Von Neumann's Ergodic Theorem

Theorem (Von Neumann's Ergodic Theorem; 1932). Let μ be a probability measure on a measurable space \mathcal{X} and $T \colon \mathcal{X} \to \mathcal{X}$ a measurable map that preserves μ . For every $f \in L^2_{\mu}(\mathcal{X})$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^k\to \widetilde{f}\qquad \text{in }L^2_\mu(\mathcal{X})\text{ as }n\to\infty$$

for some $\widetilde{f} \in L^2_\mu(\mathcal{X})$ that satisfies $\widetilde{f} \circ T = \widetilde{f} \mu$ -almost everywhere.

Remark (Characterization of the limit). The proof below will characterize \widetilde{f} as the orthogonal projection of f onto the closed linear subspace

$$\{g \in L^2_\mu(\mathcal{X}) : g \circ T = g \ \mu\text{-a.e.}\}$$

of
$$L^2_{\mu}(\mathcal{X})$$
.

Remark (Induced isometry). The map $f \mapsto f \circ T$ is a positive linear isometry of $L^2_{\mu}(\mathcal{X})$. To see that it is an isometry (i.e., it preserves distances in L^2_{μ}), note that

$$||f_2 \circ T - f_1 \circ T||^2 = \int |f_2 \circ T - f_1 \circ T|^2 d\mu = \int |f_2 - f_1|^2 d(T\mu) = \int |f_2 - f_1|^2 d\mu = ||f_2 - f_1|^2 d\mu.$$

 \Diamond

The linearity and the positivity ($f \ge 0$ implies $f \circ T \ge 0$) are clear.

Proof of von Neumann's theorem. We start with some special cases:

- If $f \circ T = f$ μ -a.e., then the claim trivially holds and $\widetilde{f} = f$.
- If $f = h \circ T h$ for some $h \in L^2_\mu(\mathcal{X})$, then $\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \to 0$ in $L^2_\mu(\mathcal{X})$, hence $\widetilde{f} = 0$.

Argument. Note that

$$\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k = \frac{1}{n} \sum_{k=0}^{n-1} (h \circ T - h) \circ T^k = \frac{1}{n} \sum_{k=0}^{n-1} (h \circ T^{k+1} - h \circ T^k) = \frac{h \circ T^n - h}{n} .$$

Therefore,

$$\left\| \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \right\| = \frac{1}{n} \|h \circ T^n - h\| \le \frac{1}{n} (\|h \circ T^n\| + \|h\|) = \frac{2}{n} \|h\|,$$

which goes to 0 as $n \to \infty$. (For the last equality, we have used the fact that $h \mapsto h \circ T$ is an isometry.)

• If $f=c_1f_1+c_2f_2$ for some $f_1,f_2\in L^2_\mu(\mathcal{X})$ and $c_1,c_2\in\mathbb{R}$, and the claim holds for f_1 and f_2 , then the claim clearly also holds for f with $\widetilde{f}=c_1\widetilde{f}_1+c_2\widetilde{f}_2$.

Let

$$B \coloneqq \left\langle h \circ T - h : h \in L^2_{\mu}(\mathcal{X}) \right\rangle$$

be the linear span of all functions of the form $h \circ T - h$. Let us consider one more special case:

• If $f \in \overline{B}$, then $\frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \to 0$ in $L^2_{\mu}(\mathcal{X})$, hence $\widetilde{f} = 0$.

(Here, \overline{B} stands for the closure of B in $L^2_{\mu}(\mathcal{X})$.)

Argument. The case in which $f \in B$ is already handled. Let $f \in \overline{B}$ and suppose there exist a sequence $f_1, f_2, \ldots \in B$ such that $f_m \to f$ as $m \to \infty$. Observe that for a fixed $m \ge 1$,

$$\left\| \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^{k} \right\| = \left\| \frac{1}{n} \sum_{k=0}^{n-1} f_{m} \circ T^{k} + \frac{1}{n} \sum_{k=0}^{n-1} (f - f_{m}) \circ T^{k} \right\|$$

$$\leq \left\| \frac{1}{n} \sum_{k=0}^{n-1} f_{m} \circ T^{k} \right\| + \frac{1}{n} \sum_{k=0}^{n-1} \underbrace{\left\| (f - f_{m}) \circ T^{k} \right\|}_{\|f - f_{m}\|}$$

$$= \left\| \frac{1}{n} \sum_{k=0}^{n-1} f_{m} \circ T^{k} \right\| + \|f - f_{m}\|.$$

Letting $n \to \infty$, we obtain

$$\limsup_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \right\| \le \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} f_m \circ T^k \right\| + \|f - f_m\| = \|f - f_m\|.$$

Finally, letting $m \to \infty$, we find that

$$\lim_{n\to\infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k \right\| = 0 \ .$$

Now, let

$$I \coloneqq \{g \in L^2_\mu(\mathcal{X}) : g \circ T = g \text{ μ-a.e.}\} ,$$

and observe that I is a closed linear subspace of $L^2_{\mu}(\mathcal{X})$.

So far, we have verified that the conclusion of the theorem holds if f belongs to either of the two closed subspaces I and \overline{B} . Remarkably, every element of $L^2_{\mu}(\mathcal{X})$ can be decomposed (in a unique fashion) as a sum of two elements one belonging to I and the other belonging to \overline{B} . More specifically:

Lemma (Decomposition lemma). Every $f \in L^2_\mu(\mathcal{X})$ has a unique decomposition $f = \widetilde{f} + f_0$ where

$$\widetilde{f} \in I$$
, $f_0 \in \overline{B}$, $\widetilde{f} \perp f_0$.

In other words, $L^2_u(\mathcal{X}) = I \oplus \overline{B}$.

(The proof of the lemma comes below.)

It follows that for every $f \in L^2_\mu(\mathcal{X})$,

$$\frac{1}{n}\sum_{k=0}^{n-1}f\circ T^k = \underbrace{\frac{1}{n}\sum_{k=0}^{n-1}\widetilde{f}\circ T^k}_{\widetilde{f}} + \underbrace{\frac{1}{n}\sum_{k=0}^{n-1}f_0\circ T^k}_{\to 0} \to \widetilde{f} \qquad \text{in } L^2_{\mu}(\mathcal{X}) \text{ as } n\to \infty,$$

and this concludes the proof.

Proof of the decomposition lemma. We need to show that I is the orthogonal complement of \overline{B} . First, let $g \in I$. Then, for every $h \in L^2_{\mu}(\mathcal{X})$, we have

$$\int (h \circ T - h)\overline{g} \, d\mu = \int (h \circ T)\overline{g} \, d\mu - \int h\overline{g} \, d\mu$$

$$= \int (h \circ T)(\overline{g} \circ T) \, d\mu - \int h\overline{g} \, d\mu \qquad \text{(because } g \circ T = g \ \mu\text{-a.e.)}$$

$$= \int h\overline{g} \, d(T\mu) - \int h\overline{g} \, d\mu$$

$$= 0 \qquad \text{(because } T\mu = \mu\text{)}$$

hence $g \perp (h \circ T - h)$. It follows that $g \perp \overline{B}$, and in particular $I \subseteq \overline{B}^{\perp}$.

Conversely, let $g \in \overline{B}^{\perp}$. Then, for every $h \in L^2_{\mu}(\mathcal{X})$, we have $\int (h \circ T - h)\overline{g} \, d\mu = 0$, which implies

$$\int (h \circ T)\overline{g} \, \mathrm{d}\mu = \int h\overline{g} \, \mathrm{d}\mu \ . \tag{\clubsuit}$$

Now, we can write

$$\int |g \circ T - g|^2 d\mu = \int (g \circ T - g)(\overline{g \circ T - g}) d\mu$$

$$= \int (g \circ T)(\overline{g} \circ T) d\mu - \int (g \circ T)\overline{g} d\mu + \int g\overline{g} d\mu - \int g(\overline{g} \circ T) d\mu.$$

Now observe that all the four terms on the right-hand side are equal to $\int g\overline{g} \,d\mu$: the first term because of the invariance of μ , and the 2nd and the 4th by (*). Therefore, $\int |g \circ T - g|^2 \,d\mu = 0$, which implies $g \in I$. It follows that $\overline{B}^\perp \subseteq I$.

We conclude that
$$\overline{B}^{\perp} = I$$
.

Remark (Extension to higher dimensions). The above proof can be readily generalized to higher dimensional dynamics, where the transformation T is replaced with a measure-preserving action of \mathbb{Z}^d on \mathcal{X} . More generally, the same argument works if \mathbb{Z}^d is replaced with any countable amenable group.

Remark (Hilbert space variant). The theorem and its proof rely only on the fact that $L^2_{\mu}(\mathcal{X})$ is a Hilbert space and $f \mapsto f \circ T$ is a linear isometry.

The theorem extends to an abstract setting where $L^2_{\mu}(\mathcal{X})$ is replaced with a Hilbert space and \mathcal{H} and $f\mapsto f\circ T$ is replaced with a linear contraction $U:\mathcal{H}\to\mathcal{H}$.

Exercise. Formulate and prove the abstract version of von Neumann's theorem mentioned in the latter remark.