
Von Neumann’s Ergodic Theorem

Theorem (Von Neumann’s Ergodic Theorem; 1932). Let µ be a probability measure on a measurable
space X and T : X → X a measurable map that preserves µ. For every f ∈ L2

µ(X ),

1

n

n−1∑
k=0

f ◦ T k → f̃ in L2
µ(X ) as n→∞

for some f̃ ∈ L2
µ(X ) that satisfies f̃ ◦ T = f̃ µ-almost everywhere.

Remark (Characterization of the limit). The proof below will characterize f̃ as the orthogonal projection
of f onto the closed linear subspace

{g ∈ L2
µ(X ) : g ◦ T = g µ-a.e.}

of L2
µ(X ). 3

Remark (Induced isometry). The map f 7→ f ◦ T is a positive linear isometry of L2
µ(X ). To see that it is

an isometry (i.e., it preserves distances in L2
µ), note that

‖f2 ◦ T − f1 ◦ T‖2 =

∫
|f2 ◦ T − f1 ◦ T |2 dµ =

∫
|f2 − f1|2 d(Tµ) =

∫
|f2 − f1|2 dµ = ‖f2 − f1‖2 .

The linearity and the positivity (f ≥ 0 implies f ◦ T ≥ 0) are clear. 3

Proof of von Neumann’s theorem. We start with some special cases:

• If f ◦ T = f µ-a.e., then the claim trivially holds and f̃ = f .

• If f = h ◦ T − h for some h ∈ L2
µ(X ), then

1

n

n−1∑
k=0

f ◦ T k → 0 in L2
µ(X ), hence f̃ = 0.

Argument.p Note that

1

n

n−1∑
k=0

f ◦ T k =
1

n

n−1∑
k=0

(h ◦ T − h) ◦ T k =
1

n

n−1∑
k=0

(h ◦ T k+1 − h ◦ T k) =
h ◦ Tn − h

n
.

Therefore, ∥∥∥ 1
n

n−1∑
k=0

f ◦ T k
∥∥∥ =

1

n
‖h ◦ Tn − h‖ ≤ 1

n

(
‖h ◦ Tn‖+ ‖h‖

)
=

2

n
‖h‖ ,

which goes to 0 as n→∞. (For the last equality, we have used the fact that h 7→ h ◦ T is an isometry.)x

• If f = c1f1 + c2f2 for some f1, f2 ∈ L2
µ(X ) and c1, c2 ∈ R, and the claim holds for f1 and f2, then

the claim clearly also holds for f with f̃ = c1f̃1 + c2f̃2.

Let

B :=
〈
h ◦ T − h : h ∈ L2

µ(X )
〉

be the linear span of all functions of the form h ◦ T − h. Let us consider one more special case:
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• If f ∈ B, then
1

n

n−1∑
k=0

f ◦ T k → 0 in L2
µ(X ), hence f̃ = 0.

(Here, B stands for the closure of B in L2
µ(X ).)

Argument.p The case in which f ∈ B is already handled. Let f ∈ B and suppose there exist a sequence
f1, f2, . . . ∈ B such that fm → f as m→∞.

Observe that for a fixed m ≥ 1,∥∥∥ 1
n

n−1∑
k=0

f ◦ T k
∥∥∥ =

∥∥∥ 1
n

n−1∑
k=0

fm ◦ T k +
1

n

n−1∑
k=0

(f − fm) ◦ T k
∥∥∥

≤
∥∥∥ 1
n

n−1∑
k=0

fm ◦ T k
∥∥∥+ 1

n

n−1∑
k=0

‖(f − fm) ◦ T k‖︸ ︷︷ ︸
‖f−fm‖

=
∥∥∥ 1
n

n−1∑
k=0

fm ◦ T k
∥∥∥+ ‖f − fm‖ .

Letting n→∞, we obtain

lim sup
n→∞

∥∥∥ 1
n

n−1∑
k=0

f ◦ T k
∥∥∥ ≤ lim

n→∞

∥∥∥ 1
n

n−1∑
k=0

fm ◦ T k
∥∥∥+ ‖f − fm‖ = ‖f − fm‖ .

Finally, letting m→∞, we find that

lim
n→∞

∥∥∥ 1
n

n−1∑
k=0

f ◦ T k
∥∥∥ = 0 .

x

Now, let

I := {g ∈ L2
µ(X ) : g ◦ T = g µ-a.e.} ,

and observe that I is a closed linear subspace of L2
µ(X ).

So far, we have verified that the conclusion of the theorem holds if f belongs to either of the two
closed subspaces I and B. Remarkably, every element of L2

µ(X ) can be decomposed (in a unique fashion)
as a sum of two elements one belonging to I and the other belonging to B. More specifically:

Lemma (Decomposition lemma). Every f ∈ L2
µ(X ) has a unique decomposition f = f̃ + f0 where

f̃ ∈ I , f0 ∈ B , f̃ ⊥ f0 .

In other words, L2
µ(X ) = I ⊕B .

(The proof of the lemma comes below.)
It follows that for every f ∈ L2

µ(X ),

1

n

n−1∑
k=0

f ◦ T k =
1

n

n−1∑
k=0

f̃ ◦ T k︸ ︷︷ ︸
f̃

+
1

n

n−1∑
k=0

f0 ◦ T k︸ ︷︷ ︸
→0

→ f̃ in L2
µ(X ) as n→∞,

and this concludes the proof.

Proof of the decomposition lemma. We need to show that I is the orthogonal complement of B.
First, let g ∈ I. Then, for every h ∈ L2

µ(X ), we have∫
(h ◦ T − h)g dµ =

∫
(h ◦ T )g dµ−

∫
hg dµ

=

∫
(h ◦ T )(g ◦ T ) dµ−

∫
hg dµ (because g ◦ T = g µ-a.e.)

=

∫
hg d(Tµ)−

∫
hg dµ

= 0 (because Tµ = µ)
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hence g ⊥ (h ◦ T − h). It follows that g ⊥ B, and in particular I ⊆ B⊥.

Conversely, let g ∈ B⊥. Then, for every h ∈ L2
µ(X ), we have

∫
(h ◦ T − h)g dµ = 0, which implies∫

(h ◦ T )g dµ =

∫
hg dµ . (♣)

Now, we can write∫
|g ◦ T − g|2 dµ =

∫
(g ◦ T − g)(g ◦ T − g) dµ

=

∫
(g ◦ T )(g ◦ T ) dµ−

∫
(g ◦ T )g dµ+

∫
gg dµ−

∫
g(g ◦ T ) dµ .

Now observe that all the four terms on the right-hand side are equal to
∫
gg dµ: the first term because

of the invariance of µ, and the 2nd and the 4th by (♣). Therefore,
∫
|g ◦ T − g|2 dµ = 0, which implies

g ∈ I. It follows that B
⊥ ⊆ I.

We conclude that B
⊥
= I.

Remark (Extension to higher dimensions). The above proof can be readily generalized to higher dimen-
sional dynamics, where the transformation T is replaced with a measure-preserving action of Zd on X .
More generally, the same argument works if Zd is replaced with any countable amenable group. 3

Remark (Hilbert space variant). The theorem and its proof rely only on the fact that L2
µ(X ) is a Hilbert

space and f 7→ f ◦ T is a linear isometry.
The theorem extends to an abstract setting where L2

µ(X ) is replaced with a Hilbert space and H and
f 7→ f ◦ T is replaced with a linear contraction U : H → H. 3

Exercise. Formulate and prove the abstract version of von Neumann’s theorem mentioned in the latter
remark.
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