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Main point of this talk

Theorem (discrete time)

Every positive-rate PCA with a Bernoulli invariant measure
is ergodic! [. . . with exponentially fast convergence!]

Theorem (continuous time)

Every positive-rate IPS with a Bernoulli invariant measure
is ergodic! [. . . with exponentially fast convergence!]

Motivation

I Statistical mechanics

Q What about Gibbs/Markov invariant measures?

I Computer science

Q Can we do reversible computing with noisy components?
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An example (XOR CA + noise)

F
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Xt

F (Xt)

Xt+1

A discrete-time Markov process

I. Apply XOR transformation x 7→ F (x)

F (x)i = xi + xi+1 (mod 2)

II. Add an independent Bernoulli(ε) noise to each site
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An example (XOR CA + noise)

Ergodicity (Vaserstein, 1969)

time

any initial
configuration

almost
uniform

I. The uniform Bernoulli measure is invariant.

II. The Markov process is ergodic:

Xt −−−→
t→∞

uniform Bernoulli



Probabilistic cellular automata (PCA)

ϕ ϕ ϕ ϕ
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Xt+1

A discrete-time Markov process

I A state of the process is a configuration x : Zd → Σ.

I At each step

−→ Each symbols is updated according to a local rule ϕ.
−→ The updates at different sites are independent.

X0, X1, X2, . . .

P
(
Xt+1 ∈ · |X0, X1, . . . , Xt

)
= Φ(Xt, ·) a.s.
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Probabilistic cellular automata (PCA)

ϕ
Xt

Φ

Xt+1

Positive-rate PCA
When ϕ is strictly positive, we say that Φ has positive rates.

Ergodicity

A PCA Φ is ergodic if

I. Φ has a unique invariant measure λ;

II. For every measure µ, we have

µΦt → λ as t→∞.

(i.e., the distribution of Xt converges to λ irrespective of the
choice of X0.)



Back to the results

Theorem (discrete time)

Every positive-rate PCA with a Bernoulli invariant measure
is ergodic! [. . . with exponentially fast convergence!]

Theorem (continuous time)

Every positive-rate IPS with a Bernoulli invariant measure
is ergodic! [. . . with exponentially fast convergence!]

Question

1. Which PCA have Bernoulli invariant measures?

2. Which IPS have Bernoulli invariant measures?

−→ Ask Jean-François Marckert!
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Which PCA have Bernoulli invariant measures?

Dimension one

I A necessary and sufficient condition
for PCA with binary alphabet and neighbourhood of size 2

[Mairesse and Marcovici, 2014]

−→ in terms of a system of linear equations

I A sufficient condition for the general case
[Mairesse and Marcovici, 2014]

Higher dimensions

I Vasilyev’s sufficient condition [Vasilyev, 1978]

[Mityushin and Piatetski-Shapiro]

I Surjective CA + additive noise [Marcovici, Sablik, T., 2017]

I The general identification problem is undecidable!
[. . . so no hope of a constructive characterization]
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Cellular automata (CA) subject to noise
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Motivation (statistical mechanics)

I These are PCA that are close to being deterministic!

I low noise ←→ low temperature
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Motivation (computer science)

I CA is a model of massively parallel computation
I CA + noise models computation with noisy components

Q How to do reliable computation with noisy components?
[Von Neumann (1956), Dobrushin and Ortyukov (1977), . . . ]

Q Which CA remain non-ergodic in presence of noise?
[Toom (1974, 1980), Gács and Reif (1988), Gács (1986, 2001)]
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Observation
The resulting PCA has a Bernoulli invariant measure if both the
CA and the noise preserve the same Bernoulli measure.

Corollary

A perturbation of a CA with positive zero-range noise is ergodic if
both the CA and the noise preserve the same Bernoulli measure.
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Corollary

A perturbation of a CA with positive zero-range noise is ergodic if
both the CA and the noise preserve the same Bernoulli measure.

I
:::::::::
Invariance

::::::
under

:::::
noise

−→ Bernoulli with marginal q is preserved iff qθ = q.

I
:::::::::
Invariance

::::::
under

::
a

:::
CA

−→ The CA has to be surjective!

−→ Every surjective CA preserves the uniform Bernoulli measure.
−→ A necessary and sufficient condition in the general case

[Kari and T., 2015]

Corollary [Marcovici, Sablik, T., 2017; Marcovici and T., 2018]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]
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Surjective CA + additive noise

Corollary [Marcovici, Sablik, T., 2017; Marcovici and T., 2018]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Remarks

I Surjective CA include all reversible CA.

I Computing with reversible components has been suggested as
a way to control heat production during the computation.

[Landauer (1961), Bennett (1973), Fredkin and Toffoli (1982)]

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the
information in its input/software exponentially fast!
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Reversible computing with noisy components

Interpretation of the corollary

A reversible CA-like computer subject to noise forgets all the
information in its input/software exponentially fast!

In fact:

I The state of any region of size n mixes in O(log n) steps.

I A finite parallel reversible computer with n noisy components
mixes in O(log n) steps. [Very limited computational power!]

Practical implication

In order to implement noise-resilient (CA-like) computers, some
degree of irreversibility is necessary.

[see Bennet (1982) and Bennett and Grinstein (1985)]
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Proof ideas

Corollary [Marcovici, Sablik, T., 2017; Marcovici and T., 2018]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof idea.
Ergodicity is due to the accumulation of information.
Use entropy to measure the amount of information.



Proof ideas

Corollary [Marcovici, Sablik, T., 2017; Marcovici and T., 2018]

Every perturbation of a surjective CA with a positive additive noise
is ergodic with the uniform Bernoulli measure as its invariant
measure. [Convergence is exponentially fast!]

Proof ingredients.

a) A surjective CA does not “erase” entropy, only “diffuses” it.

b) Additive noise increases entropy. [Sharp estimate needed!]

For each finite set of sites J and each time step t ≥ 0, we find

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |)

where ~ := log |Σ| is the maximum capacity of a single site.

c) A bootstrap lemma



Proof ideas

Theorem (discrete time) [Marcovici and T., 2018]

Every positive-rate PCA with a Bernoulli invariant measure
is ergodic! [. . . with exponentially fast convergence!]

Proof idea.
Write the positive-rate PCA Φ as a composition of another PCA Φ̃
and a zero-range noise both preserving the same Bernoulli measure.

ϕ̃

θ

Xt

Y t

Xt+1

Φ̃

noise

Follow the pattern of the previous proof.



Entropy method for Markov processes

Some earlier works

I The entropy method goes back to Boltzmann.
I Its applications for lattice systems were pioneered by:

−→ Holley (1971), Holley and Stroock (1976) for IPS
−→ Kozlov and Vasilyev (1980) for PCA

Some other works:

−→ Dawson (1974), Higuchi and Shiga (1974), Sullivan (1976),
Moulin Ollagnier and Pinchon (1977), Georgii (1979),
Vanheuverzwijn (1981), Künsch (1984), Yaguchi (1990, 1998),
Handa (1996), Sakagawa (1999), Dai Pra, Louis and Rœlly
(2002), Jahnel and Külske (2015, 2018), . . .

I With the exception of Holley and Stroock (1976), the entropy
method has been limited to shift-invariant starting measures.

[Our result doesn’t have this limitation.]



Entropy method for Markov processes

As a warm-up, consider the . . .

Convergence theorem of Markov chains

A finite-state Markov chain is ergodic
provided that it is irreducible and aperiodic.

[Convergence is exponentially fast!]

Different proofs

I Using Perron–Frobenius theory

I Using a coupling argument

I . . .

I Entropy method [Goes back to Boltzmann!]
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Entropy (review)

The entropy of a discrete random variable A taking values in a
finite set Σ is

H(A) := −
∑
a∈Σ

P(A = a) logP(A = a) .

It measures the average information content of A.

Important properties of entropy

I (positivity) H(A) ≥ 0.

I (capacity) H(A) is maximized precisely when A ∼ unif(Σ).

I (chain rule) H(A,B) = H(A) +H(B |A).

[. . . for a suitable definition of conditional entropy H(B |A)]

I (continuity) H(A) is continuous.
[. . . as a function of the distribution of A]
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Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].

For simplicity, assume unif(Σ) is stationary.
[If not, use pressure instead of entropy!]

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II) Suppose θ > 0.

If A
θ−→ B, then H(B) ≥ H(A) with equality iff A ∼ unif(Σ).
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We can assume θ > 0.

Since H(X0), H(X1), . . . is increasing and bounded from above,
it converges to a value M ≤ log |Σ|.
If M < log |Σ|, then by compactness and continuity, we can find

A
θ−→ B with H(A) = H(B) < log |Σ|, a contradiction.



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

[If not, use pressure instead of entropy!]

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II) Suppose θ > 0.

If A
θ−→ B, then H(B) ≥ H(A) with equality iff A ∼ unif(Σ).

Proof of the convergence theorem.

We can assume θ > 0.
Since H(X0), H(X1), . . . is increasing and bounded from above,
it converges to a value M ≤ log |Σ|.

If M < log |Σ|, then by compactness and continuity, we can find

A
θ−→ B with H(A) = H(B) < log |Σ|, a contradiction.



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

[If not, use pressure instead of entropy!]

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II) Suppose θ > 0.

If A
θ−→ B, then H(B) ≥ H(A) with equality iff A ∼ unif(Σ).

Proof of the convergence theorem.

We can assume θ > 0.
Since H(X0), H(X1), . . . is increasing and bounded from above,
it converges to a value M ≤ log |Σ|.
If M < log |Σ|, then by compactness and continuity, we can find

A
θ−→ B with H(A) = H(B) < log |Σ|, a contradiction.



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

[If not, use pressure instead of entropy!]

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .



Entropy method for finite-state Markov chains

Let X0, X1, . . . be a Markov chain with finite state space Σ and
transition matrix θ : Σ× Σ→ [0, 1].
For simplicity, assume unif(Σ) is stationary.

[If not, use pressure instead of entropy!]

Facts

I) If A
θ−→ B, then H(B) ≥ H(A).

II′) Suppose θ > 0. Then, ∃ constant 0 < κ ≤ 1 s.t.

If A
θ−→ B, then

H(B) ≥ κ log |Σ|+ (1− κ)H(A) .

Proof of exponential convergence.

It follows from Fact II′ that

H(Xt) ≥ log |Σ| − (1− κ)t
[

log |Σ| −H(X0)
]︸ ︷︷ ︸

→0

.



Entropy method for surjective CA + additive noise

J

Xt

T (Xt)

Xt+1

T

noise

Note

I The uniform Bernoulli measure is stationary.

I In order to prove ergodicity, it is enough to show that
for every finite set of sites J ,

H(Xt
J)→ |J | ~ as t→∞

where ~ := log |Σ| is the maximum capacity of each site.



Entropy method for surjective CA + additive noise

J
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Y t

Xt+1

T

noise

Effect of a surjective CA

A surjective CA does not “erase” entropy, only “diffuses” it:

H(Y t
J ) ≥ H(Xt

J)−O(|∂J |)

Effect of additive noise
Additive noise increases entropy: ∃ constant 0 < κ ≤ 1 s.t.

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Y t

J )
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Combined effect

H(Xt+1
J ) ≥ κ |J | ~ + (1− κ)H(Xt

J)−O(|∂J |) .

which implies

H(Xt
J) ≥

[
1− (1− κ)t

]
|J | ~−O(|∂J |) .

for each t ≥ 0.
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which implies

H(Xt
J) ≥

[
1− (1− κ)t

]︸ ︷︷ ︸
→1

|J | ~−
relatively smaller︷ ︸︸ ︷
O(|∂J |) .

for each t ≥ 0.



Entropy method for surjective CA + additive noise

J

Xt

Y t

Xt+1

T

noise

Evolution of entropy
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≤ O(|∂J |) for all t ≥ a log
|J |

O(|∂J |)
+ b

missing entropy
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Bootstrapping

Xt

A

n

n

Ξ(Xt
A) ≤ O(nd−1) for all t ≥ O(log n)



Bootstrapping

Xt

A
n

n

X0

N t(A)

n+ rt

n+
rt

time

Note
The restriction of Xt to A depends only on
the restriction of X0 to N t(A),
where N = [−r, r]d is the neighbourhood of the local rule.



Bootstrapping

X̃0

B

k(n+ 2rt)

k
(n

+
2
r
t)

Choose X̃0 such that

X̃0
B contains kd independent copies of X0

N t(A).

Then,

X̃t will contain kd independent copies of Xt
A inside B.
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It follows that

, if t ≥ O
(

log[k(n+ 2rt)]
)
,

kd Ξ(Xt
A) ≤ Ξ(X̃t

B)

≤ O
(
[k(n+ 2rt)]d−1

)
Now, given t ≥ 0, choose k := ect for c > 0 small.
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It follows that, if t ≥ O
(
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,
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Bootstrapping

X̃t

B

k(n+ 2rt)

k
(n

+
2
r
t)

Conclusion
For every t ≥ 0 large enough,

Ξ(Xt
A) ≤ O

(
(n+ 2rt)d−1e−ct

)
︸ ︷︷ ︸

→0



Gibbs/Markov invariant measures

Conjecture 1 (discrete time)

Every positive-rate PCA that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.

Conjecture 2 (continuous time)

Every positive-rate IPS that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.

What is known?

I
:::::::::
Reversible

:::::::::
dynamics

−→ Convergence starting from shift-invariant measures
[Holley, 1971; Kozlov and Vasilyev, 1980]

−→ In 1d and 2d, all stationary measures are Gibbs!
[Holley and Stroock, 1997]

I
:::::::
General

:::::::::
dynamics

−→ All shift-invariant stationary measures are Gibbs!
[Künsch, 1984; Dai Pra, Louis and Rœlly, 2002]
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Open questions

Conjecture 1 (discrete time)

Every positive-rate PCA that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.

Conjecture 2 (continuous time)

Every positive-rate IPS that has a Gibbs invariant measure
converges to the set of Gibbs measures with the same specification.

Question 1
Can we relax the positive-rate condition?

Question 2
How much irreversibility is necessary for reliable computation in
presence of noise?

Thank you for your attention!


