
Birkhoff’s Ergodic Theorem

Theorem (Birkhoff’s Ergodic Theorem; 1931). Let (X ,F , µ) be a probability space and T : X → X a
measurable map that preserves µ. For every f ∈ L1

µ(X ), the limit

f(x) := lim
n→∞

1

n

n−1∑
k=0

f
(
T k(x)

)
exists for µ-almost every x. Furthermore,

(i) f
(
T (x)

)
= f(x) for µ-a.e. x.

(ii)
∫
f dµ =

∫
f dµ.

Several proofs of Birkhoff’s theorem are available. We follow the one presented in Parry’s book “Topics
in ergodic theory” (1981). This proof is not the shortest but has the advantage that it follows the same
pattern as the proof of von Neumann’s theorem. Parry attributes this proof to Garsia (1970).

There are two main ingredients in the proof: one is a decomposition lemma similar to the one used
for von Neumann’s theorem; the other is a general inequality known as the maximal ergodic inequality.

Lemma (Decomposition lemma for L1). The two linear subspace

I1 :=
{
g ∈ L1

µ(X ) : g ◦ T = g µ-a.e.
}
, B1 :=

〈
h ◦ T − h : h ∈ L1

µ(X )
〉
,

satisfy

L1
µ(X ) = B1 + I1 and B1 ∩ I1 = {0} .

In other words, every f ∈ L1
µ(X ) has a unique decomposition f = f∗ + f0 where f∗ ∈ I1 and f0 ∈ B1.

Lemma (Maximal Ergodic Inequality: variant I). For every f ∈ L1
µ(X ) and λ > 0, we have

µ

({
x : lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k(x)
∣∣∣ > λ‖f‖1

})

≤ µ
({

x : sup
n≥0

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k(x)
∣∣∣ > λ‖f‖1

})
≤ 1

λ
.

We first present the proof of Birkhoff’s theorem using these two lemmas and then come back to prove
the lemmas.

Exercise (Induced isometries). Verify that for every 1 ≤ p ≤ ∞, the map f 7→ f ◦ T is a positive linear
isometry of Lpµ(X ).

Exercise (L1 ergodic theorem). Use the L1 decomposition lemma to give a proof of the L1 ergodic
theorem. Hint: Mimic the proof of von Neumann’s theorem.

Proof of Birkhoff ’s theorem. We first focus on the proof of the existence of the limit f , although the argu-
ment will also imply (i). Proof of (ii) will be left as an exercise.

As in the proof of von Neumann’s theorem, we start with some special cases:
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• If f ∈ I1, then f trivially exists and f = f .

• If f = h ◦ T − h for some h ∈ L∞µ (X ), then
1

n

n−1∑
k=0

f ◦ T k → 0 (uniformly) µ-a.e., hence f = 0.

Argument.p As in the L2 case, we have∥∥∥ 1
n

n−1∑
k=0

f ◦ T k
∥∥∥
∞

=
1

n
‖h ◦ Tn − h‖∞ ≤

1

n

(
‖h ◦ Tn‖∞ + ‖h‖∞

)
=

2

n
‖h‖∞ .

It follows that
1

n

n−1∑
k=0

f ◦ T k → 0 in L∞µ (X ), and hence uniformly on a set E ⊆ X with µ(E) = 1.x

• If f = c1f1 + c2f2 for some f1, f2 ∈ L1
µ(X ) and the limits f1 and f2 exist µ-a.e., then f also exists

µ-a.e. with f = c1f1 + c2f2.

• If fm ∈ B∞ and fm → f in L1
µ(X ), then

1

n

n−1∑
k=0

f ◦ T k → 0 µ-a.e., hence f = 0.

Argument.p Without loss of generality, we may assume that ‖f − fm‖1 → 0 monotonically as m→∞.
For each m we have

lim sup
n→∞

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k
∣∣∣ ≤ lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

fm ◦ T k
∣∣∣︸ ︷︷ ︸

= 0 µ-a.e.

+ lim sup
n→∞

∣∣∣ 1
n

n−1∑
k=0

(f − fm) ◦ T k
∣∣∣

Applying the maximal inequality on f − fm, we have

µ

({
x : lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

(f − fm) ◦ T k(x)
∣∣∣ > λ‖f − fm‖1

})
≤ 1

λ
,

from which it follows

µ

({
x : lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k(x)
∣∣∣ > λ‖f − fm‖1

})
≤ 1

λ
.

Letting m→∞ and using monotone continuity, we obtain

µ

({
x : lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k(x)
∣∣∣ > 0

})
≤ 1

λ
.

Letting λ→∞, we find

µ

({
x : lim sup

n→∞

∣∣∣ 1
n

n−1∑
k=0

f ◦ T k(x)
∣∣∣ = 0

})
= 1 ,

as claimed.x

Let

B∞ :=
〈
h ◦ T − h : h ∈ L∞µ (X )

〉
and observe that B∞ and B1 have the same closures in L1

µ(X ). Hence, we also have the following:

• If f ∈ B1 = B∞, then
1

n

n−1∑
k=0

f ◦ T k → 0 µ-a.e., hence f = 0.

Now, by the L1 decomposition lemma, every f ∈ L1
µ(X ) can be written as f = f∗ + f0 where f∗ ∈ I1

and f0 ∈ B1. It follows that

1

n

n−1∑
k=0

f ◦ T k =
1

n

n−1∑
k=0

f∗ ◦ T k︸ ︷︷ ︸
f∗

+
1

n

n−1∑
k=0

f0 ◦ T k︸ ︷︷ ︸
→0

→ f∗ µ-a.e. as n→∞,

hence f exists µ-a.e. and satisfies f = f∗. This also shows that (i) holds.
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Exercise. Show that if f = f∗ + f0 with f∗ ∈ I1 and f0 ∈ B1, then
∫
f∗ dµ =

∫
f dµ.

This concludes the proof of Birkhoff’s theorem.

Maximal ergodic inequality

The maximal ergodic inequality mentioned earlier is due to Wiener (1939) and Yosida and Kakutani
(1939). It has the following variant due to Hopf (1954):

Lemma (Maximal Ergodic Inequality: variant II). Let f ∈ L1
µ(X ). For n,N ∈ N, define

fn :=

{
f + f ◦ T + · · ·+ f ◦ Tn−1 if n > 0,
0 if n = 0,

EN :=
{
x ∈ X : max

0≤n≤N
fn(x) > 0

}
.

Then,
∫
EN

f dµ ≥ 0.

Interpretation. Think of (fn)n∈N as a “random walk” on R starting from position 0, where the jump at
time step k is given by the value of f ◦ T k−1. Let FN (x) := max0≤n≤N fn(x) be the largest value reached
within the first N steps. The latter lemma states that conditioned on FN > 0, the expected value of f is
non-negative.

Let us first show that the former variant of the maximal ergodic inequality follows from the latter.

Proof of variant I using variant II. The first inequality is obvious. To prove the second inequality, note
that:

• Without loss of generality, we may assume that ‖f‖1 = 1. (If ‖f‖1 = 0, the claim holds trivially.
Otherwise, we can scale f so as to get a function with norm 1.)

• Without loss of generality, we may assume that f ≥ 0. (Otherwise, we can replace f with |f |, and
this would not increase the left-hand side.)

Set g := f − λ. We apply variant II on g. Note that gn = fn − nλ, hence

EN :=
{
x ∈ X : max

0≤n≤N
gn(x) > 0

}
=
{
x ∈ X : max

0≤n≤N

1

n
fn(x) > λ

}
.

The inequality
∫
EN

g dµ ≥ 0 can be rewritten as

λµ(EN ) ≤
∫
EN

f dµ . (l)

Now, observe that E0 ⊆ E1 ⊆ E2 ⊆ · · · . Furthermore,

E :=
⋃
N≥0

EN =
{
x : sup

n≥0

1

n

n−1∑
k=0

f ◦ T k > λ
}
.

Letting N →∞ in (l), and using monotone continuity and the facts that f ≥ 0 and ‖f‖1 = 1, we get

λµ(E) ≤
∫
E

f dµ ≤
∫
f dµ = 1 .

Therefore, µ(E) ≤ 1/λ, as claimed.

Proof of variant II (Garsia, 1965). Let FN (x) := max0≤n≤N fn(x). Note that FN ≥ 0 because f0 = 0.
Hence, FN (x) = 0 for x ∈ X \ EN .
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Claim. f ≥ FN − FN ◦ T on EN .

Argument.p Note that

FN+1 = max{FN , fN+1} = max{0, f + FN ◦ T} (☼)

Indeed, the first identity is clear. To see the latter, observe that

f + FN ◦ T = f + max
0≤n≤N

(f + f ◦ T + · · · f ◦ Tn−1) ◦ T

= f + max
0≤n≤N

(f ◦ T + f ◦ T 2 + · · · f ◦ Tn) = max
1≤m≤N+1

fm

which implies FN+1 = max{f0, f + FN ◦ T} = max{0, f + FN ◦ T}.
From (☼) it follows that either 0 ≥ FN or f + FN ◦ T ≥ FN . Hence, f ≥ FN − FN ◦ T on EN .x

Integrating on EN , we get∫
EN

f dµ ≥
∫
EN

FN dµ−
∫
EN

FN ◦ T dµ

≥
∫
FN dµ−

∫
FN ◦ T dµ (because FN = 0 outside EN , and FN ◦ T ≥ 0)

= 0 (because T preserves µ)

which concludes the proof of the lemma.

Decomposition lemma

Recall that in the proof of the L2 decomposition lemma, the component of an L2 function f in the
subspace I2 of invariant functions was simply the orthogonal projection of f on I2. For the decomposition
of L1, the role of the orthogonal projection is played by a conditional expectation with respect to the σ-
algebra of invariant sets.

More specifically, let

Iµ :=
{
E ∈ F : µ

(
E 4 T−1E

)
= 0
}

be the family of all measurable sets that are invariant modulo µ.

Exercise. Verify that Iµ is a sub-σ-algebra of F .

Recall the linear subspaces

I1 :=
{
g ∈ L1

µ(X ) : g ◦ T = g µ-a.e.
}
, B1 :=

〈
h ◦ T − h : h ∈ L1

µ(X )
〉
.

The L1 decomposition lemma follows from the following characterizations of I1 and B1.

Lemma (Characterizations of I1 and B1). Let f ∈ L1
µ(X ).

(i) f ∈ I1 if and only if µ(f |Iµ) = f µ-a.e.

(ii) f ∈ B1 if and only if µ(f |Iµ) = 0 µ-a.e.

Proof of the L1 decomposition lemma. Let f ∈ L1
µ(X ). Define f∗ := µ(f |Iµ) and f0 := f − f∗, so that

f = f∗ + f0. Note that f∗, f0 ∈ L1
µ(X ). Using the above characterizations, it is easy to see that f∗ ∈ I1

and f0 ∈ B1. Furthermore, f = f̂∗+ f̂0 is another decomposition with f̂∗ ∈ I1 and f̂0 ∈ B1, then f̂∗ = f∗

and f̂0 = f0 µ-a.e.

Exercise. Prove the above characterization of I1.

Proof of the characterization of B1. (See the book of Parry for an alternative proof.)
[=⇒] Let us first prove that µ(f |Iµ) = 0 µ-a.e. for every f ∈ B1.

• If f = h ◦ T − h for some h ∈ L1
µ(X ), then µ(f |Iµ) = µ(h ◦ T |Iµ)− µ(h |Iµ) = 0.
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Argument.p Clearly, µ(h ◦ T |Iµ) is Iµ-measurable. Furthermore, for every E ∈ Iµ,∫
E

µ(h ◦ T |Iµ) dµ =

∫
E

h ◦ T dµ =

∫
1E · (h ◦ T ) dµ

=

∫
(1E ◦ T ) · (h ◦ T ) dµ =

∫
1Eh d(Tµ) =

∫
E

h dµ

hence µ(h ◦ T |Iµ) = µ(h |Iµ) by the uniqueness of the conditional expectation.x

• The map f 7→ µ(f |Iµ) is linear, hence the set of functions f with µ(f |Iµ) = 0 (i.e., the kernel of
µ(· |Iµ)) is a linear subspace of L1

µ(X ).

It follows that µ(f |Iµ) = 0 µ-a.e. for every f ∈ B1. Furthermore:

• If fm ∈ B1 and fm → f in L1
µ(X ), then µ(f |Iµ) = 0 µ-a.e.

Argument.p Given E ∈ Iµ, we have∫
E

µ(f |Iµ) dµ =

∫
E

f dµ =

=0︷ ︸︸ ︷∫
E

fm dµ+

∫
E

(f − fm) dµ

Hence, ∣∣∣∣∫
E

µ(f |Iµ) dµ

∣∣∣∣ = ∣∣∣∣∫
E

(f − fm) dµ

∣∣∣∣
≤
∫
E

|f − fm| dµ ≤
∫
|f − fm| dµ = ‖f − fm‖1 .

Since ‖f − fm‖1 → 0 as m → ∞, we find that
∫
E

µ(f |Iµ) = 0. It follows from the uniqueness of

conditional expectation that µ(f |Iµ) = 0 µ-a.e.x

We conclude that µ(f |Iµ) = 0 µ-a.e. for every f ∈ B1 as claimed.

[⇐=] Next, we prove that if f ∈ L1
µ(X ) is such that µ(f |Iµ) = 0 µ-a.e., then f ∈ B1.

We prove the contrapositive. Let f ∈ L1
µ(X )\B1. Then, every u ∈ 〈B1, f〉 has a unique representation

u = u0 + αf where u0 ∈ B1 and α ∈ R. Define a linear functional

J : 〈B1, f〉 −→ R
u = u0 + αf 7−→ α .

Note that J is continuous.

Argument.p Let δ := d(B1, f) be the distance between f and B1. Since B1 is closed, δ > 0. Therefore, for
every u = u0 + αf ∈ 〈B1, f〉,

‖u‖1 = ‖u0 + αf‖1 = |α| · ‖f − (−1/α)u‖1 ≥ |α|δ = |J(u)|δ .

It follows that J is continuous.x

Therefore, by the Hahn–Banach theorem, J can be extended to a continuous linear functional Ĵ : L1
µ(X )→

R. Since L∞µ (X ) is the dual of L1
µ(X ), there exists a g ∈ L∞µ (X ) such that

J(u) =

∫
ug dµ

for every u ∈ L1
µ(X ).

Now, note that

• g ◦ T = g µ-a.e.
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Argument.p For every h ∈ L1
µ(X ), we have 0 = J(h ◦ T − h) =

∫
(h ◦ T − h)g dµ hence

∫
(h ◦ T )g dµ =

∫
hg dµ . (�)

In particular, ∫
(g ◦ T − g)2 dµ =

∫
(g ◦ T )2 dµ− 2

∫
(g ◦ T )g dµ+

∫
g2 dµ = 0

(using (�) and the invariance of µ), which implies g ◦ T = g µ-a.e.x

•
∫
fg dµ = J(f) = 1.

Therefore, µ(f |Iµ) 6= 0.

Argument.p Since g ◦ T = g, the function g is Iµ-measurable. Therefore,∫
µ(f |Iµ)g dµ =

∫
µ(fg |Iµ) dµ =

∫
fg dµ = 1 .

x

This concludes the proof.

Back to the ergodic theorem

The above proof allows us to rephrase Birkhoff’s theorem in the following more concise form:

Theorem (Birkhoff’s Ergodic Theorem; rephrased). Let (X ,F , µ) be a probability space and T : X → X
a measurable map that preserves µ. For every f ∈ L1

µ(X ),

1

n

n−1∑
k=0

f
(
T k(x)

)
→ µ(f |Iµ) µ-a.e. as n→∞.

Exercise (Characterization of f). Without relying on the decomposition lemma, verify that the function f
in the original statement of Birkhoff’s theorem is µ(f |Iµ).
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