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Hard-core gas process

Configurations

» Each site can carry at most one particle.
» Constraint: particles cannot site next to each other.
[Particles cannot overlap!]
Dynamics
» Birth attempt at site k& (Poisson clock with rate \)
» Death attempt at site k& (Poisson clock with rate 1)

» All clocks are independent.
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Hard-core gas process

Reversible stationary distribution [Boltzmann distribution]
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for each valid configuration .
(Z is the appropriate normalizing constant.)
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Hard-core gas process
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fully packed stationary distribution
and “stable” A
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Asymptotic regime
When the birth rates A\ are very large:

» The process tends to remain close to fully packed
configurations, specially those that are “locally stable”.

> A typical stationary sample is efficiently fully packed!
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Metastability

> It takes a long time for the process to leave a “locally stable”
but inefficiently packed configuration. [large exit time]

» Once a more efficient configuration is reached,
it takes much longer to return. [small stationary probability]
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Hard-core gas process

local minimum bottleneck in
in the energy landscape the phase space

energy T

_—
phase space

Metastability

> It takes a long time for the process to leave a “locally stable”
but inefficiently packed configuration. [large exit time]

» Once a more efficient configuration is reached,
it takes much longer to return. [small stationary probability]



Hard-core gas on graphs

Motivation

> classic example from statistical mechanics [on the lattice]
— phase transition (solid-gas) with symmetry breaking
> wireless communication networks

— the graph represents the possibilities of interference
— metastability undermines the network performance

» includes the Widom-Rowlinson model

Related work

» Zocca, Borst, van Leeuwaarden and Nardi (2013-2015)
» Alessandro Zocca's PhD thesis (2015)

» Galvin and Tetali (2006), Randall (2008),
— and Antonio Blanca (2012)
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An exagerated example

v

complete bipartite graph
birth rate A at each site
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Intuitive observations

» Exactly two fully packed configurations » and v
— Both u and v are “locally stable”.

— v is "more efficient” than w.

» Metastable behaviour starting from u
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Hard-core gas process

An exagerated example

» complete bipartite graph
> birth rate X\ at each site
> ) large

> U] < |V]

Intuitive observations

» Exactly two fully packed configurations » and v

— Both u and v are “locally stable”.
— v is "more efficient” than w.

» Metastable behaviour starting from u

Question
How long does the transition from u to v take?
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Reversible Markov chain

Let X, (n > 0) be the discrete-time Markov chain.
The first hitting time of v is
T, =inf{n>0: X, =v}.

Question
What is the expected transition time K, T, 7
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Review: reversible Markov chain vs. electric network

Fundamental connection |
For every state z,

P, (T4 < Tp) = voltage(z)

if a 1V battery is connected between A and B.

Fundamental connection I

For every state z,
effective resistance

Gry(a,z) =R(a <> B)w(x) Py (T, < Tg)
where G, (a,z) == E4[# of visits to = before Tg].

Corollary

E,Tp =R(a <+ B) Y m(x)Pu(Ty < Tp) J

T
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Hard-core processon a complete bipartite graph

Expected transition time

E,Ty, = m(u)R(u < Z) = w(u)R(u < v) ]

It remains to estimate R (u <+ v).
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Expected transition time

Proposition (Discrete time)

E,T, = ﬁA'Ul—lu +0(1)] as A — 0. J




Hard-core processon a complete bipartite graph

Expected transition time

Proposition (Continuous time)

E,T, = %'A‘Ul—l[l +o(1)]  asA— oo J

v = (|[U|+ |V|)(1 + X) is the rate of Poisson clock




Hard-core process on a bipartite graph

A more general setting

» an arbitrary bipartite graph
> Birth rates

A onU

A onV
> \, )\ large



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph
» Birth rates

A on U

A onV
> \, )\ large



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph
> Birth rates

A onU

A onV
> A\ ) large



Hard-core process on a bipartite graph

A more general setting
> an arbitrary bipartite graph
» Birth rates (with 0 < v < 1)

A onU
= A1+a+0(1) onV

> \, )\ large



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph
» Birth rates (with 0 < v < 1)

A on U
= )\1+a+0(1) onV
> \, )\ large

> U< (1+a)|V]



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph

» Birth rates (with 0 < v < 1)

A on U

A= Altate) oy
> \, )\ large v y
> U< (1 +a)|V]

Intuitive observations
» Two fully packed configurations u and v [but possibly many more]
— Both w and v are “locally stable”.

— wv is the “most efficient” packing.



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph
» Birth rates (with 0 < v < 1)

A on U
= /\1+a+0(1) onV
> \, )\ large

> U< (1+a)|V]

Intuitive observations
» Two fully packed configurations u and v [but possibly many more]
— Both w and v are “locally stable”.

— wv is the “most efficient” packing.



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph

» Birth rates (with 0 < v < 1)

A on U

A= Altate) oy
> \, )\ large v y
> U< (1 +a)|V]

Intuitive observations
» Two fully packed configurations u and v [but possibly many more]
— Both w and v are “locally stable”.

— wv is the “most efficient” packing.



Hard-core process on a bipartite graph

A more general setting

> an arbitrary bipartite graph
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Examples of bipartite graphs
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Metastability in Markov processes

Some references

» Kramers (1940)
» large deviations / path-wise approach

> Freidlin and Wentzell (1960-1970)
> Cassandro, Galves, Olivieri and Vares (1984-)
S

» potential-theoretic approach

> Bovier, Eckhoff, Gayrard and Klein (2001-)
> oL,

Three books

> Freidlin and Wentzell:
Random Perturbations of Dynamical Systems (1984)

» Olivieri and Vares: Large Deviations and Metastability (2005)

» Bovier and den Hollander:
Metastability — A Potential-Theoretic Approach (2015)



Main results: |

Theorem (Critical droplets)

For the hard-core dynamics on an even torus Zy, X Ly,

when going from u to v, with large probability, the chain passes
through exactly one transition Q — Q*, where QQ and Q* are
obtained from the solutions of an isoperimetric problem.

A configuration in Q
[similar for hypercube]

[similar for Widom-Rowlinson]
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Main results: |l

Theorem (Expected transition time)
For the hard-core dynamics on an even torus Z,, X Z,, we have

N A

E, T, = Smnl* A1) [1 + 0(1)]

as A — oo, where [* = [é]iis the size of the critical droplet and
v:=|U[(1+ X))+ |V|(1+ \) is the rate of the Poisson clock.

[similar for hypercube]

[similar for Widom-Rowlinson]

Proof steps.
Show that (in discrete time)

E, T, = 7(u)R(u <> v) [1 4+ o(1)] as A — oo.

Estimate the effective resistance. O



Main results: |1l

Theorem (Asymptotic exponential law)

For the hard-core dynamics on “many” bipartite graphs we have
[e.g., torus, hypercube, ...]

T, B
Pyl =——=>t) —
b (Eu Ty ) ©
uniformly int € RT as A — oo.

Intuition.
Many many trials (attempts to form a critical droplet) with tiny
probability of success

=—> success time approximately exponential []



Effective resistance: rough estimate

Critical resistance [a.k.a. communication height]
For every two states a,b € 2, set

U(a,b) .= inf sup r(e)

w:a~b ecw

Remark

> a,b— R(a <> b) is a metricon 2.

» a,b— Y(a,b) is an ultra-metric on 2.

Proposition (Equivalence)

There exists a constant k > 1 such that [independent of \]
1
z V(a,b) <R(a<>b) <k¥(a,b)

for all a,b € 2.



Effective resistance: sharp estimate

=< VU(A, B)

==

< ¥(A,B) < ¥(A,B)

Q Q"

Critical gate

A B

A pair (Q, Q%) is a critical gate between A and B if
1. r(z,y) < ¥(A, B) for every z € @ and y € Q* with z ~ y,
2. U(A,z) < V(A, B) for every x € Q,
3. ¥(y,B) < ¥(A, B) for every y € Q*, and
4

. every optimal path from A to B passes through a transition

Q- Q.



Effective resistance: sharp estimate

=< U(A, B)

==

< W(A, B) < W(A,B)

Q Q"

Critical gate

Proposition
Let (Q,Q*) be a critical pair between A and B. Then,

C(A+ B)=¢(Q,Q")[1+0(1)] as A — oo,
where ¢(Q, Q") = Z Z c(x,y).
z€Q YR

T~y



Effective resistance: sharp estimate

Critical gate = ¥(4,B)
<¥(A,B) 0 o < U(A,B)
A B
C(A+ B) =c(Q,Q%)[1+o(1)]
Proof.

Upper bound: simple Nash-Williams inequality

Lower bound: generalized Nash-Williams inequality

[a.k.a. Berman-Konsowa variational principle]

O



Thank you for your attention!



