Metastability of the hard-core process on bipartite graphs

Frank den Hollander¹ Francesca Nardi² <u>Siamak Taati</u>¹

¹Mathematical Institute, Leiden University

²Department of Mathematics, Eindhoven University of Technology

METASTABILITY Workshop Eurandom, April 2016

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- ► All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- ► All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- ► All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- All clocks are independent.

Configurations

- Each site can carry at most one particle.
- Constraint: particles cannot site next to each other.

[Particles cannot overlap!]

- ▶ Birth attempt at site k (Poisson clock with rate λ_k)
- ▶ Death attempt at site k (Poisson clock with rate 1)
- All clocks are independent.

Reversible stationary distribution

[Boltzmann distribution]

$$\pi(x) = \frac{1}{Z} \prod_{\substack{k \text{ occupied} \\ \text{in } x}} \lambda_k$$

for each valid configuration x. (Z is the appropriate normalizing constant.)

Asymptotic regime

When the birth rates λ_k are very large:

Asymptotic regime

When the birth rates λ_k are very large:

► The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

► The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

► The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

► The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

► The process tends to remain close to fully packed configurations, specially those that are "locally stable".

Asymptotic regime

When the birth rates λ_k are very large:

- ► The process tends to remain close to fully packed configurations, specially those that are "locally stable".
- ► A typical stationary sample is efficiently fully packed!

Asymptotic regime

When the birth rates λ_k are very large:

- ► The process tends to remain close to fully packed configurations, specially those that are "locally stable".
- ► A typical stationary sample is efficiently fully packed!

Metastability

- It takes a long time for the process to leave a "locally stable" but inefficiently packed configuration. [large exit time]
- Once a more efficient configuration is reached,
 it takes <u>much longer</u> to return. [small stationary probability]

Metastability

- It takes a long time for the process to leave a "locally stable" but inefficiently packed configuration. [large exit time]
- Once a more efficient configuration is reached,
 it takes <u>much longer</u> to return. [small stationary probability]

local minimum in the energy landscape

bottleneck in the phase space

Metastability

- It takes a <u>long time</u> for the process to leave a "locally stable" but <u>inefficiently packed</u> configuration. [large exit time]
- Once a more efficient configuration is reached,
 it takes much longer to return. [small stationary probability]

Hard-core gas on graphs

Motivation

- classic example from statistical mechanics [on the lattice]
 - → phase transition (solid-gas) with symmetry breaking
- wireless communication networks
 - → the graph represents the possibilities of interference
 - --> metastability undermines the network performance
- includes the Widom-Rowlinson model

Related work

- Zocca, Borst, van Leeuwaarden and Nardi (2013–2015)
- Alessandro Zocca's PhD thesis (2015)
- Galvin and Tetali (2006), Randall (2008),
 - and Antonio Blanca (2012)

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **birth** rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- lacktriangle Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- ightharpoonup Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ightharpoonup Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from *u*

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from u

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from *u*

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from *u*

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from *u*

An exagerated example

- complete bipartite graph
- **b** birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- ▶ Metastable behaviour starting from *u*

An exagerated example

- complete bipartite graph
- \blacktriangleright birth rate λ at each site
- $ightharpoonup \lambda$ large
- ightharpoonup |U| < |V|

Intuitive observations

- lacktriangle Exactly two fully packed configurations u and v
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is "more efficient" than u.
- Metastable behaviour starting from u

Question

How long does the transition from u to v take?

reversible Markov chain

Reversible Markov chain

Let X_n $(n \ge 0)$ be the discrete-time Markov chain. The first hitting time of v is

$$T_v := \inf\{n \ge 0 : X_n = v\}$$
.

Reversible Markov chain

Let X_n $(n \ge 0)$ be the discrete-time Markov chain. The first hitting time of v is

$$T_v := \inf\{n \ge 0 : X_n = v\}$$
.

Reversible Markov chain

Let X_n $(n \ge 0)$ be the discrete-time Markov chain. The first hitting time of v is

$$T_v := \inf\{n \ge 0 : X_n = v\}$$
.

Question

What is the expected transition time $\mathbb{E}_u T_v$?

As an electric network

Review: reversible Markov chain vs. electric network

Fundamental connection I

For every state x,

$$\mathbb{P}_x(T_A < T_B) = \mathsf{voltage}(x)$$

if a 1^V battery is connected between A and B.

Fundamental connection II

For every state x,

effective resistance
$$G_{T_{P}}(a,x) = \overbrace{\mathcal{R}(a \leftrightarrow B)}^{\text{effective resistance}} \pi(x) \, \mathbb{P}_{x}(T_{a} < T_{B})$$

where $G_{T_B}(a,x) := \mathbb{E}_a[\# \text{ of visits to } x \text{ before } T_B].$

Corollary

$$\mathbb{E}_a T_B = \mathcal{R}(a \leftrightarrow B) \sum_{x} \pi(x) \, \mathbb{P}_x(T_a < T_B)$$

$$\mathbb{E}_{u} T_{v} \approx \mathbb{E}_{u} T_{Z}$$

$$= \mathcal{R}(u \leftrightarrow Z) \sum_{x} \pi(x) \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$= \pi(u) \mathcal{R}(u \leftrightarrow Z) \sum_{x} \frac{\pi(x)}{\pi(u)} \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$\approx \pi(u) \mathcal{R}(u \leftrightarrow Z)$$

$$\mathbb{E}_{u} T_{v} \approx \mathbb{E}_{u} T_{Z}$$

$$= \mathcal{R}(u \leftrightarrow Z) \sum_{x} \pi(x) \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$= \pi(u) \mathcal{R}(u \leftrightarrow Z) \sum_{x} \frac{\pi(x)}{\pi(u)} \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$\approx \pi(u) \mathcal{R}(u \leftrightarrow Z)$$

$$\mathbb{E}_{u} T_{v} \approx \mathbb{E}_{u} T_{Z}$$

$$= \mathcal{R}(u \leftrightarrow Z) \sum_{x} \pi(x) \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$= \frac{\pi(u)}{\pi(u)} \mathcal{R}(u \leftrightarrow Z) \sum_{x} \frac{\pi(x)}{\pi(u)} \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$\approx \pi(u) \mathcal{R}(u \leftrightarrow Z)$$

$$\mathbb{E}_{u} T_{v} \approx \mathbb{E}_{u} T_{Z}$$

$$= \mathcal{R}(u \leftrightarrow Z) \sum_{x} \pi(x) \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$= \pi(u) \mathcal{R}(u \leftrightarrow Z) \left[1 + \sum_{x \neq u} \frac{\pi(x)}{\pi(u)} \, \mathbb{P}_{x}(T_{u} < T_{Z}) \right]$$

$$\approx \pi(u) \mathcal{R}(u \leftrightarrow Z)$$

$$\mathbb{E}_{u} T_{v} \approx \mathbb{E}_{u} T_{Z}$$

$$= \mathcal{R}(u \leftrightarrow Z) \sum_{x} \pi(x) \, \mathbb{P}_{x}(T_{u} < T_{Z})$$

$$= \pi(u) \mathcal{R}(u \leftrightarrow Z) \left[1 + \sum_{x \neq u} \frac{\pi(x)}{\pi(u)} \, \mathbb{P}_{x}(T_{u} < T_{Z}) \right]$$

$$\approx \pi(u) \mathcal{R}(u \leftrightarrow Z)$$

$$\mathbb{E}_u T_v \approx \pi(u) \mathcal{R}(u \leftrightarrow Z) \approx \pi(u) \mathcal{R}(u \leftrightarrow v)$$

Expected transition time

$$\mathbb{E}_u T_v \approx \pi(u) \mathcal{R}(u \leftrightarrow Z) \approx \pi(u) \mathcal{R}(u \leftrightarrow v)$$

It remains to estimate $\mathcal{R}(u \leftrightarrow v)$.

Estimating the effective resistance

Estimating the effective resistance

Estimating the effective resistance

Expected transition time

Proposition (Discrete time)

$$\mathbb{E}_u\,T_v=rac{1}{|U|}\lambda^{|U|-1}[1+o(1)] \qquad ext{ as } \lambda o\infty.$$

Expected transition time

Proposition (Continuous time)

$$\mathbb{E}_u\,T_v=rac{\gamma}{|U|}\lambda^{|U|-1}[1+o(1)] \qquad ext{ as } \lambda o\infty.$$

 $\gamma := (|U| + |V|)(1 + \lambda)$ is the rate of Poisson clock

A more general setting

- an arbitrary bipartite graph
- ► Birth rates

λ	on	U
$ar{\lambda}$	on	V

A more general setting

- an arbitrary bipartite graph
- ► Birth rates

λ	on	U
$ar{\lambda}$	on	V

A more general setting

- an arbitrary bipartite graph
- ► Birth rates

λ	on	U
$ar{\lambda}$	on	V

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

- $ightharpoonup \lambda, \bar{\lambda}$ large
- $\blacktriangleright |U| < (1+\alpha)|V|$

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

- $ightharpoonup \lambda, \bar{\lambda}$ large
- ▶ $|U| < (1 + \alpha) |V|$

- ► Two fully packed configurations *u* and *v* [but possibly many more]
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is the "most efficient" packing.

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

- $ightharpoonup \lambda, \bar{\lambda}$ large
- ▶ $|U| < (1 + \alpha) |V|$

- ightharpoonup Two fully packed configurations u and v [but possibly many more]
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is the "most efficient" packing.

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

- $ightharpoonup \lambda, \bar{\lambda}$ large
- ▶ $|U| < (1 + \alpha) |V|$

- ightharpoonup Two fully packed configurations u and v [but possibly many more]
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is the "most efficient" packing.

A more general setting

- an arbitrary bipartite graph
- ▶ Birth rates (with $0 < \alpha < 1$)

$$\begin{array}{ll} \lambda & \text{on } U \\ \bar{\lambda} = \lambda^{1+\alpha+o(1)} & \text{on } V \end{array}$$

- $ightharpoonup \lambda, \bar{\lambda}$ large
- ▶ $|U| < (1 + \alpha) |V|$

- ightharpoonup Two fully packed configurations u and v [but possibly many more]
 - \longrightarrow Both u and v are "locally stable".
 - $\longrightarrow v$ is the "most efficient" packing.

Examples of bipartite graphs

graphs arising from two-species Widom-Rowlinson model

Metastability in Markov processes

Some references

- Kramers (1940)
- large deviations / path-wise approach
 - ▶ Freidlin and Wentzell (1960–1970)

 - ▷ ...
- potential-theoretic approach
 - ▶ Bovier, Eckhoff, Gayrard and Klein (2001–)
 - > . . .

Three books

- ► Freidlin and Wentzell: Random Perturbations of Dynamical Systems (1984)
- ▶ Olivieri and Vares: Large Deviations and Metastability (2005)
- ► Bovier and den Hollander: Metastability — A Potential-Theoretic Approach (2015)

Main results: I

Theorem (Critical droplets)

For the hard-core dynamics on an even torus $\mathbb{Z}_m \times \mathbb{Z}_n$, when going from u to v, with large probability, the chain passes through exactly one transition $Q \to Q^*$, where Q and Q^* are obtained from the solutions of an isoperimetric problem.

[similar for hypercube]

Main results: I

Theorem (Critical droplets)

For the hard-core dynamics on an even torus $\mathbb{Z}_m \times \mathbb{Z}_n$, when going from u to v, with large probability, the chain passes through exactly one transition $Q \to Q^*$, where Q and Q^* are obtained from the solutions of an isoperimetric problem.

[similar for hypercube]

[similar for Widom-Rowlinson]

Main results: II

Theorem (Expected transition time)

For the hard-core dynamics on an even torus $\mathbb{Z}_m \times \mathbb{Z}_n$ we have

$$\mathbb{E}_u T_v = \frac{\gamma}{2 \, m \, n \, l^*} \, \frac{\lambda^{l^*(l^*+1)+1}}{\bar{\lambda}^{l^*(l^*-1)}} \left[1 + o(1) \right]$$

as $\lambda \to \infty$, where $l^* \coloneqq \lceil \frac{1}{\alpha} \rceil$ is the size of the critical droplet and $\gamma \coloneqq |U|(1+\lambda) + |V|(1+\bar{\lambda})$ is the rate of the Poisson clock.

[similar for hypercube] [similar for Widom-Rowlinson]

Proof steps.

Show that (in discrete time)

$$\mathbb{E}_u T_v = \pi(u) \mathcal{R}(u \leftrightarrow v) [1 + o(1)] \qquad \text{as } \lambda \to \infty.$$

Estimate the effective resistance.

Main results: III

Theorem (Asymptotic exponential law)

For the hard-core dynamics on "many" bipartite graphs we have

[e.g., torus, hypercube, . . .]

$$\mathbb{P}_u\left(\frac{T_v}{\mathbb{E}_u T_v} > t\right) \to e^{-t}$$

uniformly in $t \in \mathbb{R}^+$ as $\lambda \to \infty$.

Intuition.

Many many trials (attempts to form a critical droplet) with tiny probability of success

⇒ success time approximately exponential

Effective resistance: rough estimate

Critical resistance

[a.k.a. communication height]

For every two states $a,b\in\mathscr{X}$, set

$$\Psi(a,b) \coloneqq \inf_{\omega: a \leadsto b} \sup_{e \in \omega} r(e)$$

Remark

- ▶ $a, b \mapsto \mathcal{R}(a \leftrightarrow b)$ is a metric on \mathscr{X} .
- $a,b\mapsto \Psi(a,b)$ is an ultra-metric on $\mathscr X$.

Proposition (Equivalence)

There exists a constant $k \ge 1$ such that

[independent of λ]

$$\frac{1}{k}\Psi(a,b) \le \mathcal{R}(a \leftrightarrow b) \le k\,\Psi(a,b)$$

for all $a, b \in \mathcal{X}$.

Effective resistance: sharp estimate

A pair (Q,Q^*) is a critical gate between A and B if

- 1. $r(x,y) \asymp \Psi(A,B)$ for every $x \in Q$ and $y \in Q^*$ with $x \sim y$,
- 2. $\Psi(A, x) \prec \Psi(A, B)$ for every $x \in Q$,
- 3. $\Psi(y,B) \prec \Psi(A,B)$ for every $y \in Q^*$, and
- 4. every optimal path from A to B passes through a transition $Q \to Q^{\ast}.$

Effective resistance: sharp estimate

Proposition

Let (Q,Q^*) be a critical pair between A and B. Then,

$$\mathcal{C}(A \leftrightarrow B) = c(Q, Q^*)[1 + o(1)]$$
 as $\lambda \to \infty$,

where
$$c(Q,Q^*) \coloneqq \sum_{\substack{x \in Q \ y \in Q^* \\ x \sim y}} c(x,y).$$

Effective resistance: sharp estimate

Proof.

Upper bound: simple Nash-Williams inequality

Lower bound: generalized Nash-Williams inequality

[a.k.a. Berman-Konsowa variational principle]

Thank you for your attention!