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Summary

DLR theorem [Dobrushin, 1968; Lanford and Ruelle, 1969]

Equilibrium measures ≡ shift-invariant Gibbs measures
(under some conditions)

Example: Ising model (spontaneous magnetization)

Relative DLR theorem [Barbieri, Gómez Áıza, Marcus, T., 2018]

A similar equivalence for systems possibly in contact with
a random environment.

Example: Ising model on percolation clusters
(spontaneous magnetization in an alloy)

Other new features:

−→ More general lattice (any countable amenable group)

−→ More general hard constraints in one direction
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Summary

Some earlier works

I Relative DLR (different setting) [Seppäläinen, 1995]

I DLR on countable amenable groups (different setting)
[Moulin Ollagnier and Pinchon, 1981; Tempelman, 1984]

I In the context of random dynamical systems (in 1d)
[. . . ; Kifer and Liu, 2006; Kifer, 2008]



Summary

Some applications/corollaries

I. Equilibrium measures relative to a topological factor
[Extending a result of Allahbakhshi and Quas, 2013]

II. A local/global characterization of equilibrium measures

III. Relative version of Meyerovitch’s theorem [Meyerovitch, 2013]

IV. Equilibrium measures on group shifts
[e.g., a sufficient condition for uniqueness of measure of max-entropy]



Example I (random colorings of Zd)
Let X ⊆ ΣZd be the subshift consisting of all valid colorings of Zd
with a finite set of colors Σ, where |Σ| > 2d.

This is a strongly irreducible SFT.



Example I (random colorings of Zd)

Question
How does a “typical” configuration in X look like?

[typical ; as random as possible]

Answer 1 (global randomness)

A sample from a shift-invariant probability measure µ that
maximizes entropy per site hµ(X).

Answer 2 (local randomness)

A sample from a probability measure µ that is uniform Gibbs.
[. . . hence maximizing entropy locally]

:::::::::
According

:::
to

:::
the

:::::
DLR

::::::::
theorem: [rediscovered by Burton and Steif, 1994]

−→ Among shift-invariant measures, local and global randomness
are equivalent!



Example II (Ising model)

Let X := {↑, ↓}Zd . [upward/downward magnets at each site]

↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓

↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓

↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓

↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓

↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓

↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Interaction energies:

↓ ↓ , ↑ ↑ ,
↓

↓
,

↑

↑
−→ −1

↓ ↑ , ↑ ↓ ,
↓

↑
,

↑

↓
−→ +1



Example II (Ising model)

Question
How does a “typical” configuration in thermal equilibrium
look like?

Answer 1 (global equilibrium)

A sample from a shift-invariant probability measure µ that
maximizes pressure per site ψ(µ) := hµ(X)− 1

T µ(fΦ).

Answer 2 (local equilibrium)

A sample from a probability measure µ that is Gibbs for Φ.
[. . . hence maximizing pressure locally]

:::::::::
According

:::
to

:::
the

:::::
DLR

::::::::
theorem:

−→ Among shift-invariant measures, local and global equilibrium
conditions are equivalent!



Classic DLR theorem

Theorem [Dobrushin, 1968; Lanford and Ruelle, 1969]

Let X be a Zd-subshift.
Let Φ and absolutely summable interaction on X.

(a) (Dobrushin) Assume that X is D-mixing.
Then, every shift-invariant Gibbs measure for Φ is an
equilibrium measure for fΦ.

(b) (Lanford–Ruelle) Assume that X is of finite type.
Then, every equilibrium measure for fΦ is a (shift-invariant)
Gibbs measure for Φ.

Remarks
1. Zd can be replaced with any countable amenable group.

2. “D-mixing” is a relaxation of the uniform filling property.

3. The “finite type” condition can be replaced with
weak topological Markov property (weak TMP).



Classic DLR theorem

Theorem [Dobrushin, 1968; Lanford and Ruelle, 1969]

Let X be a Zd-subshift.
Let Φ and absolutely summable interaction on X.

(a) (Dobrushin) Assume that X is D-mixing.
Then, every shift-invariant Gibbs measure for Φ is an
equilibrium measure for fΦ.

(b) (Lanford–Ruelle) Assume that X is of finite type.
Then, every equilibrium measure for fΦ is a (shift-invariant)
Gibbs measure for Φ.

Remarks
1. Zd can be replaced with any countable amenable group.

2. “D-mixing” is a relaxation of the uniform filling property.

3. The “finite type” condition can be replaced with
weak topological Markov property (weak TMP).



Example III (random colorings of random graphs)

Let G be a finitely-generated amenable group and (G,E) the
Cayley graph corresponding to a symmetric generator S /∈ 1G.
Let (G, θθθ) be a G-stationary random subgraph of (G,E).

[e.g., bond percolation]

Consider the valid Σ-colorings of (G, θθθ), where |Σ| > |S|.
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Example III (random colorings of random graphs)

Question
What is a “most random” Σ-coloring of (G, θθθ)?

Answer 1 (global randomness)

A random coloring xxx (defined on the same probability space as θθθ)
that maximizes relative entropy per site h(xxx |θθθ).

Answer 2 (local randomness)

A random coloring xxx (defined on the same probability space as θθθ)
that is uniform Gibbs relative to θθθ.

[. . . hence maximizing entropy locally]

:::::::::
According

:::
to

:::
the

::::::::
relative

:::::
DLR

::::::::
theorem:

−→ Among shift-invariant measures with marginal ν,
local and global randomness are equivalent!



Example IV (Ising on percolation clusters)

Let Θ := {◦, •}Zd and ν be the Bernoulli(p) measure on Θ.
[. . . or any other shift-invariant measure]

↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↑ ↓ ↓

↓ ↑ ↓ ↓ ↓ ↓ ↑ ↓

↓ ↓ ↑ ↑ ↑ ↓

↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓

↓ ↑ ↑ ↓ ↑ ↑

↑ ↑ ↑ ↑ ↓ ↓ ↓

↑ ↓ ↑ ↓ ↓ ↑ ↑ ↓

↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Consider the Ising model on the open clusters of the Bernoulli
process. ↓ ↓ , ↑ ↑ ,

↓

↓
,

↑

↑
−→ −1

↓ ↑ , ↑ ↓ ,
↓

↑
,

↑

↓
−→ +1
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Example IV (Ising on percolation clusters)

Question
What describes thermal equilibrium?

Answer 1 (global equilibrium)

A shift-invariant measure µ on Ω which has marginal ν on Θ
and which maximizes relative pressure per site
ψ(µ) := hµ(Ω |Θ)− 1

T µ(fΦ).

Answer 2 (local equilibrium)

A measure µ on Ω which has marginal ν on Θ and which is
relative Gibbs for Φ. [. . . hence maximizing pressure locally]

:::::::::
According

:::
to

:::
the

::::::::
relative

:::::
DLR

::::::::
theorem:

−→ Among shift-invariant measures with marginal ν,
local and global equilibrium conditions are equivalent!



Relative systems

· · · · · ·

C

x ∈ Xθ

θ ∈ Θ

Setting

G the lattice: a countable amenable group

Θ the environment space: a measurable space on which G acts

Xθ configurations consistent with θ:
a non-empty closed subset of ΣG for each θ ∈ Θ s.t.

• (translation symmetry) Xgθ = gXθ for each θ ∈ Θ and g ∈ G,
• (measurability) Ω := {(θ, x) : θ ∈ Θ and x ∈ Xθ} is

measurable in Θ× ΣG.

Note: When |Θ| = 1, we simply have a G-subshift.
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Relative systems

· · · · · ·
C

x ∈ Xθ

θ ∈ Θ

Interaction energies

A family Φ := (ΦC)CbG of measurable functions Φ : Ω→ R s.t.

• (relative locality) ΦC(θ, x) depends only on θ and xC ,

• (translation symmetry) ΦgC(θ, x) = ΦC(g−1θ, g−1x).

We require absolute summability of the interactions:∑
C31G

‖ΦC‖ <∞ .

Energy observable
Energy contribution of the site at the origin:

fΦ(θ, x) :=
∑
C31G

1

|C|
ΦC(θ, x) .
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Relative systems

· · · · · ·
A

x ∈ Xθ

θ ∈ Θ

Hamiltonian
Energy content of a set A b G:

EA(θ, x) :=
∑
C⊆A

ΦC(θ, x)

Energy of A and its interaction with the rest:

EA|Ac(θ, x) :=
∑
CbG

C∩A 6=∅

ΦC(θ, x)

Note: Both EA and EA|Ac are relatively continuous.
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Relative systems

· · · · · ·

A

x ∈ Xθ

θ ∈ Θ

Relative equilibrium measures

Let ν be a G-invariant measure on Θ.
An equilibrium measure for fΦ relative to ν is a G-invariant
measure µ on Ω s.t.

(i) µ projects to ν,

(ii) µ maximizes relative pressure ψ(µ) := hµ(Ω |Θ)− µ(fΦ)
subject to (i).



Relative systems

· · · · · ·
A

x ∈ Xθ

θ ∈ Θ

Relative Gibbs measures
A relative Gibbs measure for Φ is a measure µ s.t.

• If (θθθ,xxx) ∼ µ, then for every A b G,

P(xxxA = u |θθθ,xxxAc)

=

{
1

ZA|Ac (θθθ,xxx)e−EA|Ac (θθθ,xxxAc∨u) if xxxAc ∨ u ∈ Xθθθ,

0 otherwise,

where ZA|Ac(θθθ,xxx) is the normalizing constant.

Recall: The Boltzmann distribution on a finite set is the unique
distribution that maximizes pressure on that set.
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Relative DLR theorem

Theorem [Barbieri, Gómez Áıza, Marcus, T., 2018]

Let Ω ⊆ Θ× ΣG be a relative system.
Let Φ be a absolutely summable relative interaction on Ω.
Let ν be a G-invariant probability measure on Θ.

(a) (Relative D) Assume that Ω is D-mixing relative to ν.
Then, every G-invariant relative Gibbs measure for Φ with
marginal ν is an equilibrium measure for fΦ relative to ν.

(b) (Relative LR) Assume that Ω is weak TMP relative to ν.
Assume further that Θ is standard Borel.
Then, every equilibrium measure for fΦ relative to ν is a
relative Gibbs measure for Φ (with marginal ν).

Remark
I If |Θ| = 1, we recover classic DLR.



D-mixing

Let X ⊆ ΣG be a non-empty closed set. [e.g., a subshift]

A mixing set for a set A ⊆ G in X is a set B ⊇ A such that

• for every x, y ∈ X, there is a z ∈ X with zA = xA and zBc = yBc .

A

B

x

y

A G-subshift X has is D-mixing if for some Følner sequence (Fn),
each Fn has a mixing set Fn in X such that |Fn \ Fn| = o(n).
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Weak topological Markov property (weak TMP)

Let X ⊆ ΣG be a non-empty closed set. [e.g., a subshift]

A memory set for a set A ⊆ G in X is a set B ⊇ A such that

• for every x, y ∈ X with xB\A = yB\A, we have xB ∨ yAc ∈ X.

B

A

x

y

A G-subshift X has the weak topological Markov property if

• every finite set A b G has a finite memory set in X.
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Relative DLR theorem

Some applications/corollaries

I. Equilibrium measures relative to a topological factor
[Extending a result of Allahbakhshi and Quas, 2013]

II. A local/global characterization of equilibrium measures

III. Relative version of Meyerovitch’s theorem [Meyerovitch, 2013]

IV. Equilibrium measures on group shifts
[e.g., a sufficient condition for uniqueness of measure of max-entropy]



I. Equilibrium relative to a topological factor

· · · · · ·

· · · · · ·

X

Y

η

Let T : X → X and S : Y → Y be continuous maps
on compact metric spaces X and Y .

Let η : X → Y be a topological factor map and
ν an S-invariant probability measure on Y .

Q Among the T -invariant measures µ on X with η(µ) = ν,
which have maximum KS-entropy hµ(X,T )?

I Ledrappier and Walters (1977) proved a “variational principle”
for hµ(X,T ) relative to ν. [Also for pressure]

I When (X,T ) is an SFT and (Y, T ) is a sofic shift,
Allahbakhshi and Quas (2013) showed that the maximizing
measures have a uniform Gibbsian property relative to η.
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I. Equilibrium relative to a topological factor

· · · · · ·

· · · · · ·

X

Y

η

Corollary (of relative LR) [generalizes Allahbakhshi and Quas, 2013]

Let G be a countable amenable group.
Let X be a G-subshift with weak TMP, and let η : X → Y be

a topological factor map onto another G-subshift Y .
Let Φ be an absolutely summable interaction on X

and ν a G-invariant measure on Y .
Let µ be a G-invariant measure on X such that

(a) µ projects to ν,

(b) subject to (a), µ maximizes hµ(X)− µ(fΦ).

Then, µ has a Gibbsian property relative to η.



I. Equilibrium relative to a topological factor

· · · · · ·

· · · · · ·

A

X

Y

η

The Gibbsian property

In the purely entropic case (i.e., Φ ≡ 0):

• If xxx ∼ µ, then for each A b G,

P(xxxA ∈ · |xxxAc , η(xxx))

is almost surely uniform over all patterns u ∈ ΣA that are
consistent with xxxA and η(xxx).

In the general case, the uniform distribution is replaced with
the Boltzmann distribution.
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II. An in-between characterization of equilibrium measures

A Z2-subshift Y can be viewed as a relative Z-system Ω1.

Xθθ

(Z acts on Ω1 by horizontal shift.)

Interpretation:
µ is (conditionally) maximally random on every
finite-width horizontal strip.
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N

Let µ be a measure of maximal entropy on Y .

Suppose that Y has weak TMP.

=⇒ µ is uniform Gibbs on Y . [By Lanford–Ruelle]

=⇒ µ is uniform relative Gibbs on Ω1.

Suppose further that Ω satisfies relative D-mixing.

=⇒ µ maximizes hµ(Ω1 |Θ1) among all the horizontally invariant
measures with the same marginal on Θ1. [By relative Dobrushin]

Interpretation: µ is (conditionally) maximally random on every
finite-width horizontal strip.
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II. An in-between characterization of equilibrium measures

Xθθ N

Corollary (of DLR and relative DLR)

Let Y be a Z2-subshift satisfying TSSM.
Let Φ be an absolutely summable interaction on Y
and µ a Z2-invariant probability measure on Y .
Then, the following are equivalent:

(i) µ is an equilibrium measure for fΦ on Y .

(ii) For every N ≥ 1,
µ is a relative equilibrium measure for fΦ on ΩN .



II. An in-between characterization of equilibrium measures

Xθθ N

Remarks

1. More general setting:

−→ Z2 is replaced with a countable amenable group G.
−→ Horizontal strips are replaced with H-slices of G for a fixed

subgroup H ⊆ G.
(An H-slice is a union of finitely manly cosets of H.)

2. If H is the trivial subgroup {1G}, we recover DLR.



III. Meyerovitch’s theorem and its relative version

Let X be an arbitrary subshift.

Two finite patterns u, v ∈ LA(X) are interchangeable in X if

• for every x ∈ X,
xAc ∨ u ∈ X if and only if xAc ∨ v ∈ X

Example 1: Golden mean shift

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

Example 2: Even shift

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

Meyerovitch’s theorem [Meyerovitch, 2013]

Let X be an arbitrary Zd-subshift.
Let Φ be an absolutely summable interaction on X and µ an
equilibrium measure for fΦ.
Then, for every two interchangeable patterns u, v ∈ LA(X) and
µ-almost every x ∈ [u] ∪ [v],

µ([u] | ξAc
)(x)

e−EA|Ac (xAc∨u)
=
µ([v] | ξAc

)(x)

e−EA|Ac (xAc∨v)
.

In the purely entropic case (i.e., Φ ≡ 0), for xxx ∼ µ we get

P(xxxA = u |xxxAc) = P(xxxA = v |xxxAc) almost surely.
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· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

Meyerovitch’s theorem [Meyerovitch, 2013]

Let X be an arbitrary Zd-subshift.
Let Φ be an absolutely summable interaction on X and µ an
equilibrium measure for fΦ.
Then, for every two interchangeable patterns u, v ∈ LA(X) and
µ-almost every x ∈ [u] ∪ [v],

µ([u] | ξAc
)(x)

e−EA|Ac (xAc∨u)
=
µ([v] | ξAc

)(x)

e−EA|Ac (xAc∨v)
.

Remark
Meyerovitch’s theorem generalizes the LR theorem!



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

Meyerovitch’s theorem (entropic case) [Meyerovitch, 2013]

Let µ be a measure of maximal entropy on a Zd-subshift X.
Then, for every two interchangeable patterns u, v ∈ LA(X)
we have µ([u]) = µ([v]).



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

A nice extension of of Meyerovitch’s theorem (entropic version):

Garćıa–Pavlov Theorem [Garćıa-Ramos and Pavlov, 2018]

Let G be a countable amenable group.
Let µ be a measure of maximal entropy on a G-subshift X.
Let u, v ∈ LA(X) be two finite patterns such that

• for every x ∈ X,
xAc ∨ u ∈ X =⇒ xAc ∨ v ∈ X .

Then, µ([u]) ≤ µ([v]).



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

θ

Let Ω ⊆ Θ× ΣG be a relative system.

Two finite patterns u, v ∈ ΣA are interchangeable in Xθ if

• for every x ∈ Xθ,
xAc ∨ u ∈ Xθ if and only if xAc ∨ v ∈ Xθ



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

θ

Relative version of Meyerovitch’s theorem [BGMT, 2018]

Let G be countable amenable and Ω ⊆ Θ× ΣG a relative system.
Let Φ be an absolutely summable relative interaction on Ω

and ν a G-invariant probability measure on Θ.
Let µ be an equilibrium measure for fΦ relative to ν.
Then, for every two finite patterns u, v ∈ ΣA,

µ([u] | ξAc ∨FΘ)(θ, x)

e−EA|Ac (θ,xAc∨u)
=
µ([v] | ξAc ∨FΘ)(θ, x)

e−EA|Ac (θ,xAc∨v)
.

for µ-almost every (θ, x) ∈ [u] ∩ [v] for which u and v are
interchangeable in Xθ.



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

θ

Relative version of Meyerovitch’s theorem [BGMT, 2018]

(entropic case)
Let G be countable amenable and Ω ⊆ Θ× ΣG a relative system.
Let ν be a G-invariant probability measure on Θ.
Let µ be a measure on Ω which has marginal ν and which
maximizes hµ(Ω |Θ).
Then, for every two finite patterns u, v ∈ ΣA,

P(xxxA = u |θθθ,xxxAc) = P(xxxA = v |θθθ,xxxAc)

almost surely when θθθ ∈ Θu,v.



III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

θ

Remarks

1. If |Θ| = 1, we recover Meyerovitch’s theorem.

2. The relative version of Meyerovitch’s theorem generalizes the
relative LR theorem.

3. The relative version of Meyerovitch’s theorem follows from the
relative LR theorem. [via a coding argument!]

relative Meyerovitch
on arbitrary

relative systems
≡

relative LR
on relative systems

having
relative weak TMP
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III. Meyerovitch’s theorem and its relative version

· · · · · ·

· · · · · ·

u

v
xAc ∨ u

xAc ∨ v

Meyerovitch’s theorem (entropic case) [Meyerovitch, 2013]

Let µ be a measure of maximal entropy on a G-subshift X.
Then, for every two interchangeable patterns u, v ∈ LA(X)

µ([u] | ξAc
) = µ([v] | ξAc

) µ-almost surely.

Proof via relative LR . . .



III. Meyerovitch’s theorem and its relative version

Proof of Meyerovitch’s theorem via relative LR (sketch).

Special case: u and v are non-overlapping

Encode X as a relative system Ω.
The new system has relative weak TMP.
Apply relative LR to the measure µ̂ induced by µ on Ω.

u v v
z ∈ X

encode

u v v

??↑?? ??↑?? ??↑??

z ∈ X

x ∈ Xθ

θ ∈ Θ

µ

µ̂

µ

µ̂
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III. Meyerovitch’s theorem and its relative version

Proof of Meyerovitch’s theorem via relative LR (sketch).

General case: u and v may overlap

Let Y ⊆ {◦, •}G be the hard-core subshift with shape supp(u).
The patterns

[•
u
]

and
[•
v
]

are
non-overlapping and interchangeable in X × Y .

Apply the result of the non-overlapping case to µ× π on X × Y ,
where π is the measure of maximal entropy on Y .

u v v

v u

• • •

x ∈ X

y ∈ Y

µ
×
π
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IV: Equilibrium measures on group shifts

Let G be a countable group and H a finite group.
A group G-shift is a subshift X ⊆ HG which is also

a subgroup of HG.

Proposition [Kitchens and Schmidt, 1988]

Every group Zd-shift is of finite type.

Remark [see Salo, 2018]

If G is an arbitrary countable amenable group, then a group
G-shift may not be of finite type!

Proposition

Let G be a countable amenable group.
Then, every group G-shift has weak TMP.

−→ The extended LR theorem applies to group G-shifts!



IV: Equilibrium measures on group shifts

A probability measure on µ on a compact metric group X is
almost Haar if it is invariant under the action of
the homoclinic subgroup ∆(X) of X by left-translations.

Proposition

Let G be a countable amenable group and X a group G-shift.
A probability measure on X is almost Haar if and only if it is
uniform Gibbs.

Corollary (of extended LR)

Let G be a countable amenable group and X a group G-shift.
Suppose that the homoclinic subgroup ∆(X) is dense in X.
Then, the Haar measure on X is the unique measure of maximal
entropy (w.r.t. the action of G) on X.



Thank you for your attention!


