A \setminus B) \cup (B \setminus C)$.
- (c) For every $A, B \subseteq \mathcal{X}$, we have $T^{-1}A \setminus T^{-1}B = T^{-1}(A \setminus B)$.
- (d) For every $A, B, I, J \subseteq \mathcal{X}$, we have $I \cap J \subseteq (A \cap B) \cup (I \setminus A) \cup (J \setminus B)$.

Problem 5 (Finite dynamical systems). Consider the dynamical system (\mathcal{X}, T) defined in Problem 6 of Assignment 1. Identify all subsets of \mathcal{X} that are [strictly/forward/backward] invariant. Given a T-invariant probability measure μ on \mathcal{X} , also identify all subsets of \mathcal{X} that are invariant modulo μ .

$$Recall: \mathcal{X} \coloneqq \{0,1,2,3,4\}, \text{ and } T: \mathcal{X} \to \mathcal{X} \text{ is given by } T(0) \coloneqq 1, T(1) \coloneqq 2, T(2) \coloneqq 3, \text{ and } T(3) \coloneqq 1, T(4) \coloneqq 4.$$

Problem 6 (Ergodicity: Rational rotation). Let $\mathcal{X} := \mathbb{R}/\mathbb{Z}$. Let α be a rational, and let $R_{\alpha}(x) := x + \alpha \pmod{1}$ be the *rotation-by-\alpha* map on \mathcal{X} . Prove that R_{α} is not ergodic with respect to the Lebesgue measure. Give an example of a probability measure on \mathcal{X} with respect to which R_{α} is ergodic.

Problem 7 (Ergodicity: Irrational rotation). Let $\mathcal{X} := \mathbb{R}/\mathbb{Z}$. Let α be an irrational, and let $R_{\alpha}(x) := x + \alpha \pmod{1}$ be the *rotation-by-* α map on \mathcal{X} . Let λ denote the Lebesgue measure on \mathcal{X} .

- (a) Prove Kronecker's theorem: For every $x \in \mathcal{X}$ and every non-empty open interval $(a,b) \subseteq \mathcal{X}$, there exists an n > 0 such that $R^n_{\alpha}(x) \in (a,b)$.
 - *Hint:* Pigeonhole principle.
- (b) Let $I, J \subseteq \mathcal{X}$ be intervals, and let $\ell \in \mathbb{R}$ be such that $0 < \ell < \min\{\lambda(I), \lambda(J)\}$. Prove that $\lambda(I \cap R_{\alpha}^{-n}J) \ge \ell$ for some n > 0.
- (c) Prove that R_{α} is ergodic with respect to λ .

Hint: Show that for every $A, B \subseteq \mathcal{X}$ with $\lambda(A) > 0$ and $\lambda(B) > 0$, there exists an n > 0 such that $\lambda(A \cap R_{\alpha}^{-n}B) > 0$. To this end, approximate A and B (mod λ) with intervals.