Ergodicity of cellular automata subject to noise

Siamak Taati Bernoulli Institute, University of Groningen

UNAM, Mexico City — May 2019

Challenge in building computers

- ▶ Transient errors due to thermal noise are inevitable.
- ▶ The smaller the scale, the more important the effect of noise.
- In a lengthy computation, the errors may propagate.

Challenge in building computers

- ▶ Transient errors due to thermal noise are inevitable.
- ▶ The smaller the scale, the more important the effect of noise.
- In a lengthy computation, the errors may propagate.

Challenge in building computers

- ► Transient errors due to thermal noise are inevitable.
- ► The smaller the scale, the more important the effect of noise.
- In a lengthy computation, the errors may propagate.

Challenge in building computers

- ▶ Transient errors due to thermal noise are inevitable.
- ▶ The smaller the scale, the more important the effect of noise.
- In a lengthy computation, the errors may propagate.

Shannon (1948):

Can we do reliable communication through a noisy channel?

Von Neumann (1952):

Can we do reliable computation using noisy components?

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

► For logic circuits: Yes, if we use logarithmic redundancy!

[Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

For logic circuits: Yes, if we use logarithmic redundancy!

[Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]

...

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

- For logic circuits: Yes, if we use logarithmic redundancy!

 [Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]
- For cellular automata: Yes, but the known solution is very very sophisticated!

```
[Toom (1974, 1980), Gács and Reif (1988), Gács (1986, 2001)]
```

Shannon (1948):

Can we do reliable communication through a noisy channel?

Solution: Yes, if we use constant redundancy! [Shannon (1948)]

Von Neumann (1952):

Can we do reliable computation using noisy components?

Solution:

- For logic circuits: Yes, if we use logarithmic redundancy!

 [Von Neumann (1956), Dobrushin and Ortyukov (1977), Pippenger (1985)]
- For cellular automata: Yes, but the known solution is very very sophisticated!

[Toom (1974, 1980), Gács and Reif (1988), Gács (1986, 2001)]

A simple model of (parallel) computation

[cf. Turing machine]

A simple model of (parallel) computation [cf. Turing machine]

► Data is represented as an array of symbols (or colors) arranged on a (*d*-dimensional) lattice. [Finite or infinite]

- ► Data is represented as an array of symbols (or colors) arranged on a (*d*-dimensional) lattice. [Finite or infinite]
- ► Each step of computation consists in updating the symbols simultaneously using a local rule. [Same local rule at every site!]

- ► Data is represented as an array of symbols (or colors) arranged on a (*d*-dimensional) lattice. [Finite or infinite]
- ► Each step of computation consists in updating the symbols simultaneously using a local rule. [Same local rule at every site!]

- ► Data is represented as an array of symbols (or colors) arranged on a (*d*-dimensional) lattice. [Finite or infinite]
- ► Each step of computation consists in updating the symbols simultaneously using a local rule. [Same local rule at every site!]

- ► Data is represented as an array of symbols (or colors) arranged on a (*d*-dimensional) lattice. [Finite or infinite]
- ► Each step of computation consists in updating the symbols simultaneously using a local rule. [Same local rule at every site!]

- ▶ Data is represented as an array of symbols (or colors) arranged on a (d-dimensional) lattice. [Finite or infinite]
- ► Each step of computation consists in updating the symbols simultaneously using a local rule. [Same local rule at every site!]
- ► Iterate! [Same local rule at every time step!]

CA are discrete-time dynamical systems

- ▶ The set of all configurations *x* is a compact metric space!
- ▶ The global transformation $x \mapsto Tx$ is continuous!

CA are discrete-time dynamical systems

- ightharpoonup The set of all configurations x is a compact metric space!
- ▶ The global transformation $x \mapsto Tx$ is continuous!
- ⇒ We can exploit the machinery of dynamical systems and ergodic theory!

CA have "physics-like" features

- Finite number of possible states at each site
- ► Local interactions [No action at a distance!]
- Reversibility and conservation laws can be easily implemented.

CA have "physics-like" features

- Finite number of possible states at each site
- ► Local interactions [No action at a distance!]
- Reversibility and conservation laws can be easily implemented.
- Convenient for mathematical reasoning about physical implementations of computation.

Cellular automata subject to noise

At each step,

- a) first, apply the deterministic CA,
- b) then, add noise independently at each site.

Cellular automata subject to noise

At each step,

- a) first, apply the deterministic CA,
- b) then, add noise independently at each site.

Cellular automata subject to noise

At each step,

- a) first, apply the deterministic CA,
- b) then, add noise independently at each site.

Cellular automata subject to noise

At each step,

- a) first, apply the deterministic CA,
- b) then, add noise independently at each site.

Cellular automata subject to noise

At each step,

- a) first, apply the deterministic CA,
- b) then, add noise independently at each site.

[Various models of noise possible!]

→ A special type of probabilistic cellular automaton (PCA).

- ► The local rule is probabilistic! [Described by a stochastic matrix]
- Symbols at different sites are updated independently.

- ► The local rule is probabilistic! [Described by a stochastic matrix]
- Symbols at different sites are updated independently.

- ► The local rule is probabilistic! [Described by a stochastic matrix]
- Symbols at different sites are updated independently.

- ► The local rule is probabilistic! [Described by a stochastic matrix]
- Symbols at different sites are updated independently.

PCA are similar to CA, except that

- ► The local rule is probabilistic! [Described by a stochastic matrix]
- Symbols at different sites are updated independently.

PCA are discrete-time Markov processes

- ▶ The state at time t is a random configuration X^t .
- ► The transition kernel has the Feller property.

[Discrete-time variants of interacting particle systems]

Computing with noisy CA

Problem (Reliable simulation)

Can we "simulate" a CA T with another CA S that is "reliable against sufficiently weak noise"?

Computing with noisy CA

Problem (Reliable simulation)

Can we "simulate" a CA T with another CA S that is "reliable against sufficiently weak noise"?

Computing with noisy CA

Problem (Reliable simulation)

Can we "simulate" a CA T with another CA S that is "reliable against sufficiently weak noise"?

A simpler prerequisite:

Problem (Remembering a bit)

Find a CA that, in presence of sufficiently weak noise is cable of "remembering" at least 1 bit of information indefinitely!

Computing with noisy CA

Problem (Reliable simulation)

Can we "simulate" a CA T with another CA S that is "reliable against sufficiently weak noise"?

A simpler prerequisite:

Problem (Remembering a bit)

Find a CA that, in presence of sufficiently weak noise is cable of "remembering" at least 1 bit of information indefinitely!

Precise formulation in the language of Markov processes:

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

[Ergodicity: having a unique stationary measure that attracts every trajectory]

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

- ► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

- ► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.
- Sács and Reif (1988): every d-dimensional CA can be reliably simulated by a (d+2)-dimensional CA.

[3d reliable computer not practical!]

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

- ► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.
- Market M

[3d reliable computer not practical!]

► <u>Gács (1986, 2001)</u>: a <u>one-dimensional</u> CA that is non-ergodic in presence of sufficiently weak noise.

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

- ► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.
- Market M

[3d reliable computer not practical!]

<u>Gács (1986, 2001)</u>: a <u>one-dimensional</u> CA that is non-ergodic in presence of sufficiently weak noise.
In fact, Gács's example is universal: it reliably simulates <u>any</u> 1d CA!

Problem (Ergodicity of noisy CA)

Find a CA that, in presence of sufficiently weak noise remains non-ergodic!

Important earlier works

- ► Toom (1974, 1980): a broad family of examples of CA in two and higher dimensions that remain non-ergodic in presence of noise.
- Market M

[3d reliable computer not practical!]

<u>Gács (1986, 2001)</u>: a <u>one-dimensional</u> CA that is non-ergodic in presence of sufficiently weak noise.
In fact, Gács's example is universal: it reliably simulates <u>any</u> 1d CA!

[Very sophisticated construction with astronomical number of symbols!]

Idea: Approach the problem from the other side in order to narrow down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Example 1 (A nilpotent CA)

Example 2 (A CA with spreading symbol)

Example 3 (An almost equicontinuous CA)

Example 4 (A surjective CA)

Idea: Approach the problem from the other side in order to narrow down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Remarks

Idea: Approach the problem from the other side in order to narrow down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Remarks

Most CA expected to be ergodic in presence of positive noise.

Idea: Approach the problem from the other side in order to narrow down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Remarks

- Most CA expected to be ergodic in presence of positive noise.
- ► Nevertheless, proving/disproving ergodicity often quite difficult. [equilibrium statistical mechanics at low temperature] [algorithmically undecidable?]

Idea: Approach the problem from the other side in order to narrow down the search.

Problem (Sufficient conditions for ergodicity)

Identify dynamical/combinatorial properties for the CA that ensure the ergodicity of the noisy version.

[A reliable CA should avoid those!]

Remarks

- Most CA expected to be ergodic in presence of positive noise.
- ▶ Different mechanisms for ergodicity.

Summary of results [Marcovici, Sablik, T. (2017)]

	Type of CA	Type of noise
I	Any CA	High noise
II	Nilpotent	Small perturbation
III	CA with spreading symbol	Memoryless noise
IV		Small positive perturbation
	(1d with $\mathcal{N}=\{0,1\}$)	
V	Gliders with annihilation	Birth-death noise
VI	Simple gliders with	
	reflecting walls	
VII	Permutive	Permutation noise
VIII	Surjective	Additive noise
IX	XOR	Zero-range
X	Binary CA with	Zero-range
	spreading symbol	(75% of parameter range)

Summary of results [Marcovici, Sablik, T. (2017)]

		Type of CA	Type of noise
	I	Any CA	High noise
	Ш	Nilpotent	Small perturbation
	Ш	CA with spreading symbol	Memoryless noise
.E	IV		Small positive perturbation
coupling		(1d with $\mathcal{N}=\{0,1\}$)	
8	V	Gliders with annihilation	Birth-death noise
	VI	Simple gliders with	
		reflecting walls	
l	VII	Permutive	Permutation noise
entropy	VIII	Surjective	Additive noise
Fourier analysis	IX	XOR	Zero-range
. <u>r</u> = 5	X	Binary CA with	Zero-range
7 e (spreading symbol	(75% of parameter range)

Summary of results [Marcovici, Sablik, T. (2017)]

		Type of CA	Type of noise
coupling	I	Any CA	High noise
	II	Nilpotent	Small perturbation
	III	CA with spreading symbol	Memoryless noise
	IV		Small positive perturbation
		(1d with $\mathcal{N}=\{0,1\}$)	
	V	Gliders with annihilation	Birth-death noise
	VI	Simple gliders with	
		reflecting walls	
	VII	Permutive	Permutation noise
entropy	VIII	Surjective	Additive noise
Fourier	/ IX	XOR	Zero-range
	X	Binary CA with	Zero-range
		spreading symbol	(75% of parameter range)

Terminology

- ightharpoonup Surjective CA: The global map T is onto.
- ► <u>Additive noise</u>: Noise adds a random value to current value, independently at each site. [modulo |Σ|]

Terminology

- ightharpoonup Surjective CA: The global map T is onto.
- igwedge Additive noise: Noise adds a random value to current value, independently at each site. [modulo $|\Sigma|$]

Remark

Both a surjective CA and an additive noise preserve the uniform Bernoulli measure.

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Remarks

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Remarks

Surjective CA include all reversible CA.

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Remarks

- Surjective CA include all reversible CA.
- Computing with reversible components has been suggested as a way to control heat production during the computation.

[Landauer (1961), Bennett (1973), Fredkin and Toffoli (1982)]

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Remarks

- Surjective CA include all reversible CA.
- Computing with reversible components has been suggested as a way to control heat production during the computation.

[Landauer (1961), Bennett (1973), Fredkin and Toffoli (1982)]

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the information in its input/software exponentially fast!

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the information in its input/software exponentially fast!

In fact:

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the information in its input/software exponentially fast!

In fact:

▶ The state of any region of size n mixes in $O(\log n)$ steps.

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the information in its input/software exponentially fast!

In fact:

- ▶ The state of any region of size n mixes in $O(\log n)$ steps.
- A finite parallel reversible computer with n noisy components mixes in $O(\log n)$ steps. [Very limited computational power!]

[see Aharonov, Ben-Or, Impagliazzo, Nisan (1996)]

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the information in its input/software exponentially fast!

In fact:

- ▶ The state of any region of size n mixes in $O(\log n)$ steps.
- A finite parallel reversible computer with n noisy components mixes in $O(\log n)$ steps. [Very limited computational power!]

[see Aharonov, Ben-Or, Impagliazzo, Nisan (1996)]

Practical implication

In order to implement noise-resilient (CA-like) computers, some degree of irreversibility is necessary.

[see Bennett (1982) and Bennett and Grinstein (1985)]

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Proof idea.

Ergodicity is due to the accumulation of information.

Use entropy to measure the amount of information.

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Proof idea.

Ergodicity is due to the accumulation of information.

Use entropy to measure the amount of information.

The entropy of a discrete random variable A is

$$H(A) := -\sum_{a} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Theorem [Marcovici, Sablik, T. (2017) and Markovici, T. (2018)]

Every perturbation of a surjective CA with a positive additive noise is ergodic with the uniform Bernoulli measure as its invariant measure.

[Convergence is exponentially fast!]

Proof ingredients.

- a) A surjective CA does not "erase" entropy, only "diffuses" it.
- b) Additive noise increases entropy. [Sharp estimate needed!]

For each finite set of sites J and each time step $t \ge 0$, we find

$$H(X_J^t) \ge \left[1 - (1 - \kappa)^t\right] |J| \hbar - O(|\partial J|)$$

where $\hbar \coloneqq \log |\Sigma|$ is the maximum capacity of a single site.

c) A bootstrap lemma

Surjective CA + zero-range noise

Theorem [Marcovici, T. (2018)]

A perturbation of a surjective CA with a positive zero-range noise is ergodic <u>provided that</u> both the CA and the noise preserve the same Bernoulli measure.

Proof idea.

Use pressure instead of entropy.

Use a characterization of when a surjective CA preserves a Bernoulli measure [Kari, T. (2015)].

Surjective CA + zero-range noise

Theorem [Marcovici, T. (2018)]

A perturbation of a surjective CA with a positive zero-range noise is ergodic <u>provided that</u> both the CA and the noise preserve the same Bernoulli measure.

Proof idea.

Use pressure instead of entropy.

Use a characterization of when a surjective CA preserves a Bernoulli measure [Kari, T. (2015)].

The pressure of a discrete random variable A w.r.t. an energy functional f is

$$\Psi_f(A) := H(A) - \mathbb{E}[f(A)]$$
.

It can be thought of as a contorted version of entropy.

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic.

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic. [Same true for positive-rate IPS!]

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic. [Same true for positive-rate IPS!]

Remarks on related results

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic. [Same true for positive-rate IPS!]

Remarks on related results

- This simultaneously extends:
 - i) The above result on the ergodicity of surjective CA + noise
 - ii) An earlier partial result by Vasilyev (1978)

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic. [Same true for positive-rate IPS!]

Remarks on related results

- This simultaneously extends:
 - i) The above result on the ergodicity of surjective CA + noise
 - ii) An earlier partial result by Vasilyev (1978)
- The entropy method goes back to Boltzmann. Its applications for lattice systems were pioneered by:
 - → Holley (1971), Holley and Stroock (1976) for IPS
 - → Kozlov and Vasilyev (1980) for PCA

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a Bernoulli invariant measure is ergodic. [Same true for positive-rate IPS!]

Remarks on related results

- This simultaneously extends:
 - i) The above result on the ergodicity of surjective CA + noise
 - ii) An earlier partial result by Vasilyev (1978)
- The entropy method goes back to Boltzmann. Its applications for lattice systems were pioneered by:
 - → Holley (1971), Holley and Stroock (1976) for IPS
 - → Kozlov and Vasilyev (1980) for PCA
- ► With the exception of Holley and Stroock (1976), the entropy method has been limited to shift-invariant starting measures.

[Our result doesn't have this limitation.]

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a <u>Bernoulli invariant measure</u> is ergodic. [Same true for positive-rate IPS!]

Conjecture 1

Every positive-rate PCA that has a <u>Gibbs invariant measure</u> converges to the set of Gibbs measures with the same specification.

Theorem [Marcovici, T. (2018)]

Every positive-rate PCA that has a <u>Bernoulli invariant measure</u> is ergodic. [Same true for positive-rate IPS!]

Conjecture 1

Every positive-rate PCA that has a <u>Gibbs invariant measure</u> converges to the set of Gibbs measures with the same specification.

Conjecture 2

Every (local) positive-rate IPS that has a <u>Gibbs invariant measure</u> converges to the set of Gibbs measures with the same specification.

Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

- Using Perron–Frobenius theory
- Using a coupling argument
- Entropy method

[Goes back to Boltzmann!]

Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

- Using Perron–Frobenius theory
- Using a coupling argument
- Entropy method

[Goes back to Boltzmann!]

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Important properties of entropy

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) \coloneqq -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a) .$$

It measures the average information content of A.

Important properties of entropy

• (positivity) $H(A) \ge 0$.

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Important properties of entropy

- ▶ (positivity) $H(A) \ge 0$.
- (capacity) H(A) is maximized precisely when $A \sim \mathrm{unif}(\Sigma)$.

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Important properties of entropy

- ▶ (positivity) $H(A) \ge 0$.
- (capacity) H(A) is maximized precisely when $A \sim \mathrm{unif}(\Sigma)$.
- (chain rule) H(A, B) = H(A) + H(B | A).

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Important properties of entropy

- ▶ (positivity) $H(A) \ge 0$.
- (capacity) H(A) is maximized precisely when $A \sim \mathrm{unif}(\Sigma)$.
- $(chain rule) H(A,B) = H(A) + H(B \mid A).$

[. . . for a suitable definition of conditional entropy $H(B \,|\, A)$]

The entropy of a discrete random variable A taking values in a finite set Σ is

$$H(A) := -\sum_{a \in \Sigma} \mathbb{P}(A = a) \log \mathbb{P}(A = a)$$
.

It measures the average information content of A.

Important properties of entropy

- ▶ (positivity) $H(A) \ge 0$.
- (capacity) H(A) is maximized precisely when $A \sim \mathrm{unif}(\Sigma)$.
- (chain rule) $H(A,B) = H(A) + H(B \mid A)$.
 - [. . . for a suitable definition of conditional entropy $H(B \,|\, A)$]
- (continuity) H(A) is continuous.

 $[\ldots$ as a function of the distribution of A]

Let X^0,X^1,\ldots be a Markov chain with finite state space Σ and transition matrix $\theta:\Sigma\times\Sigma\to[0,1].$

Let X^0, X^1, \ldots be a Markov chain with finite state space Σ and transition matrix $\theta: \Sigma \times \Sigma \to [0,1]$. For simplicity, assume $\mathrm{unif}(\Sigma)$ is stationary.

Let X^0, X^1, \ldots be a Markov chain with finite state space Σ and transition matrix $\theta: \Sigma \times \Sigma \to [0,1]$. For simplicity, assume $\mathbf{unif}(\Sigma)$ is stationary.

Facts

Let X^0, X^1, \ldots be a Markov chain with finite state space Σ and transition matrix $\theta: \Sigma \times \Sigma \to [0,1]$. For simplicity, assume $\mathbf{unif}(\Sigma)$ is stationary.

Facts

I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.

Let X^0, X^1, \ldots be a Markov chain with finite state space Σ and transition matrix $\theta: \Sigma \times \Sigma \to [0, 1]$. For simplicity, assume $\mathbf{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II) Suppose $\theta>0$. If $A\stackrel{\theta}{\to} B$, then $H(B)\geq H(A)$ with equality iff $A\sim \mathrm{unif}(\Sigma)$.

Let X^0,X^1,\ldots be a Markov chain with finite state space Σ and transition matrix $\theta:\Sigma\times\Sigma\to[0,1].$

For simplicity, assume $\operatorname{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II) Suppose $\theta > 0$. If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$ with equality iff $A \sim \mathrm{unif}(\Sigma)$.

Proof of the convergence theorem.

We can assume $\theta > 0$.

Let X^0,X^1,\ldots be a Markov chain with finite state space Σ and transition matrix $\theta:\Sigma\times\Sigma\to[0,1].$

For simplicity, assume $\operatorname{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II) Suppose $\theta > 0$. If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$ with equality iff $A \sim \mathrm{unif}(\Sigma)$.

Proof of the convergence theorem.

We can assume $\theta > 0$.

Since $H(X^0), H(X^1), \ldots$ is increasing and bounded from above, it converges to a value $M \leq \log |\Sigma|$.

Let X^0,X^1,\ldots be a Markov chain with finite state space Σ and transition matrix $\theta:\Sigma\times\Sigma\to[0,1].$

For simplicity, assume $\operatorname{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II) Suppose $\theta > 0$. If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$ with equality iff $A \sim \mathrm{unif}(\Sigma)$.

Proof of the convergence theorem.

We can assume $\theta > 0$.

Since $H(X^0), H(X^1), \ldots$ is increasing and bounded from above, it converges to a value $M \leq \log |\Sigma|$.

If $M < \log |\Sigma|$, then by compactness and continuity, we can find $A \xrightarrow{\theta} B$ with $H(A) = H(B) < \log |\Sigma|$, a contradiction.

Let X^0, X^1, \ldots be a Markov chain with finite state space Σ and transition matrix $\theta: \Sigma \times \Sigma \to [0, 1]$. For simplicity, assume $\mathbf{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II') Suppose $\theta > 0$. Then, \exists constant $0 < \kappa \le 1$ s.t. If $A \xrightarrow{\theta} B$, then

$$H(B) \ge \kappa \log |\Sigma| + (1 - \kappa)H(A)$$
.

Let X^0,X^1,\ldots be a Markov chain with finite state space Σ and transition matrix $\theta:\Sigma\times\Sigma\to[0,1].$

For simplicity, assume $\operatorname{unif}(\Sigma)$ is stationary.

Facts

- I) If $A \xrightarrow{\theta} B$, then $H(B) \ge H(A)$.
- II') Suppose $\theta > 0$. Then, \exists constant $0 < \kappa \le 1$ s.t. If $A \xrightarrow{\theta} B$, then

$$H(B) \ge \kappa \log |\Sigma| + (1 - \kappa)H(A)$$
.

Proof of exponential convergence.

It follows from Fact II' that

$$H(X^t) \ge \log |\Sigma| - \underbrace{(1-\kappa)^t \left[\log |\Sigma| - H(X^0)\right]}_{0}$$
.

Note

- The uniform Bernoulli measure is stationary.
- ▶ In order to prove ergodicity, it is enough to show that for every finite set of sites J,

$$H(X_J^t) o |J| \, \hbar \qquad \text{as } t o \infty$$

where $\hbar \coloneqq \log |\Sigma|$ is the maximum capacity of each site.

Effect of a surjective CA

A surjective CA does not "erase" entropy, only "diffuses" it:

$$H(Y_J^t) \ge H(X_J^t) - O(|\partial J|)$$

Effect of a surjective CA

A surjective CA does not "erase" entropy, only "diffuses" it:

$$H(Y_J^t) \ge H(X_J^t) - O(|\partial J|)$$

Effect of additive noise

Additive noise increases entropy: \exists constant $0 < \kappa \le 1$ s.t.

$$H(X_J^{t+1}) \ge \kappa |J| \, \hbar + (1 - \kappa) H(Y_J^t)$$

Combined effect

$$H(X_J^{t+1}) \ge \kappa |J| \, \hbar + (1-\kappa) H(X_J^t) - O(|\partial J|) \; .$$

Combined effect

$$H(X_J^{t+1}) \geq \kappa \left| J \right| \hbar + (1-\kappa) H(X_J^t) - O(|\partial J|) \; .$$

which implies

$$H(X_J^t) \ge \left[1 - (1 - \kappa)^t\right] |J| \hbar - O(|\partial J|).$$

for each $t \geq 0$.

Combined effect

$$H(X_J^{t+1}) \geq \kappa \left| J \right| \hbar + (1-\kappa) H(X_J^t) - O(|\partial J|) \; .$$

which implies

$$H(X_J^t) \ge \underbrace{\left[1 - (1 - \kappa)^t\right]}_{\to 1} |J| \hbar - O(|\partial J|).$$

for each $t \geq 0$.

Combined effect

$$H(X_J^{t+1}) \ge \kappa |J| \, \hbar + (1-\kappa) H(X_J^t) - O(|\partial J|) \; .$$

which implies

relatively smaller

$$H(X_J^t) \ge \underbrace{\left[1 - (1 - \kappa)^t\right]}_{\uparrow \downarrow} |J| \hbar - O(|\partial J|).$$

for each $t \geq 0$.

Evolution of entropy

$$\boxed{H(X_J^t) \ge \left[1 - (1 - \kappa)^t\right] |J| \, \hbar - O(|\partial J|)}.$$

Evolution of entropy

$$H(X_J^t) \ge \left[1 - (1 - \kappa)^t\right] |J| \, \hbar - O(|\partial J|).$$

A bootstrap lemma

The above implies ergodicity!

Intuitively:

Addition of entropy is much faster than its diffusion.

⇒ entropy accumulates!

Summary

Key points

- ? Can a CA perform reliable computation in presence of noise?
- \varnothing Ergodicity \equiv total forgetfulness
- "Reliable computation requires some degree of irreversibility!"
- Entropy method for Markov processes

Summary

Key points

- ? Can a CA perform reliable computation in presence of noise?
- \varnothing Ergodicity \equiv total forgetfulness
- "Reliable computation requires some degree of irreversibility!"
- Entropy method for Markov processes

A related project

- Noise in (combinatorial) tilings
- Stability of quasicrystals at positive temperature
- Using self-organization to generate patterns at the nano-scale

Summary

Key points

- ? Can a CA perform reliable computation in presence of noise?
- \varnothing Ergodicity \equiv total forgetfulness
- "Reliable computation requires some degree of irreversibility!"
- Entropy method for Markov processes

A related project

- Noise in (combinatorial) tilings
- Stability of quasicrystals at positive temperature
- Using self-organization to generate patterns at the nano-scale

Thank you for your attention!

