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Computing in presence of noise

Challenge in building computers

When implementing computation using physical components,

I Transient errors due to thermal noise are inevitable.

I The smaller the scale, the more important the effect of noise.

I In a lengthy computation, the errors may propagate.
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Computing in presence of noise

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

I For logic circuits: Yes, if we use logarithmic redundancy!
[Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]

I . . .

I For cellular automata: Yes, but the known solution is very
very sophisticated!

[Toom (1974, 1980), Gács and Reif (1988), Gács (1986, 2001)]
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Cellular automata (CA)
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A simple model of (parallel) computation [cf. Turing machine]

I Data is represented as an array of symbols (or colors)
arranged on a (d-dimensional) lattice. [Finite or infinite]

I Each step of computation consists in updating the symbols
simultaneously using a local rule. [Same local rule at every site!]

I Iterate! [Same local rule at every time step!]
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CA are discrete-time dynamical systems

I The set of all configurations x is a compact metric space!

I The global transformation x 7→ Tx is continuous!

=⇒ We can exploit the machinery of dynamical systems
and ergodic theory!
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Cellular automata (CA)

x
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CA have “physics-like” features

I Finite number of possible states at each site

I Local interactions [No action at a distance!]

I Reversibility and conservation laws can be easily implemented.

=⇒ Convenient for mathematical reasoning about
physical implementations of computation.
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Cellular automata subject to noise

At each step,

a) first, apply the deterministic CA,

b) then, add noise independently at each site.
[Various models of noise possible!]

; A special type of probabilistic cellular automaton (PCA).
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Probabilistic cellular automata (PCA)
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PCA are similar to CA, except that

I The local rule is probabilistic! [Described by a stochastic matrix]

I Symbols at different sites are updated independently.

PCA are discrete-time Markov processes

I The state at time t is a random configuration Xt.

I The transition kernel has the Feller property.

[Discrete-time variants of interacting particle systems]
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Computing with noisy CA

Problem (Reliable simulation)

Can we “simulate” a CA T with another CA S that is “reliable
against sufficiently weak noise”?

A simpler prerequisite:

Problem (Remembering a bit)

Find a CA that, in presence of sufficiently weak noise is cable of
“remembering” at least 1 bit of information indefinitely!

Precise formulation in the language of Markov processes:

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains
non-ergodic!

[Ergodicity: having a unique stationary measure that attracts every trajectory]
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Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains
non-ergodic!

Important earlier works

I Toom (1974, 1980): a broad family of examples of CA in two and
higher dimensions that remain non-ergodic in presence of noise.

I Gács and Reif (1988): every d-dimensional CA can be reliably
simulated by a (d+ 2)-dimensional CA.

[3d reliable computer not practical!]

I Gács (1986, 2001): a one-dimensional CA that is non-ergodic in
presence of sufficiently weak noise.

In fact, Gács’s example is universal: it reliably simulates any 1d CA!
[Very sophisticated construction with astronomical number of symbols!]
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I Gács and Reif (1988): every d-dimensional CA can be reliably
simulated by a (d+ 2)-dimensional CA.

[3d reliable computer not practical!]
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I Gács (1986, 2001): a one-dimensional CA that is non-ergodic in
presence of sufficiently weak noise.
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Ergodicity of noisy CA

Idea: Approach the problem from the other side in order to narrow
down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure
the ergodicity of the noisy version.

[A reliable CA should avoid those!]
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Example 1 (A nilpotent CA)
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Example 2 (A CA with spreading symbol)



Ergodicity of noisy CA

Example 3 (An almost equicontinuous CA)
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Example 4 (A surjective CA)
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Idea: Approach the problem from the other side in order to narrow
down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure
the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Remarks

I Most CA expected to be ergodic in presence of positive noise.

I Nevertheless, proving/disproving ergodicity often quite
difficult. [! equilibrium statistical mechanics at low temperature]

[algorithmically undecidable?]

I Different mechanisms for ergodicity.
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Ergodicity of noisy CA

Summary of results [Marcovici, Sablik, T. (2017)]
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I Any CA High noise

II Nilpotent Small perturbation

III CA with spreading symbol Memoryless noise
IV ”

(1d with N = {0, 1})
Small positive perturbation

V Gliders with annihilation Birth-death noise
VI Simple gliders with
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”

VII Permutive Permutation noise
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VIII Surjective Additive noise
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IX XOR Zero-range

X Binary CA with
spreading symbol

Zero-range
(75% of parameter range)
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Surjective CA + additive noise

Xt

T (Xt)

Xt+1

T

noise

Terminology

I Surjective CA: The global map T is onto.

I Additive noise: Noise adds a random value to current value,
independently at each site. [modulo |Σ|]

Remark

I Both a surjective CA and an additive noise preserve the
uniform Bernoulli measure.
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Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]
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is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Remarks

I Surjective CA include all reversible CA.

I Computing with reversible components has been suggested as
a way to control heat production during the computation.

[Landauer (1961), Bennett (1973), Fredkin and Toffoli (1982)]

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the
information in its input/software exponentially fast!
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Reversible computing with noisy components

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the
information in its input/software exponentially fast!

In fact:
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Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof idea.
Ergodicity is due to the accumulation of information.
Use entropy to measure the amount of information.

The entropy of a discrete random variable A is

H(A) := −
∑
a

P(A = a) logP(A = a) .

It measures the average information content of A.
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Surjective CA + additive noise

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof ingredients.

a) A surjective CA does not “erase” entropy, only “diffuses” it.

b) Additive noise increases entropy. [Sharp estimate needed!]

For each finite set of sites J and each time step t ≥ 0, we find

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |)

where ~ := log |Σ| is the maximum capacity of a single site.

c) A bootstrap lemma



Surjective CA + zero-range noise

Theorem [Marcovici, T. (2018)]

A perturbation of a surjective CA with a positive zero-range noise
is ergodic provided that both the CA and the noise preserve the
same Bernoulli measure.

Proof idea.
Use pressure instead of entropy.
Use a characterization of when a surjective CA preserves a
Bernoulli measure [Kari, T. (2015)].

The pressure of a discrete random variable A w.r.t.
an energy functional f is

Ψf (A) := H(A)− E[f(A)] .

It can be thought of as a contorted version of entropy.
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PCA with Bernoulli invariant measure

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is
ergodic.

[Same true for positive-rate IPS!]

Remarks on related results

I This simultaneously extends:

i) The above result on the ergodicity of surjective CA + noise
ii) An earlier partial result by Vasilyev (1978)

I The entropy method goes back to Boltzmann.
Its applications for lattice systems were pioneered by:

−→ Holley (1971), Holley and Stroock (1976) for IPS
−→ Kozlov and Vasilyev (1980) for PCA

I With the exception of Holley and Stroock (1976), the entropy
method has been limited to shift-invariant starting measures.

[Our result doesn’t have this limitation.]
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PCA with Bernoulli invariant measure

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is
ergodic. [Same true for positive-rate IPS!]

Conjecture 1

Every positive-rate PCA that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.

Conjecture 2

Every (local) positive-rate IPS that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.
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Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic
provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

I Using Perron–Frobenius theory

I Using a coupling argument

I . . .

I Entropy method [Goes back to Boltzmann!]
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Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]
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Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].

For simplicity, assume unif(Σ) is stationary.

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II) Suppose θ > 0.

If A
θ−→ B, then H(B) ≥ H(A) with equality iff A ∼ unif(Σ).
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Proof of the convergence theorem.

We can assume θ > 0.

Since H(X0), H(X1), . . . is increasing and bounded from above,
it converges to a value M ≤ log |Σ|.
If M < log |Σ|, then by compactness and continuity, we can find

A
θ−→ B with H(A) = H(B) < log |Σ|, a contradiction.
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II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .

Proof of exponential convergence.

It follows from Fact II′ that

H(Xt) ≥ log |Σ| − (1− κ)t
[

log |Σ| −H(X0)
]︸ ︷︷ ︸

→0

.



Entropy method for surjective CA + additive noise

J

Xt

T (Xt)

Xt+1

T

noise

Note

I The uniform Bernoulli measure is stationary.

I In order to prove ergodicity, it is enough to show that
for every finite set of sites J ,

H(Xt
J)→ |J | ~ as t→∞

where ~ := log |Σ| is the maximum capacity of each site.
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J

Xt

Y t

Xt+1

T

noise

Effect of a surjective CA

A surjective CA does not “erase” entropy, only “diffuses” it:

H(Y t
J ) ≥ H(Xt

J)−O(|∂J |)

Effect of additive noise
Additive noise increases entropy: ∃ constant 0 < κ ≤ 1 s.t.

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Y t

J )
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Combined effect

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Xt

J)−O(|∂J |) .

which implies

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |) .

for each t ≥ 0.
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J)−O(|∂J |) .

which implies

H(Xt
J) ≥

[
1− (1− κ)t

]︸ ︷︷ ︸
→1

|J | ~−
relatively smaller︷ ︸︸ ︷
O(|∂J |) .

for each t ≥ 0.
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Evolution of entropy

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |) .

A bootstrap lemma

The above implies ergodicity!

Intuitively:
Addition of entropy is much faster than its diffusion.

=⇒ entropy accumulates!
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Summary

Key points

? Can a CA perform reliable computation in presence of noise?

l Ergodicity ≡ total forgetfulness

l “Reliable computation requires some degree of irreversibility!”

l Entropy method for Markov processes

A related project

� Noise in (combinatorial) tilings

� Stability of quasicrystals at positive temperature

� Using self-organization to generate patterns at the nano-scale

Thank you for your attention!
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