Birkhoff’s Ergodic Theorem

Theorem (Birkhoff’s Ergodic Theorem; 1931). Let (X, .%,u) be a probability space and T: X — X a
measurable map that preserves . For every f € LL(X ), the limit

flz) = nlgr;@% i: f(Tk(x))
k=0

exists for u-almost every x. Furthermore,

@ f(T(zx)) = f(z) for p-a.e. x.

(ii) /?du = /fdu-

Several proofs of Birkhoff’s theorem are available. We follow the one presented in Parry’s book “Topics
in ergodic theory” (1981). This proof is not the shortest but has the advantage that it follows the same
pattern as the proof of von Neumann’s theorem. Parry attributes this proof to Garsia (1970).

There are two main ingredients in the proof: one is a decomposition lemma similar to the one used
for von Neumann’s theorem; the other is a general inequality known as the maximal ergodic inequality.

Lemma (Decomposition lemma for L'). The two linear subspace
L={geL(X):goT =gpae}, By :=(hoT —h:heL,(X)),
satisfy
L(X)=Bi+I, and Binl ={0}.

In other words, every f € L}L(X) has a unique decomposition f = f* + f, where f* € I, and fy € B.

Lemma (Maximal Ergodic Inequality: variant I). For every f € L/, (X) and X > 0, we have

p( {o s s L5 forio) > Alfl})
k=0

n—oo

n

12 1
< u({fc : sup n;foT’“(w)‘ > /\||f|1}> <%

We first present the proof of Birkhoff’s theorem using these two lemmas and then come back to prove
the lemmas.

Exercise (Induced isometries). Verify that for every 1 < p < oo, the map f — f o T is a positive linear
isometry of LE (X).

Exercise (L! ergodic theorem). Use the L! decomposition lemma to give a proof of the L' ergodic
theorem. Hint: Mimic the proof of von Neumann’s theorem.

Proof of Birkhoff’s theorem. We first focus on the proof of the existence of the limit f, although the argu-
ment will also imply (i). Proof of (ii) will be left as an exercise.
As in the proof of von Neumann’s theorem, we start with some special cases:

Notes for Introduction to Ergodic Theory (MATH 307K), Siamak Taati
Last update: March 7, 2022



e If f € I, then f trivially exists and f = f.

n—1
1 _
e If f=hoT — hforsomeh € L;°(X), then — E foT* — 0 (uniformly) p-a.e., hence f = 0.
n
k=0

Argument. As in the L? case, we have

Hf f oT*| = LMhoT" — hllaw < 1 (b0 T"ow + 1hll) = = hllc

n—1
It follows that 1 Z foT* - 0in L7?(X), and hence uniformly on a set £ C X with u(E) = 1.
n
k=0
* If f = c1f1 + cafo for some fi, fo € L), (X) and the limits f, and f, exist y-a.e., then f also exists
p-a.e. with f =1 f; + cofs.
n—1
1 _
e If f,, € By and f,, — fin Lb(X), then — Z foTk — 0 p-a.e., hence f = 0.
n
k=0

Argument. Without loss of generality, we may assume that || f — fm||1 — 0 monotonically as m — co.
For each m we have

n—oo

hmsup’ ZfoT ’ < hmsup‘ meoT ‘—Hlmsup‘ f fm)oT
=0

= 0 p-a.e.

Applying the maximal inequality on f — f,,, we have

> =

u({x tim sup| © E(f—fm)oTk(w)‘>A|f—fm||1}) <

n—o0

from which it follows

n— o0

({m hmsup) ZfoTk ‘>/\Hf—fm\|1}) S%.

Letting m — oo and using monotone continuity, we obtain
({x h?_)s;p‘ Z foT(x ‘ > 0}) % .
Letting A — oo, we find
({32 o] o)) <1
as claimed.
Let
Boo = (hoT —h:he L (X))
and observe that B, and B; have the same closures in L, (X'). Hence, we also have the following:
. 1t _
e If f € B, = B, then - Z:foT’C — 0 p-a.e., hence f = 0.
k=0
Now, by the L' decomposition lemma, every f € LL(X ) can be written as f = f* + f, where f* € I,
and f, € B;. It follows that

n—1
1
—ZfoT’“ Zf oTF 4 — ZfooTk—m” p-a.e. as n — oo,
" =0
pe =0

hence f exists u-a.e. and satisfies f = f*. This also shows that (i) holds.



Exercise. Show that if f = f* + f, with f* € I, and f, € By, then /f* dp = /fdu.

This concludes the proof of Birkhoff’s theorem. O

Maximal ergodic inequality

The maximal ergodic inequality mentioned earlier is due to Wiener (1939) and Yosida and Kakutani
(1939). It has the following variant due to Hopf (1954):

Lemma (Maximal Ergodic Inequality: variant II). Let f € LL(X ). For n, N € N, define
s fHfoT+ -+ foT™ ! ifn>0,
"0 ifn=0,
ENZ:{CCGX max fulx )>O}.

0<n

Then, fdu>o0.
En

Interpretation. Think of (f,,),ecn as a “random walk” on R starting from position 0, where the jump at
time step k is given by the value of f o T*~1. Let Fy(x) := maxo<,<n fn(2) be the largest value reached
within the first NV steps. The latter lemma states that conditioned on F > 0, the expected value of f is
non-negative.

Let us first show that the former variant of the maximal ergodic inequality follows from the latter.

Proof of variant I using variant II. The first inequality is obvious. To prove the second inequality, note
that:

» Without loss of generality, we may assume that ||f||; = 1. (If || f]s = 0, the claim holds trivially.
Otherwise, we can scale f so as to get a function with norm 1.)

* Without loss of generality, we may assume that f > 0. (Otherwise, we can replace f with |f|, and
this would not increase the left-hand side.)

Set g .= f — \. We apply variant II on g. Note that g,, = f,, — n\, hence

Ey = {xeX R gn(T )>0}:{x€X R W ffn( )>)\}.

The inequality / gdp > 0 can be rewritten as
En

MU(EN)< [ fdp. )

En
Now, observe that £y C E1 C E5 C ---. Furthermore,

nl

E = UEN—{a: sup — ZfOTk>)\}

N>0 n>0 M

Letting N — oo in (), and using monotone continuity and the facts that f > 0 and || f||; = 1, we get

Au(E)s/Efdug/fduzl.

Therefore, u(E) < 1/, as claimed. O

Proof of variant II (Garsia, 1965). Let Fy(x) := maxo<n<n fn(z). Note that Fy > 0 because fy = 0.
Hence, Fiy(z) =0forz € X' \ En.



Claim. f > Fy — FyoT on Ey.
Argument. Note that
Fyy1 =max{Fn, fn+1} = max{0, f + Fn o T} (1)
Indeed, the first identity is clear. To see the latter, observe that
f+FNoT:f—|—0£nnanN(f+foT+--~foT"_1)oT
=f4 max (foT+foT + - fol")= max fn

which implies Finy1 = max{fo, f + Fny o T} = max{0, f + Fn o T}.
From (3¥) it follows that either 0 > Fiy or f + Fy oT > Fn. Hence, f > Fy — Fxy oT on Ey.

Integrating on Ey, we get

fanz [ Fyap- [ Fyordu
EN EN

> /FN dp — /FN oTdpu (because F'y = 0 outside En, and Fy oT > 0)

0 (because T preserves p)

which concludes the proof of the lemma.

Decomposition lemma

Recall that in the proof of the L? decomposition lemma, the component of an L? function f in the

subspace I, of invariant functions was simply the orthogonal projection of f on I». For the decomposition

of L', the role of the orthogonal projection is played by a conditional expectation with respect to the o-
algebra of invariant sets.

More specifically, let
S, ={E€ZF :u(EAT'E) =0}
be the family of all measurable sets that are invariant modulo .
Exercise. Verify that .7, is a sub-c-algebra of .7.
Recall the linear subspaces
Li={geL,(X):goT =g pae.}, By:=(hoT —h:heL,(X)).

The L' decomposition lemma follows from the following characterizations of I; and B;.

Lemma (Characterizations of I; and B;). Let f € Lt(X ).

@) fehifandonlyif u(f|S.) = f pae.
(i) f e Byifandonly if u(f|.2,) =0 p-a.e.

Proof of the L' decomposition lemma. Let f € L, (X). Define f* := u(f|.7,) and fo == f — f*, so that
= f*+ fo. Note that f*, fy € L}L(X ). Using the above characterizations, it is easy to see that f* € I
and f, € B,. Furthermore, f = f* + fo is another decomposition with f* € I and fg € By, then f* = f*
and fy = fo p-a.e.

Exercise. Prove the above characterization of I;.

Proof of the characterization of B;. (See the book of Parry for an alternative proof.)
[=>] Let us first prove that u(f | .#,) = 0 u-a.e. for every f € Bj.

* If f=hoT — hforsomeh e L} (X), then u(f|.7,) = w(hoT|.2,) — u(h|.#,) =0.



Argument. Clearly, u(h o T | #,) is .#,-measurable. Furthermore, for every £ € .7,,,
/ }L(hOT|<ﬂ#)d/,L:/ hoTdu = /]lE <(hoT)du
E E
= /(]lE oT)-(hoT)du= /]lEhd(T,u) :/ hdp
E

hence p(h o T'|.#,) = u(h|.#,) by the uniqueness of the conditional expectation.

* The map f — u(f|-#,) is linear, hence the set of functions f with u(f|.7,) = 0 (i.e., the kernel of
(- |-#,)) is a linear subspace of L, ().

It follows that u(f |.#,) = 0 p-a.e. for every f € B,. Furthermore:
* If fp, € By and f,, — fin L},(X), then u(f|.7,) = 0 p-a.e.

Argument. Given E € ., we have o

[ur1myan= [ rau= [ poans [ (1= poan

Hence,

p(f1Fu)dp| = | [ (f = fm)du
/ =l |
S/E\fffmldus/lfffmldu=IIfffmlll~

Since ||f — fm|l1 — 0 as m — oo, we find that / w(f| ) = 0. It follows from the uniqueness of
E
conditional expectation that u(f | .#,) = 0 p-a.e.

We conclude that u(f|.#,) = 0 p-a.e. for every f € B; as claimed.

[«<=1 Next, we prove that if f € L},(X) is such that x(f |.#,) = 0 p-a.e., then f € B;.
We prove the contrapositive. Let f € L},(X)\ B;. Then, every u € (B, f) has a unique representation
u = ug + af where ug € B; and « € R. Define a linear functional

JZ<§1,f>—>R
u=ug+af — a.

Note that J is continuous.

Argument. Let § := d(B, f) be the distance between f and B;. Since B is closed, § > 0. Therefore, for
every u = uo + af € (B, f),

lulli = lluo + aflly = laf - |f = (=1/a)ully = |ald = |J(w)[6 .

It follows that J is continuous.

Therefore, by the Hahn-Banach theorem, J can be extended to a continuous linear functional .J : L,(X)—
R. Since Ly (X) is the dual of L},(X), there exists a g € L7°(X) such that

J(u) = /ugdu

for every u € L}, (X).
Now, note that

* goT =g p-a.e.



Argument. For every h € L,,(X), we have 0 = J(hoT — h) = /(h oT — h)gdp hence

/(hoT)gd,u:/hgd,u. (®)
In particular,
/(goT—g)Qdu=/(goT)Zdu—Q/(goT)gdqu/deu=0
(using (®) and the invariance of u), which implies g o T' = g p-a.e.
* [fgdp=J(f) =1
Therefore, pu(f | .#,) # 0.

Argument. Since g o T = g, the function g is .#,-measurable. Therefore,

/u(flfu)gdu:/u(fg\fu)du:/fgduzl.

This concludes the proof. O

Back to the ergodic theorem
The above proof allows us to rephrase Birkhoff’s theorem in the following more concise form:

Theorem (Birkhoff’s Ergodic Theorem; rephrased). Let (X,.%, u) be a probability space and T: X — X
a measurable map that preserves pi. For every f € L, (X),

n—1

Z F(T5(@) = w(f| H)  prae asn— occ.
k=0

1
n

Exercise (Characterization of f). Without relying on the decomposition lemma, verify that the function f
in the original statement of Birkhoff’s theorem is p(f | .#,).



