Final Exam

Page 1 of 12

Full Name:			
ruii Naiile.	 -	Grade:	
Student No:			
Instructor:	Siamak Taati		
msu uctor.	Sidiliak idali	ı.	, 1

Read before you start:

- Please make sure you write your full name and student number.
- The exam consists of 9 questions, most with multiple parts, and a total score of 110 points.
- <u>All answers require justifications</u>. To get full credit, the justifications must be clearly written, with correct usage of mathematical notations.
- The duration of the exam is 2 hours.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \qquad \qquad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \qquad \qquad \sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

You can use the remainder of this page as scratch paper.

1. (30 points) Determine which of the following statements is $\underline{\text{True}}$ and which is $\underline{\text{False}}$. In each case, give a short justification.

 $\underline{\hspace{1cm}} \text{ If } \lim_{x \to 1} f(x) = +\infty \text{ and } g(x) \geq 0 \text{ for every } x \text{, then } \lim_{x \to 1} f(x)g(x) = +\infty.$

_____ If the acceleration of a particle moving on a line is positive, then either its velocity is already positive, or its velocity will eventually become positive.

____ $\int_{-1}^{1} f(x) dx$ is an antiderivative of f(x).

_____ If F is a differentiable function, then we can conclude that $\int_0^x F'(t) dt = F(x)$.

$$\int_{-5}^{5} x \sqrt{x^8 + 1} \, dx = 0 \text{ because } f(x) = x \sqrt{x^8 + 1} \text{ is an odd function.}$$

2324F.MATH101.L2.14354

2. (10 points) Evaluate the following indefinite integrals:

(a)
$$\int x(1+x^2)^{3/2} dx$$
.

(b)
$$\int (\cos x)^5 \, \mathrm{d}x.$$

[*Hint*: Use the substitution $u = \sin x$.]

3. (10 points) Evaluate the following definite integrals:

(a)
$$\int_1^2 (1-t^{-2})(t+t^{-1})^5 dt$$
.

(b)
$$\int_{-1}^{1} \frac{\sin(x)}{x^2 + 1} \, \mathrm{d}x$$
.

[Hint: Pay attention to symmetries.]

4. (10 points) Identify the vertical and horizontal asymptotes of the graph of the function

$$f(x) = \frac{(x-4)|x - \sin x|}{x^2 - 5x + 4} \ .$$

2324F.MATH101.L2.14354

5. (15 points) Consider the function

$$h(t) = \begin{cases} t^2 - 3t + 1 & \text{if } t \ge 0, \\ -t^3 + 2t + 1 & \text{if } t < 0. \end{cases}$$

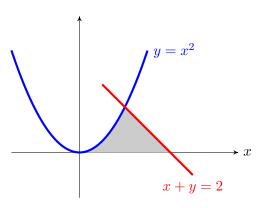
(a) Verify that h(t) is continuous at t = 0.

(b) Identify all the points in the interval [-2, 2] at which h(t) has a local minimum or a local maximum.

(c) Find the absolute minimum and absolute maximum of h(t) over the interval [-2,2].

2324F.MATH101.L2.14354

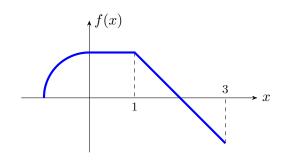
6. (5 points) Find the area of the shaded region in the figure.



7. (5 points) Suppose $F(x)=\int_1^{x^2}\cos(\sqrt{t})\;\mathrm{d}t$. Compute $F'(\pi)$. [*Hint*: Write F(x) as a composition, and apply the chain rule and the Fundamental Theorem of Calculus.]

8. (10 points) Find
$$\int_{-1}^{3} f(x) dx$$
, where
$$f(x) = \begin{cases} \sqrt{1-x^2} & \text{if } -1 \le x < 0, \\ 1 & \text{if } 0 \le x \le 1, \\ 2-x & \text{if } 1 < x \le 3. \end{cases}$$

[Hint: Interpret the integral as a signed area.]



- 9. (15 points) Consider the function $f(x) = -2x^2 + 5x 1$. Use the definition of definite integrals via Riemann sums to compute $\int_1^2 f(x) dx$. Namely:
 - (a) Partition the interval [1,2] into n tiny intervals of size $\Delta x = 1/n$ and write down the corresponding Riemann sum approximating $\int_1^2 f(x) \, \mathrm{d}x$. Use the left endpoint of each tiny interval as its representative.

(b) Compute the Riemann sum obtained in the previous part. [*Hint*: You can use the formulas on the front page of the exam.]

(c) Compute the integral $\int_1^2 f(x) dx$ by taking the limit of the Riemann sum obtained in the previous parts as $n \to \infty$.

You can use this page as extra space for your solutions.