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Abstract

Conservation laws in physics are numerical invariants of the dynamics of
a system. In cellular automata (CA), a similar concept has already been
defined and studied. To each local pattern of cell states a real value is as-
sociated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.
The overall “energy” of a configuration is simply the sum of the energy of
the local patterns appearing on different positions in the configuration. We
have a conservation law for that energy, if the total energy of each configu-
ration remains constant during the evolution of the CA.

For a given conservation law, it is desirable to find microscopic explana-
tions for the dynamics of the conserved energy in terms of flows of energy
from one region toward another. Often, it happens that the energy val-
ues are from non-negative integers, and are interpreted as the number of
“particles” distributed on a configuration. In such cases, it is conjectured
that one can always provide a microscopic explanation for the conservation
laws by prescribing rules for the local movement of the particles. The one-
dimensional case has already been solved by Fukś and Pivato. We extend
this to two-dimensional cellular automata with radius-1

2 neighborhood on
the square lattice.

We then consider conservation laws in which the energy values are cho-
sen from a commutative group or semigroup. In this case, the class of all
conservation laws for a CA form a partially ordered hierarchy. We study
the structure of this hierarchy and prove some basic facts about it. Al-
though the local properties of this hierarchy (at least in the group-valued
case) are tractable, its global properties turn out to be algorithmically in-
accessible. In particular, we prove that it is undecidable whether this hier-
archy is trivial (i.e., if the CA has any non-trivial conservation law at all)
or unbounded. We point out some interconnections between the structure
of this hierarchy and the dynamical properties of the CA. We show that
positively expansive CA do not have non-trivial conservation laws.

We also investigate a curious relationship between conservation laws
and invariant Gibbs measures in reversible and surjective CA. Gibbs mea-
sures are known to coincide with the equilibrium states of a lattice system
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defined in terms of a Hamiltonian. For reversible cellular automata, each
conserved quantity may play the role of a Hamiltonian, and provides a
Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity)
that is invariant. Conversely, every invariant Gibbs measure provides a
conservation law for the CA. For surjective CA, the former statement also
follows (in a slightly different form) from the variational characterization
of the Gibbs measures. For one-dimensional surjective CA, we show that
each invariant Gibbs measure provides a conservation law. We also prove
that surjective CA almost surely preserve the average information content
per cell with respect to any probability measure.
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CHAPTER 1

Introduction

The wonderful wheel of nature,
circling day and night,

resembles a lamp, to a fanciful sight.
The sun is the flame, the universe the lamp,
we, wandering shadows,

revolving around the light.

— Omar Khayyám (1048–1122)

MUCH of science arises from looking at nature through a highly
selective glass that eliminates the irrelevant details and singles

out a particular feature to be studied. This approach flourishes when the
filtered feature has a nice description of its own, which is independent of
the eliminated parts. A conservation law is the simplest of such descrip-
tions. It asserts that a certain quantity associated with a system remains
constant throughout the evolution of the system.

Perhaps the first example of a conservation law found in physics is the
intriguing discovery by the German astronomer Johannes Kepler (1571–
1630) of the laws governing the motion of the planets. Kepler knew from
his large collection of data, gathered from astronomical observations, that
each planet follows not a perfectly circular orbit, but an elliptic one, with
the sun as one of the focal points. The speed of the planet is not uniform
either. Whenever it is farther from the sun, the planet moves slowly, while
once it comes closer to the sun, the planet circles around the sun faster. Ke-
pler was able to put this quantitatively, by realizing that the axis connecting
the planet to the sun sweeps out equal areas within equal time segments
(Figure 1.1). In other words, all through its orbit, the area-sweeping rate
dS/dt of each planet remains constant (cf. [1]).1

In this thesis, we study such laws in cellular automata. A cellular au-
tomaton (CA for short) is an abstract structure, consisting of a d-dimensional

1This was later coined as the law of conservation of angular momentum.
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2 1 Introduction

Figure 1.1: Kepler’s selective observation: dS′ = dS

Figure 1.2: A typical space-time diagram of the Traffic CA. Time evolves
downward. The highway is directed towards the left.

checkerboard (d = 1, 2, 3, . . .). Each cell of the board has a state chosen from
a finite set of states. The state of each cell changes with time, according to a
uniform, deterministic rule, which takes into account the previous state of
the cell itself and those in its neighborhood. The changes, however, happen
synchronously, and in discrete time steps.

One of the simplest CA exhibiting a non-trivial conservation law is the
Traffic CA, which resembles cars moving on a highway. This is a one-
dimensional CA, consisting of an infinite number of cells arranged next
to each other on a line. Each cell has two possible states: (interpreted as
a “car”) or (“empty space”). At each step, a car moves one cell forward
if and only if its front cell is empty. Figure 1.2 shows a typical space-time
diagram of the evolution of the Traffic CA. Not surprisingly, the number of
cars on the highway is preserved by the evolution of the CA.

As a two-dimensional example, consider the following discrete model
of an excitable medium due to Greenberg and Hastings [35]. The CA runs
on a two-dimensional board. Each cell is either “at rest” (state ), “ex-
cited” (state ), or in a “refractory phase” (state ). A cell which is at rest
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(a) (b) (c)

Figure 1.3: Simulation of Greenberg-Hastings model on a spatially periodic
configuration. (a) The initial configuration. (b) The configuration at time
t = 10. (c) The configuration at time t = 60.

remains so unless it is “stimulated” by one or more of its four neighbors
(i.e., if at least one of the neighbors is excited). An excited cell undergoes
a 1-step refractory phase, before going back to rest. Typically, a configura-
tion of the infinite board contains a number of “singularities” with waves
continuously swirling around them. See Figure 1.3 for a few snapshots.
The singularities are never created, nor are they destroyed. Therefore, the
number of such singularities remains constant throughout time. To put it

precisely, the singularities are the 2× 2 blocks of cells with states , ,

or , or the rotations or mirror images of these blocks. It is a matter
of mechanical verification to see that a singular 2 × 2 block remains sin-
gular after one step, and that a non-singular block remains non-singular.
See [35, 34, 36] for the fascinating study of this CA and its generalizations.

1.1 Brief Historic Review

The early investigation of conservation laws in cellular automata was in-
spired by their immensely successful role in physics, and in connection
with cellular automata models of physical phenomena (see e.g. [40, 35, 73,
82, 79, 80, 62]). Despite some modest efforts to develop a general theory
(e.g. [73, 62]), the methods used were ad hoc, or simply imitated those used
in physics.

The systematic study of additive conservation laws in CA was initiated
by Hattori and Takesue [41], who formally defined such laws and showed
how to algorithmically verify them. Similar results were obtained, inde-
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pendently, by several others (e.g. [16]).
Meanwhile, and somewhat independently, a body of research was de-

veloped around the concept of number-conserving cellular automata (see
e.g. [11, 29, 12, 65, 24, 26, 66, 13]). In these cellular automata, which are in-
spired by models of urban traffic, the state of a cell represents the number
of particles in that cell, and the dynamics is such that the total number of
particles is preserved.

Local representation of conservation laws using flows and particles were
studied in [41, 29, 72, 52, 66]. Computational issues related to conservation
laws were addressed, for example, in [41, 65, 24]. In [26], dynamical proper-
ties of number-conserving CA were studied. Characterization of conserva-
tion laws using average or expected energy per cell were given in [72, 52].
Generalizations of the original concept were discussed in [52, 66, 6, 13, 5,
10]. In [14], efforts were made to establish a correspondence between the
conservation laws and algebraic structure of reversible CA.

1.2 Structure of the Thesis

The next section contains a quick review of the necessary background and
terminology. In Chapter 2, we formalize the concept of conservation laws,
and present various well-known characterizations of them. In Chapter 3,
we discuss the problem of expressing conservation laws in terms of flows,
or movements of the quanta of energy. Chapter 4 is devoted to the struc-
tural aspects of the class of all conservation laws for a given CA. In Chap-
ter 5, we investigate the relationship between conservation laws and equi-
librium states in surjective CA.

Appendix A contains a review of standard ergodic theory in the con-
text of multi-dimensional shift spaces. Appendix B provides an example to
illustrate the discussions in Chapter 5.

1.3 Preliminaries

In this section, we fix the terminology and notation, and review the basic
combinatorial, topological and measure theoretic background needed in
our discussions. For more thorough background material, we refer to [47,
53, 58, 83, 25, 23, 4, 56].

A cellular automaton (CA) is a collection of cells arranged regularly on
a lattice, where a natural notion of neighborhood is present. Each cell is as-
signed a state from a finite number of possible states. The state of the cells is
updated synchronously, in discrete time steps, according to a uniform local
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update rule, which takes into account the current state of each cell and its
neighbors.

The cells are often indexed by Zd (d ≥ 1), from which we obtain a d-
dimensional CA. The index set L , Zd is called the d-dimensional square (or
integer) lattice. The state set is a finite set S. An assignment c : L → S of
states to the cells of the lattice is referred to as a configuration (of the lattice).
A pattern is a mapping p : D → S where D ⊆ L. The pattern is finite if D
is finite. If A ⊆ D, the restriction p|A is a sub-pattern of p. We write q � p
when q is a sub-pattern of p. If two patterns p : D → S and q : E → S agree
on the intersection D ∩E of their domains, then p∨ q : D ∪E → S denotes
the pattern which agrees with each of p and q on their domains. The empty
pattern, denoted ∅, is the unique pattern with an empty domain. The size
of a pattern p, denoted |p|, is the cardinality of its domain.

Let p : D → S be a pattern and A ⊆ D a finite set. The cylinder with
base p and support A is the set

{
x ∈ SL : x[i] = p[i] for all i ∈ A

}
and is de-

noted by [p]A. For brevity, we sometimes write [p] for [p]D whenever D is
understood from the context. For every pattern p : D → S, let us define an
operator ζp that sets the state of D into p. That is, if q : E → S is any other
pattern, then ζpq : D ∪ E → S is defined so that it agrees with p over D
and with q elsewhere. For each finite p : D → S, let δp be the characteristic
function of the cylinder [p]D. That is, for each configuration x, δp(x) = 1 if
x|D = p, and δp(x) = 0 otherwise.

For every pattern p : D → S and each vector a ∈ L, σap is the translation
of p by a; that is, σap[i] , p[a + i] when a + i ∈ D. When d = 1, we
may write σ for σ1. We write p ≡ q (mod σ) if q is a translation of p. The
equivalence class of p is denoted by 〈p〉. The collection of all finite patterns
modulo translation is represented by S#. Whenever it causes no confusion,
we may use p and 〈p〉 interchangeably.

The neighborhood is specified by a finite set 0 ∈ N ⊆ L. The neighbor-
hood of a set A ⊆ L of cells is the set N(A) , {i+ k : i ∈ A and k ∈ N}. We
denote by N−1(A) , {i : N(i) ∩A 6= 0} = {i− k : i ∈ A and k ∈ N} the set
of those cells which have a neighbor in A. We will also need to speak of the
boundary of a group of cells (with respect to a neighborhood). The bound-
ary of a set A ⊆ L is the set ∂N(A) , N(A) \ A. We identify a cell i ∈ L
with the singleton {i}, and write N(i) and ∂N(i) for N({i}) and ∂N({i}).

The local update rule is a function f : SN → S. It naturally induces a
mapping F : SL → SL, called the global mapping, which maps each con-
figuration c to its follower configuration Fc, which appears on the lattice
after one time step. Namely, (Fc)[i] , f

(
c|N(i)

)
; that is, the state of the cell

i in Fc is the result of the application of the local rule on the pattern of the
neighborhood of i in c. We often identify a CA with its global mapping.

For each state q ∈ S, the q-uniform configuration is the configuration
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with all cells in state q, and is denoted by qL. A q-finite configuration is one
in which only finitely many cells are in states other than q. The set of all
q-finite configurations is denoted by Cq[S]. A quiescent state is a state q ∈ S
such that F maps the q-uniform configuration to itself; that is, f(qN ) = q.
If q is a quiescent state, the image of every q-finite configuration is also q-
finite. Two configurations x and y are asymptotic if they differ on no more
than a finite number of cells. Cellular automata map asymptotic config-
urations into asymptotic configurations. A vector a ∈ L is a period of a
configuration x ∈ SL if σax = x. A configuration x is said to be (spatially)
periodic if the set {σax : a ∈ L} is finite. The periods of every configuration
form a subgroup of L. A fundamental domain of a spatially periodic config-
uration x is a minimal subset A ⊆ L, such that the value of x on A, together
with the group Px of periods of x, uniquely restricts the value of x on every
cell in L. In other words, it is a subset A ⊆ L that has exactly one element
from each coset a+Px. By definition, every spatially periodic configuration
has a finite fundamental domain. A configuration x is temporally periodic if
F tx = x, for some t > 0.

A surjective (resp., injective; bijective) cellular automaton has an onto
(resp., one-to-one; onto and one-to-one) global mapping. The Garden-of-
Eden Theorem [64, 67] states that a cellular automaton is surjective if and
only if it is injective when restricted to q-finite configurations (q being an
arbitrary state). Equivalently, surjective CA are exactly those that are pre-
injective, that is, those that map distinct asymptotic configurations into dis-
tinct asymptotic configurations. As a result, every injective CA is also sur-
jective.

Surjective CA have a characteristic balance property [42]: for all finite
sets A,B ⊆ L with B ⊇ N(A), and every pattern p : A→ S, the number of
patterns q : B → S that are mapped by the local rule into p is independent
of p. More specifically, the cardinality of the set

{
q ∈ SB : F [q]B ⊆ [p]A

}
equals |S||B|−|A|.

It is often useful to see a cellular automaton as a dynamical system. By a
dynamical system we mean a topological (or measurable) spaceX , together
with a continuous (resp., measurable) mapping F onX . More generally, we
may have a group or semigroup of continuous (resp., measurable) transfor-
mations on X . Hence, we now review the standard topological and mea-
surable structures on the configuration space of a CA.

The most useful topology on the space SL of all configurations is the
Cantor topology T . This is the product topology when S is discretely
topologized. Equivalently, the Cantor topology is the topology in which
convergence is defined as pointwise eventual agreement. It is compact,
perfect, totally disconnected, and metrizable. Cylinders are clopen (both
closed and open) and form a countable basis for T . The celebrated Curtis-
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Hedlund-Lyndon Theorem [42] states that the global mappings of cellular au-
tomata are exactly the mappings F : SL → SL that are continuous and
translation-invariant. Bijective mappings between compact metric spaces
are homeomorphisms. Thus, the inverse of a bijective cellular automaton
is itself a cellular automaton. A bijective CA is often called reversible.

The action of σ on SL defines a (topological) dynamical system which
is called the full shift. The operator σ : L × SL → SL is called the shift. A
compact subsystem of (SL, σ) (i.e., a closed set X ⊆ SL with σaX ⊆ X for
every a ∈ L) is called a shift space or a subshift. Shift spaces are exactly those
subsets of SL that can be defined by forbidding a collection of finite patterns:
Given a collection K ⊆ S# of finite patterns, we define the shift space

XK ,
{
x ∈ SL : 〈x|A〉 /∈ K for every finite A ⊆ L

}
. (1.1)

Every shift space has a representation of this form. For a shift space X ,
let us denote by L(X ) ⊆ S# the set of all finite patterns that occur in the
configurations in X . The compactness of X implies that XS#\L(X ) = X . If
K is finite, XK is called a shift of finite type (SFT for short).

The Borel σ-algebra B on SL is the σ-algebra generated by the open sets
(equivalently, by the cylinders). It is the same as the product σ-algebra,
where S is given the full σ-algebra. Every continuous mapping is Borel
measurable. In particular, every cellular automaton is measurable.

The collection of Borel probability measures on SL is denoted by M . We
see it as a topological space, with the topology of weak convergence (often
called weak* or vague topology). This is the weakest topology with respect

to which, for every cylinder U , the mapping π
U7→ π(U) is continuous. In

particular, limi→∞ πi = π iff limi→∞ πi(U) = π(U) for every cylinder U .
The space M is compact and metrizable. Every Borel probability measure
on a metric space is regular, meaning that the measure of every Borel set B
can be approximated arbitrarily closely by the measure of open sets E ⊇ B
or closed sets C ⊆ B. Therefore, every element π ∈M is regular: for every
Borel set B ∈ B, we have

π(B) = inf {π(E) : open E ⊇ B} (1.2)
= sup {π(C) : closed C ⊆ B} . (1.3)

Every continuous mapping F : SL → SL naturally defines a mapping,
also denoted by F , on the space M of Borel measures π : B → [0, 1], by
(Fπ)(A) , π

(
F−1A

)
. The latter is continuous and affine. An F -invariant

measure is a fixed point of F when acting on M . The collection of F -
invariant measures is a closed and convex subspace of M and is denoted
by MF . A translation-invariant measure is a measure that is σa-invariant for
every a ∈ L.
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Given a probability measure π : B → [0, 1], a pattern p : D → S is
probable (more specifically, π-probable) if π ([p]D) > 0. An improbable pattern
is one which is not probable. The support of a probability measure π is the
smallest closed subset of SL with measure 1; that is,

supp(π) ,
⋂
{C : π(C) = 1 and C closed} . (1.4)

A full-support measure is a measure with support SL. The support of a
translation-invariant measure π is the subshift in which improbable pat-
terns are forbidden. On the other hand, given a subshift X ⊆ SL, the set

Mσ[X ] , {π ∈Mσ : supp(π) ⊆ X} (1.5)

is a closed and convex subspace of Mσ.
The collection of cylinders form a semi-algebra which generates B. There-

fore, a measure on (SL,B) is completely determined by its values on the
cylinders (see [83]). Furthermore, every family{

πD : SD → [0, 1]
}
D⊆L finite (1.6)

of probability distributions satisfying the consistency equations

πD(p) =
∑

q:E→S
q|D=p

πE(q) (1.7)

for all finite D ⊆ E ⊆ L and p : D → S, can be uniquely extended to a
probability measure π on B with π ([p]D) , πD(p). For brevity, we some-
times write π(p) for π ([p]D), where p : D → S is a finite pattern, and there
is no danger of confusion over the domain D.

A Bernoulli measure on (SL,B) is a probability measure π : B → [0, 1]
such that

π ([p]D ∩ [q]E) = π ([p]D) · π ([q]E) (1.8)

whenever p : D → S and q : E → S are finite patterns with D ∩ E = ∅. A
translation-invariant Bernoulli measure is identified by a probability dis-
tribution π : S → [0, 1]: for every finite pattern p : D → S we have
π ([p]D) =

∏
i∈D π (p[i]). This is interpreted as the probability distribution

where the state of each cell on the lattice is chosen randomly and inde-
pendently, according to a given distribution over the state set. The aver-
age entropy per cell (entropy, for short) of a translation-invariant Bernoulli
measure π equals hπ(σ) = −

∑
s∈S π(s) log π(s) (see Appendix A).

Let K ⊆ L be a finite set. The K-block-presentation of a configuration
x : L→ S is a configuration x(K) : L→ SK where x(K)[i] = x|K(i). That is,
the state of the cell i in x(K) is the overall state of the K-neighborhood of
cell i in x.
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One-dimensional CA have a natural representation (up to composi-
tion with translations) using edge-labeled De Bruijn graphs. The De Bruijn
graph of order k (k > 0) over an alphabet S is a graph Bk[S] with vertex
set V = Sk and edge set E = Sk+1, where for every a, b ∈ S and u ∈ Sk−1,
there is an edge aub from au to ub.

Let F : SZ → SZ be a one-dimensional CA with neighborhood [−l, r] =
{−l,−l + 1, . . . , r} and local rule f : S[−l,r] → S. For every k ≥ l + r, the
CA can be represented on the De Bruijn graph Bk[S] with labeling λ : E →
Sk−(l+r) which is defined as follows: for every edge u0u1 · · ·uk ∈ Sk+1, let
λ(u0u1 · · ·uk) = vlvl+1 · · · vk−r, where vi = f (ui−lui−l+1 · · ·ui+r).

The edge sequence p = {p[i]}i∈Z of each bi-infinite path on Bk[S] is the
[0, k]-block-presentation of a unique configuration c : Z → S, while its
label sequence λ(p) , {λ(p[i])}i∈Z is the [l, k − r]-block-presentation of Fc.
Conversely, for every configuration c : Z → S, there is a unique infinite
path on Bk[S] whose edge sequence is the [0, k]-block-presentation of c.
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CHAPTER 2

Potentials and
Conservation Laws

THIS chapter is dedicated to the precise formulation of conservation
laws in cellular automata, and to reviewing the very many ways to

characterize them. Though the results are more or less well-known, we
take the opportunity to present them in a uniform and general setting.

By a conservation law we mean the invariance of an energy-like func-
tion under the dynamics of a CA. The essential features of the concept of
energy that make it so useful in physics are its “additivity” and “locality”.
An energy function in a cellular automaton is, therefore, usually defined by
sliding a local observable over the configuration and adding up the values
it declares. There is, however, a technical difficulty in such a definition: the
total energy of a configuration is an infinite sum, which is typically diverg-
ing and meaningless.

One way to circumvent this problem — the approach we choose in our
main definition — is to consider only the difference between the energy of
configurations that are only slightly perturbed from each other; instead of
speaking of the energy level of a configuration x, we speak of the difference
between the energy levels of two configurations x and x′ that are different
only on a finite region. This is also compatible with the physical picture, in
that the difference between the energy levels of two systems is more fun-
damental (or more useful) a concept than the absolute energy of a system.

An alternate approach is to work with the average density of energy in
a configuration. The drawback of this approach is that it is not algorithmic.
Nevertheless, it gives us the opportunity to use the machinery of analysis
and ergodic theory.

11
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2.1 The Concept of Energy

We would like to formalize energy-like functions that are “local” and “ad-
ditive”. Intuitively, by additivity we mean that

“their values for a system composed of several parts whose interaction
is negligible are equal to the sums of their values for the individual
parts,” [55]

and by locality we mean that there is no interaction between parts that are
far enough apart.

More specifically, in our setting, additivity and locality translate into
the following property: if changing a configuration x into configuration
ζpx requires energy Ep, and changing x into ζqx requires energy Eq, and
if p and q are distant enough, then changing x into ζqζpx would require
energy Ep + Eq.

Let X be an arbitrary set. We say that a partial mapping ∆ : X ×X → R
is a potential difference on X if

a) ∆(x, x) = 0, for every x ∈ X ,

b) ∆(y, x) = −∆(x, y), whenever ∆(x, y) exists, and

c) ∆(x, z) = ∆(x, y) + ∆(y, z), whenever ∆(x, y) and ∆(y, z) both exist.

We say that a mapping F : X → X conserves ∆, if ∆(Fx, Fy) = ∆(x, y)
whenever ∆(x, y) exists.

A potential difference ∆ on SL is called local if

d) ∆(x, y) exists exactly when x and y are asymptotic,

e) ∆(σax, σay) = ∆(x, y) whenever ∆(x, y) exists and a ∈ L, and

f) there exists a finite neighborhood M ⊆ L, such that for every finite
pattern p : D → S and every two configurations x, y that agree on
M(D), we have ∆(x, ζpx) = ∆(y, ζpy).

Note that ∆(x, σay) and ∆(x, y) do not necessarily have the same values.
A local potential difference captures the concept of a “local” and “ad-

ditive” energy. Namely, for every configuration x, and every two finite
patterns p : D → S and q : E → S,

∆(x, ζqζpx) = ∆(x, ζpx) + ∆(ζpx, ζqζpx) (2.1)
= ∆(x, ζpx) + ∆(x, ζqx) , (2.2)
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providedD∩M(E) = ∅ (or similarly, ifM(D)∩E = ∅). The neighborhood
M determines the “range of interaction” between the parts.

Let X be a compact topological space. An observable is a continuous
mapping µ : X → Γ from X into another space Γ. If Γ is discretely topol-
ogized, we call µ a discrete observable. A discrete observable on SL is also
called a local observable. This name comes from the fact that for every dis-
crete observable µ : SL → Γ, there is a finite neighborhood M ⊆ L, and a
function g : SM → Γ, where µ(x) = g (x|M ) for every configuration x ∈ SL.
Every discrete observable µ : SL → R defines a local potential difference ∆
on SL via

∆(x, y) ,
∑
i∈L

[
µ(σiy)− µ(σix)

]
(2.3)

=
∑
i∈L

[
g
(
y|M(i)

)
− g

(
x|M(i)

)]
(2.4)

for every two asymptotic configurations x and y. In fact, every local poten-
tial difference on SL is of this form.

Proposition 2.1. Every local potential difference ∆ on SL is generated by a local
observable.

Proof. Let M be the neighborhood of ∆. We show that ∆ is generated by a
local observable µ with neighborhood M , via (2.3).

Let us distinguish an arbitrary state � ∈ S and call it blank. The �-
uniform configuration is denoted by ♦. Let � be the lexicographic order
on L (or any total order which is preserved by σ). For every cell i ∈ L,
let γ(i) be the successor of i according to �. Recall that for every pattern
p : D → S, ζp is the operator that sets the state of the cells in D to their
values in p. For every k ∈ L, let us also define the operator ζk that sets the
cells i � k to blank. Define a mapping µ : SL → R by µ(x) , ∆(ζ0x, ζγ(0)x).

To see that µ is a local observable, define g : SM → R by g(p) , µ(ζp♦)
for every p ∈ SM . Let x be an arbitrary configuration, and let p , x|M be
the pattern seen on M in x. We have

µ(x) = ∆(ζ0x, ζγ(0)x) (2.5)

= ∆(ζ0ζp♦, ζγ(0)ζp♦) (2.6)

= µ(ζp♦) (2.7)
= g (x|M ) , (2.8)

where (2.6) follows from the locality of ∆. So, µ is a local observable with
neighborhood M .
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Next, observe that if α1, α2, β1, β2 are any four asymptotic configura-
tions, we have

∆(β1, β2)−∆(α1, α2) = ∆(α2, β2)−∆(α1, β1) . (2.9)

This follows from condition (c) in the definition of potential difference.
Now, let x and y be two asymptotic configurations. Let D ⊆ L be the
finite set on which x and y disagree, and suppose that a1 ≺ a2 ≺ · · · ≺ an is
the lexicographic ordering of the elements of M−1(D)∪M(D). Notice that
for a /∈M−1(D) ⊆M−1(D) ∪M(D), we have

∆(ζay, ζγ(a)y) = ∆(ζax, ζγ(a)x) , (2.10)

and for each i = 1, 2, . . . n− 1, we have

∆(ζγ(ai)x, ζγ(ai)y) = ∆(ζai+1x, ζai+1y) . (2.11)

Therefore, we can write∑
a∈L

[µ(σay)− µ(σax)] (2.12)

=
∑
a∈L

[
∆(ζay, ζγ(a)y)−∆(ζax, ζγ(a)x)

]
(2.13)

=
n∑
i=1

[
∆(ζaiy, ζγ(ai)y)−∆(ζaix, ζγ(ai)x)

]
(2.14)

=
n∑
i=1

[
∆(ζγ(ai)x, ζγ(ai)y)−∆(ζaix, ζaiy)

]
(2.15)

= ∆(ζγ(an)x, ζγ(an)y)−∆(ζa1x, ζa1y) (2.16)

= ∆(x, y) , (2.17)

which completes the proof. 2

In summary, potential differences generated by local observables for-
malize the concept of “energy”, as desired.

As an example, recall that for each finite pattern p : D → S, the charac-
teristic function of the cylinder [p]D is denoted by δp. Clearly, δp is a local
observable, with neighborhood D. The potential difference generated by
δp represents the difference between the number of occurrences of p in two
given configurations. In fact, every local observable on SL is a linear com-
bination of such elementary observables.

We remark that an observable µ : SL → R that is uniformly continu-
ous with respect to the usual topology on R would also lead to a potential
difference which is quasilocal, in the sense that the greater the distance be-
tween two parts of the system, the smaller their interaction (see e.g. [32]).
In this thesis, we do not study such potential differences.
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2.2 Conservation Laws

Suppose that a cellular automaton F conserves a local potential differ-
ence ∆. We call the statement

∆(Fx, Fy) = ∆(x, y) for all asymptotic x and y, (2.18)

a conservation law for F . Is it possible to algorithmically verify the validness
of a conservation law for a cellular automaton? Can we find all conser-
vation laws governing the evolution of a CA? The former question has a
positive answer, as was first realized by Hattori and Takesue (1991). A neg-
ative answer to the second question will be given later, in Chapter 4.

Theorem 2.2 ([41]). Let F : SL → SL be a cellular automaton, and ∆ a local
potential difference on SL. The following statements are equivalent.

i) ∆(Fx, Fy) = ∆(x, y) for every two asymptotic configurations x and y.

ii) ∆(Fx, Fy) = ∆(x, y) for every two configurations x and y which differ on
exactly one cell.

Proof. The implication [i⇒ii] is trivial. To prove the converse implication,
let x and y be asymptotic. Since x and y disagree on at most a finite number
of cells, we can find a sequence x = x0, x1, . . . , xn = y (n ≥ 0) of configu-
rations, such that, for each i = 0, 1, . . . , n − 1, xi and xi+1 differ on exactly
one cell. So, we can write

∆(Fx, Fy) =
n−1∑
i=0

∆(Fxi, Fxi+1) =
n−1∑
i=0

∆(xi, xi+1) = ∆(x, y) . (2.19)

2

The above theorem immediately gives rise to an algorithm for deciding
whether a given CA conserves a given local potential difference. Let F
be a CA with neighborhood N . Suppose that ∆ is a potential difference
on SL which is generated by a local observable with neighborhood M ⊆
L. Note that if two configurations x and y differ on only a single cell i,
∆(x, y) depends only on the values of x and y on M(M−1(i)).1 Likewise,
∆(Fx, Fy) depends only on the values of x and y on M(M−1(N−1(i))).
Therefore, in order to determine whether F conserves ∆, one need only
verify

∆(Fζp♦, F ζq♦) = ∆(ζp♦, ζq♦) (2.20)

for each two patterns p, q : M(M−1(N−1)) → S that agree everywhere but
on the cell 0. Here ♦ can be any fixed arbitrarily chosen configuration.

1Recall that according to our definition, a neighborhood always contains the element 0.
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In fact, in solving the system of equations (2.20) for µ, we can find at
once the linear space of all potential differences that are conserved by F
and generated by local observables with neighborhood M .

Let us next mention the following standard characterization of conser-
vation laws in terms of finite configurations.

Theorem 2.3 ([41, 11, 16, 24]). Let F : SL → SL be a cellular automaton, and
∆ a local potential difference on SL. Let � ∈ S be an arbitrary state and ♦ the
�-uniform configuration. The following statements are equivalent.

i) ∆(Fx, Fy) = ∆(x, y) for every two asymptotic configurations x and y.

ii) ∆(F♦, Fx) = ∆(♦, x) for every �-finite configuration x.

Proof. That [i⇒ii] is trivial. Let us prove the other implication.
Let x and y be asymptotic, and D , {i : x[i] 6= y[i]} be the set on

which they disagree. Define �-finite configurations x̂ and ŷ that agree, re-
spectively, with x and y on a sufficiently large set D ⊇ D (namely, D ,
M(M−1(N−1(D)))) and have state � on all the other cells. We have

∆(Fx, Fy) =
∑

i∈M−1(N−1(D))

[
µ(σiFy)− µ(σiFx)

]
(2.21)

=
∑

i∈M−1(N−1(D))

[
µ(σiF ŷ)− µ(σiFx̂)

]
(2.22)

= ∆(Fx̂, F ŷ) (2.23)
= ∆(F♦, F ŷ)−∆(F♦, F x̂) (2.24)
= ∆(♦, ŷ)−∆(♦, x̂) (2.25)
= ∆(x̂, ŷ) (2.26)

=
∑

i∈M−1(D)

[
µ(σiŷ)− µ(σix̂)

]
(2.27)

=
∑

i∈M−1(D)

[
µ(σiy)− µ(σix)

]
(2.28)

= ∆(x, y) . (2.29)

2

When the CA has a quiescent state � ∈ S, we can choose ♦, the �-
uniform configuration, as a point of reference, and measure the energy of
each �-finite configuration x relative to ♦. In this case, the above characteri-
zation of conservation laws takes the following concise form.

Corollary 2.4. Let F : SL → SL be a cellular automaton, and ∆ a local potential
difference on SL. Let � ∈ S be a quiescent state for F , and ♦ the �-uniform
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configuration. For every �-finite configuration x, define ∆(x) , ∆(♦, x). The
following statements are equivalent.

i) ∆(Fx, Fy) = ∆(x, y) for every two asymptotic configurations x and y.

ii) ∆(Fx) = ∆(x) for every �-finite configuration x.

2.3 Average Energy per Cell

Let µ : SL → R be a local observable with neighborhood M ⊆ L. For every
finite set D ⊆ L, let us define a mapping µD : SL → R by

µD(x) ,
∑
i∈D

µ
(
σix
)
, (2.30)

which measures the µ-content of D on a given configuration x. Let us de-
note by In , [−n, n]d ⊆ L the centered hyper-cube of side 2n+ 1 in L. The
upper average µ per cell (or simply, the upper average energy per cell) of a
configuration x is defined by

µ(x) , lim sup
n→∞

µIn(x)
|In|

. (2.31)

The lower average µ per cell (or, the lower average energy per cell) of a con-
figuration x is defined similarly, via

µ(x) , lim inf
n→∞

µIn(x)
|In|

. (2.32)

For a probability measure π ∈M on SL, the integral

π(µ) ,
∫
µdπ ,

∑
p:M→S

g(p)π([p]) (2.33)

is the expected µ per cell (or simply, the expected energy per cell) with respect
to π.

The observable µ defines a potential difference ∆. In general, different
observables may generate the same potential difference.2 However, for a
fixed ∆, the mappings µ and µ are (up to an additive constant) independent
of the choice of µ.

Proposition 2.5. Let ∆ be a potential difference on SL. Let µ : SL → R be a
local observable which generates ∆. Let � ∈ S be an arbitrary state, and ♦ the

2We shall discuss this further in the next section.
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�-uniform configuration. For every D ⊆ L, let ζD be the operator that sets the
state of the cells in D to �. For every configuration x,

µ(x) = lim sup
n→∞

∆(ζInx, x)
|In|

+ µ(♦) . (2.34)

Proof. Let xn , ζInx. We have

∆(xn, x)
|In|

=

∑
i∈M−1(In)

[
µ(σix)− µ(σixn)

]
|In|

(2.35)

=

∑
i∈In µ(σix)
|In|

−
∑

i∈In µ(σi♦)
|In|

+
o(|In|)
|In|

. (2.36)

Letting n→∞ proves the claim. 2

By definition, an observable µ is continuous with respect to the Cantor
topology on SL. The average mapping µ is not continuous in this sense.
However, it is continuous if we consider the Besicovitch topology on SL (see
e.g. [18, 28]). The latter is defined using the pseudo-metric

d(x, y) , lim sup
n→∞

| {i ∈ In : x[i] 6= y[i]} |
|In|

. (2.37)

Proposition 2.6. For every local observable µ : SL → R, the mapping µ : SL →
R is Lipschitz continuous with respect to the Besicovitch pseudo-metric.

Proof. Suppose that µ has neighborhood M and local assignment g : SM →
R. Let

K , sup {|µ(y)− µ(x)| : x, y : L→ S} (2.38)
= max {|g(q)− g(p)| : p, q : M → S} . (2.39)

For every two configurations x and y, and every finite set D ⊆ L, we have

|µD(y)− µD(x)| ≤
∑
i∈D
|µ(σiy)− µ(σix)| (2.40)

≤ K · |{i ∈ D : x|M(i) 6= y|M(i)}| (2.41)

≤ K · |M | · |{i ∈ D : x[i] 6= y[i]}| . (2.42)
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Therefore,

|µ(y)− µ(x)| =
∣∣∣ lim sup

n→∞

µIn(y)
|In|

− lim sup
n→∞

µIn(x)
|In|

∣∣∣ (2.43)

≤ lim sup
n→∞

|µIn(y)− µIn(x)|
|In|

(2.44)

≤ lim sup
n→∞

K · |M | · |{i ∈ D : x[i] 6= y[i]}|
|In|

(2.45)

= K · |M | · lim sup
n→∞

{i ∈ D : x[i] 6= y[i]}|
|In|

(2.46)

= K · |M | · d(x, y) . (2.47)

2

Note that cellular automata are also Lipschitz continuous with respect
to the Besicovitch pseudo-metric [18].

The mapping π 7→ π(µ) is continuous with respect to weak conver-
gence.

Proposition 2.7. For every local observable µ : SL → R, the mapping π 7→ π(µ)
(for π ∈M ) is continuous with respect to the weak* topology.

Proof. Suppose that µ has neighborhood M ⊆ L and local assignment g :
SM → R. For every converging sequence π1, π2, . . . in M , we have

lim
n→∞

πn(µ) = lim
n→∞

∑
p:M→S

g(p)πn([p]) (2.48)

=
∑

p:M→S
g(p) lim

n→∞
πn([p]) (2.49)

=
(

lim
n→∞

πn

)
(µ) . (2.50)

2

We say that a configuration x is generic if for each finite pattern p we
have δp(x) = δp(x) (see e.g. [54, 28]). That is, a generic configuration
is one for which the frequency of occurrence of each finite pattern is well-
defined. It follows from the Ergodic Theorem (see Appendix A, Theo-
rems A.4 and A.5) that the set of all generic configurations has probabil-
ity 1 with respect to any translation-invariant probability measure π ∈Mσ

on SL. Every generic configuration x defines a translation-invariant Borel
probability measure via πx([p]D) , δp(x) for each finite pattern p : D → S.
In fact, by a theorem of Kakutani (see [71]), every translation-invariant
probability measure is obtained from a generic configuration in this way.
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Proposition 2.8 (e.g. [54, 28]). Let F : SL → SL be a cellular automaton. If x
is a generic configuration, so is Fx. If πx is the probability measure associated to a
generic configuration x, Fπx is the probability measure associated to Fx.

Proof. Let F have neighborhood N . For every finite pattern p : D → S, let
us denote by F−1p the set of patterns q : N(D) → S such that F [q] ⊆ [p].
We have

δp(Fx) =
∑

q∈F−1p

δq(x) . (2.51)

Therefore,

δp(Fx) =
∑

q∈F−1p

δq(x) =
∑

q∈F−1p

δq(x) = δp(Fx) , (2.52)

and
(Fπx)([p]) =

∑
q∈F−1p

πx([q]) =
∑

q∈F−1p

δq(x) = δp(Fx) . (2.53)

2

Proposition 2.9 (e.g. [54]). Let x : L → S be a generic configuration and πx ∈
Mσ the corresponding probability measure. For every local observable µ : SL →
R, we have πx(µ) = µ(x) = µ(x).

Proof. Let µ have neighborhood M ⊆ L and local assignment g : SM → R.
For every finite D ⊆ L, we have

µD(x) =
∑
i∈D

µ(σix) =
∑

p:M→S

∑
i∈D

δp(x)g(p) =
∑

p:M→S
g(p)

∑
i∈D

δp(x) . (2.54)

Therefore,

µ(x) =
∑

p:M→S
g(p)δp(x) =

∑
p:M→S

g(p) · πx([p]) = πx(µ) . (2.55)

That µ(x) = πx(µ) is similar. 2

Clearly, each periodic configuration is generic. Let P denote the set of
all spatially periodic configurations.

Proposition 2.10. For each configuration x, there is a sequence {xi}i in P con-
verging to x (with Cantor topology), such that limi→∞ µ(xi) = µ(x).
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Proof. For every n ≥ 0, let xn be the periodic configuration with fundamen-
tal domain In that agrees with x on In. Clearly limn→∞ xn = x with Cantor
topology. We have,∑

i∈In µ(σix)
|In|

=

∑
i∈In µ(σixn)
|In|

+
o(|In|)
|In|

(2.56)

= µ(xn) +
o(|In|)
|In|

. (2.57)

Letting n→∞ proves the claim. 2

Corollary 2.11. For every local observable µ : SL → R, the set µ(P) is dense
in µ(SL).

Conservation laws can be expressed in terms of average or expected
energy per cell.

Theorem 2.12 ([72, 52, 16, 12]). Let F : SL → SL be a cellular automaton. Let
∆ be a local potential difference generated by a local observable µ : SL → R. The
following statements are equivalent:

i) ∆(Fx, Fy) = ∆(x, y) for every two asymptotic configurations x and y.

ii) µ(Fx) = µ(x) for every configuration x.

iii) µ(Fx) = µ(x) for every generic configuration x.

iv) µ(Fx) = µ(x) for every periodic configuration x.

v) (Fπ)(µ) = π(µ) for every translation-invariant σ-ergodic probability mea-
sure π ∈Mσ.

vi) (Fπ)(µ) = π(µ) for every translation-invariant probability measure π ∈
Mσ.

Proof. The implications [ii⇒iii⇒iv], and [vi⇒v] are trivial. We prove the
rest of the following implications:

i // ii //____

��

iii //____ iv
zz

v
**
viii g_W

OO

Let F have neighborhood N and let µ have neighborhood M . For the sake
of demonstration, we can assume N = [−r, r]d and M = [−l, l]d, where
r, l ≥ 0. Let � ∈ S be an arbitrary state, and♦ the �-uniform configuration.
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[i⇒ii] For each D ⊆ L and each configuration x, let ζDx be the configura-
tion that has state � on every cell in D and agrees with x everywhere else.
Note that, for each t ≥ 0, F t♦ is a uniform configuration. Let x be an ar-
bitrary configuration, and t ≥ 0. If n ≥ 0 is large, F tζInx agrees with F t♦
on a large finite set (namely, In−tr), while it is asymptotic to F tx (namely, it
agrees with F tx on L \ In+tr). We can write

∆
(
F tζInx, F

tx
)

|In|
=

∑
i∈M−1(N−t(In))

[
µ(σiF tx)− µ(σiF tζInx)

]
|In|

(2.58)

=

∑
i∈In µ(σiF tx)
|In|

− µ(F t♦) +
o(|In|)
|In|

. (2.59)

Therefore, for a fixed t ≥ 0 we have

lim sup
n→∞

∆
(
F tζInx, F

tx
)

|In|
= µ(F tx)− µ(F t♦) . (2.60)

Since ∆(F tζInx, F tx) = ∆(ζInx, x), for each t ≥ 0 we get

µ(F tx)− µ(F t♦) = µ(x)− µ(♦) . (2.61)

It remains to show that for each t ≥ 0, µ(F t♦) = µ(♦).
To prove the latter claim, substitute F♦ for x in (2.61), and note that µ

and µ agree on uniform configurations. We obtain that

µ(F t+1♦)− µ(F t♦) = µ(Fx)− µ(♦) (2.62)

for each t ≥ 0. However, the sequence ♦, F♦, . . . is eventually periodic.
That is, for some k ≥ 0 and p > 0 we have F k+p♦ = F k♦. Therefore,

0 = µ(F k+p♦)− µ(F k♦) = p · (µ(F♦)− µ(♦)) . (2.63)

That is, µ(F t♦) = µ(♦) for every t ≥ 0.

[iv⇒i] Let x and y be two asymptotic configurations. Let D , {i : x[i] 6=
y[i]} be the set of cells on which x and y differ. Choose a hyper-cube

J , [a1, b1)× [a2, b2)× · · · [ad, bd) ⊆ L , (2.64)

which contains M(M−1(D)) ∪M(M−1(N−1(D))). Define periodic config-
urations x̂ and ŷ, with fundamental domain J , that agree with x and y on
J . Namely, let

x̂[i] , x[(i mod p) + a] , (2.65)

ŷ[i] , y[(i mod p) + a] (2.66)
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for every i = (i1, i2, . . . , id) ∈ L, where

p , b− a (2.67)
= (b1, b2, . . . , bd)− (a1, a2, . . . , ad) . (2.68)

We have

∆(Fx, Fy) =
∑

i∈M−1(N−1(D))

[µ(σiFy)− µ(σiFx)] (2.69)

=
∑

i∈M−1(N−1(D))

[µ(σiF ŷ)− µ(σiFx̂)] (2.70)

=
∑
i∈J

[µ(σiF ŷ)− µ(σiFx̂)] (2.71)

= |J | · [µ(F ŷ)− µ(Fx̂)] (2.72)
= |J | · [µ(ŷ)− µ(x̂)] (2.73)

=
∑
i∈J

[µ(σiŷ)− µ(σix̂)] (2.74)

=
∑

i∈M−1(D)

[µ(σiŷ)− µ(σix̂)] (2.75)

=
∑

i∈M−1(D)

[µ(σiy)− µ(σix)] (2.76)

= ∆(x, y) . (2.77)

[ii⇒v] Let π ∈ Mσ be σ-ergodic. By Proposition A.2, Fπ is also σ-ergodic.
Let

A , {x : µ(x) = π(µ)} , (2.78)

B , {y : µ(y) = (Fπ)(µ)} . (2.79)

By the ergodic theorem (Theorem A.4), we have π(A) = 1 and (Fπ)(B) = 1.
Therefore, π(A ∩ F−1B) = 1, which implies A ∩ F−1B 6= ∅. For each
x ∈ A ∩ F−1B, we have (Fπ)(µ) = µ(Fx) = µ(x) = π(µ).

[v⇒vi] Every probability measure π ∈ Mσ is a limit of convex combina-
tions of σ-ergodic elements of Mσ (Theorem A.5). The claim follows from
the fact that the mappings π 7→ π(µ) and π 7→ Fπ are continuous and affine.

[vi⇒iii] For a generic configuration x, let πx be the associated probability
measure. By Propositions 2.8 and 2.9, we have

µ(Fx) = (Fπx)(µ) = πx(µ) = µ(x) . (2.80)

2



24 2 Potentials and Conservation Laws

It is sometimes convenient to assume that a local observable is strictly
positive. This often does not affect the generality of the discussion. For, if
µ : SL → R is an arbitrary local observable, we can choose a constant c ∈ R
such that µ+ , µ + c > 0. Clearly, µ and µ+ generate the same potential
difference. Yet another way to characterize conservation laws is in terms of
expansion rate of µ+.

Theorem 2.13 ([24, 5]). Let F : SL → SL be a cellular automaton, and ∆ a local
potential difference on SL. Let µ+ : SL → R be a strictly positive local observable
generating ∆. The following statements are equivalent:

i) ∆(Fx, Fy) = ∆(x, y) for every two asymptotic configurations x and y.

ii) lim
n→∞

µ+
In

(Fx)

µ+
In

(x)
= 1 for every configuration x.

Proof. Let � ∈ S be an arbitrary state, and ♦ the �-uniform configuration.
As usual, for each D ⊆ L and each configuration x, let ζDx be the config-
uration which has state � on every cell in D and agrees with x everywhere
else.

[i⇒ii] For n ≥ 0 we have

µ+
In

(x) = ∆(ζInx, x) + |In| · µ+(♦) + o(|In|) , (2.81)

µ+
In

(Fx) = ∆(FζInx, Fx) + |In| · µ+(F♦) + o(|In|) . (2.82)

By assumption, ∆(FζInx, Fx) = ∆(ζInx, x), and by Theorem 2.12 we know
µ+(F♦) = µ+(♦). Note also that µ+

In
≥ K · |In| where K = infz µ+(z) > 0.

Therefore,

lim
n→∞

µ+
In

(Fx)

µ+
In

(x)
= lim

n→∞

∆(FζInx, Fx) + |In| · µ+(F♦) + o(|In|)
∆(ζInx, x) + |In| · µ+(♦) + o(|In|)

(2.83)

= 1 . (2.84)

[ii⇒i] By Theorem 2.12, it is enough to show that, for each spatially periodic
configuration x, we have µ+(Fx) = µ+(x). Let x be a spatially periodic
configuration. For n ≥ 0 we have

µ+
In

(x) = |In| · µ+(x) + o(|In|) , (2.85)

µ+
In

(Fx) = |In| · µ+(Fx) + o(|In|) . (2.86)

Therefore,

1 = lim
n→∞

µ+
In

(Fx)

µ+
In

(x)
= lim

n→∞

|In| · µ+(Fx) + o(|In|)
|In| · µ+(x) + o(|In|)

=
µ+(Fx)
µ+(x)

. (2.87)

2
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2.4 Observables vs. Interaction Potentials

Let D be the set of all local potential differences on SL. This is a linear space.
If ∆1 and ∆2 are generated by local observables µ1 and µ2, respectively,
a∆1 + b∆2 (a, b ∈ R) is generated by the local observable aµ1 + bµ2. Every
cellular automaton F : SL → SL induces a linear operator F ∗ on D , where
for every ∆ ∈ D , F ∗∆ is defined via (F ∗∆)(x, y) , ∆(Fx, Fy). If ∆ is
generated by a local observable µ : SL → R, F ∗∆ is generated by the local
observable µ ◦ F . It is easy to see that µ ◦ F = µ ◦ F .

For every neighborhood M ⊆ L, we have a linear subspace D [M ] ⊆ D
of potential differences with neighborhood M . For a cellular automaton F
with neighborhood N , F ∗ maps D [M ] into D [N(M)]. The potential differ-
ences conserved by a cellular automaton F form a subspace of D , denoted
by DF . As pointed out in Section 2.2, for every neighborhood M , one can
identify algorithmically the finite dimensional space DF [M ].

In general, different local observables may generate the same potential
difference. If observables µ1 and µ2 generate the same potential difference
∆, µ2 − µ1 generates the zero element of D . We call an observable void if it
generates the zero potential difference. Void local observables are exactly
those with constant average.

Proposition 2.14. A local observable µ : SL → R is void if and only if the average
µ is constant.

Proof. Let µ be void; that is, ∆ ≡ 0. It follows from Proposition 2.5 that µ is
constant.

Conversely, suppose that ∆(x, y) 6= 0 for asymptotic configurations x
and y. Let D , {i : x[i] 6= y[i]} be the set of cells over which x and y
disagree. Let µ have neighborhood M . Choose a hyper-cube

J , [a1, b1)× [a2, b2)× · · · [ad, bd) ⊆ L , (2.88)

which contains M(M−1(D)). Define periodic configurations x̂ and ŷ, with
fundamental domain J , that agree with x and y on J . Namely, let

x̂[i] , x[(i mod p) + a] , (2.89)

ŷ[i] , y[(i mod p) + a] (2.90)

for every i = (i1, i2, . . . , id) ∈ L, where

p , b− a (2.91)
= (b1, b2, . . . , bd)− (a1, a2, . . . , ad) . (2.92)
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We have

µ(ŷ)− µ(x̂) =
∆(x, y)
|J |

6= 0 . (2.93)

Hence, µ is not constant. 2

Void local observables form a linear subspace of the space of all local
observables. Adding a void observable to an observable µ does not affect
the potential difference µ generates. If ∆ is a potential difference generated
by µ, we can express the fact that a cellular automaton F conserves ∆ by
saying µ ◦ F − µ is void.

An alternative way to generate local potential differences is via inter-
action potentials, that is, by assigning energy to the interaction of the ele-
ments, rather than to the individual elements and their context. Although
a bit cumbersome to work with, defining potential differences via inter-
action potentials has the advantage that it is often more compatible with
the physical intuition. Furthermore, as we shall see, every local potential
difference has a canonical interaction potential, which is in some sense the
most natural.

Recall that S# denotes the collection of finite patterns modulo transla-
tions. A (local) interaction potential is an assignment θ : S# → R such that

i) The set supp(θ) , {p ∈ S# : θ(p) 6= 0} is finite, and

ii) θ(∅) = 0.

(Recall that ∅ is the empty pattern.) Every interaction potential θ generates
a local potential difference ∆ via

∆(x, y) ,
∑

K finite

[θ(y|K)− θ(x|K)] (2.94)

for asymptotic configurations x and y.

Proposition 2.15. The mapping defined via (2.94) is a local potential difference.

Proof. That ∆ is a potential difference is trivial. To see that ∆ is local, first
note that it is defined for each asymptotic x and y, and that ∆(σax, σay) =
∆(x, y) for each a ∈ L.

Choose a finite set M ⊆ L such that for each finite pattern p : A → S
where 〈p〉 ∈ Pθ, either 0 /∈ A or A ⊆M . For example, if

supp(θ) = {〈p1〉, 〈p2〉, . . . , 〈pn〉} (2.95)

where pk has domain Ak, we can choose

M ,
n⋃
k=1

Ak(A−1
k ) . (2.96)
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Let q : D → S be a finite pattern, and x and y two configurations that agree
on M(D). We have

∆(y, ζqy) =
∑

K finite

[θ(y|K)− θ(ζqy|K ] (2.97)

=
∑

K⊆M(D)

[θ(y|K)− θ(ζqy|K ] (2.98)

=
∑

K⊆M(D)

[θ(x|K)− θ(ζqx|K ] (2.99)

=
∑

K finite

[θ(x|K)− θ(ζqx|K ] (2.100)

= ∆(x, ζqx) . (2.101)

2

We are now going to show that each local potential difference has a
canonical presentation in terms of an interaction potential. For this, we
must single out one state � ∈ S which we will call blank. A non-blank state
is called active. A pattern is active if all its cells are active. By convention,
the empty pattern is non-active.

Proposition 2.16 ([39, 20]). Every local potential difference is generated by a
unique (up to the choice of the blank state) interaction potential that assigns zero
to all non-active patterns.

Proof. Let ∆ be a local potential difference with neighborhood M . Let � ∈
S be the blank state, and ♦ the �-uniform configuration. For every finite
pattern p : D → S, define ∆(p) , ∆(♦, ζp♦). Consider the equations∑

q�p
θ(q) = ∆(p) (2.102)

for every finite pattern p : D → S. The set of all sub-patterns of p is a finite
partially ordered set isomorphic to (2D,⊆). Therefore, by the Möbius In-
version Theorem (see e.g. [81]), the system of equations (2.102) has a unique
solution for θ, given by

θ(p) ,
∑
q�p

(−1)|p|−|q|∆(q) . (2.103)

Let Q , {p : θ(p) 6= 0}. We show that, for every p : D → S, θ vanishes
whenever

a) there exist i, j ∈ D with M−1(i) ∩M−1(j) = ∅, or
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b) p[i] = � for some i ∈ D.

Since θ is translation-invariant, it follows that the quotient Q/σ is finite.
We see that θ(〈p〉) , θ(p) (for every 〈p〉 ∈ S#) is well-defined and is an
interaction potential. We further show that

c) ∆(x, y) =
∑

K finite

[θ(y|K)− θ(x|K)] for each asymptotic x and y.

First, suppose there exist two cells i, j ∈ D, such thatM−1(i)∩M−1(j) =
∅; that is, for every k ∈ L, either i /∈M(k) or j /∈M(k). We have

θ(p) =
∑
A⊆D

A3i,A3j

(−1)|D|−|A|∆(p|A) +
∑
A⊆D

A3i,A63j

(−1)|D|−|A|∆(p|A) (2.104)

+
∑
A⊆D

A63i,A3j

(−1)|D|−|A|∆(p|A) +
∑
A⊆D

A63i,A63j

(−1)|D|−|A|∆(p|A) (2.105)

=
∑
A⊆D

A3i,A3j

(−1)|D|−|A| [∆A −∆Arj −∆Ari + ∆Arirj ] , (2.106)

where we have used the shorthand ∆X for ∆(p|X). But the additivity of ∆
implies

∆A −∆Arj −∆Ari + ∆Arirj = 0 (2.107)

(cf. Equations 2.1 and 2.2). Specifically,

∆A −∆Arj = ∆(ζp|Arj
♦, ζp|A♦) (2.108)

= ∆(ζp|Arirj
♦, ζp|Ari

♦) (2.109)

= ∆Ari −∆Arirj . (2.110)

Hence, θ(p) = 0.
Next, assume that p[i] = � for some i ∈ D. We have

θ(p) =
∑
A⊆D

(−1)|D|−|A|∆(p|A) (2.111)

=
∑
A⊆D
A3i

(−1)|D|−|A| [∆(p|A)−∆(p|Ari)] . (2.112)

But ∆(p|A) = ∆(p|Ari), because ζp|A♦ = ζp|A\i
♦. Therefore, θ(p) = 0.



§2.4 Observables vs. Interaction Potentials 29

Finally, let x and y be asymptotic. Let D be the set of cells on which x
and y differ. Let p , x|M(M−1(D)) and q , y|M(M−1(D)). We have

∆(x, y) = ∆(ζp♦, ζq♦) (2.113)
= ∆(♦, ζq♦)−∆(♦, ζp♦) (2.114)

=
∑

K⊆M(M−1(D))

θ(q|K)−
∑

K⊆M(M−1(D))

θ(p|K) (2.115)

=
∑

K⊆M(M−1(D))

θ(y|K)−
∑

K⊆M(M−1(D))

θ(x|K) (2.116)

=
∑

K finite

[θ(y|K)− θ(x|K)] , (2.117)

which concludes the proof. 2

We will call the interaction potential provided by Proposition 2.16 the
canonical interaction potential generating ∆.

Let θ be an interaction potential. For a configuration x and a finite set
A ⊆ L, we can define

ΘA(x) ,
∑
K⊆A

θ(x|A) (2.118)

as the amount of energy on x which is concentrated in A. Likewise, for two
disjoint finite sets A,B ⊆ L, we can define

ΘA,B(x) ,
∑

K⊆A∪B
K∩A6=∅
K∩B 6=∅

θ(x|K) (2.119)

as the amount of energy in x resulting from the interaction of A and B.
Clearly, whenever A,B ∈ L are finite and disjoint, we have

ΘA∪B = ΘA + ΘB + ΘA,B . (2.120)

If � ∈ S is the blank state, ♦ the �-uniform configuration, and θ canonical,
for every finite pattern p : D → S we can define Θ(ζp♦) , ΘD(ζp♦). If
θ generates a potential difference ∆, for every �-finite configuration x we
have Θ(x) = ∆(♦, x).

The average energy per cell can equivalently be defined in terms of in-
teraction potentials. Namely, if θ : S# → R is an interaction potential, for
every configuration x, let

θ(x) , lim sup
n→∞

ΘIn(x)
|In|

. (2.121)
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Proposition 2.17. Let µ : SL → R be a local observable, and θ : S# → R
an interaction potential, both generating a potential difference ∆. Then µ − θ is
constant.

Proof. Let M be the neighborhood of ∆. Let xn be the configuration which
agrees with x outside In and has � on each cell inside In. By Proposition 2.5,
it is enough to show that

θ(x) = lim sup
n→∞

∆(xn, x)
|In|

+ c (2.122)

for a constant c ∈ R. We have

∆(xn, x)
|In|

=

∑
K finite
K∩In 6=∅

[θ(x|K)− θ(xn|K)]

|In|
(2.123)

=
ΘIn(x) + ΘIn,∂M(In)(x)

|In|
−

ΘIn(xn) + ΘIn,∂M(In)(xn)
|In|

(2.124)

=
ΘIn(x)
|In|

− ΘIn(♦)
|In|

+
o(|In|)
|In|

. (2.125)

Letting n→∞ proves the claim. 2



CHAPTER 3

Flows and Particles

A conservation law, as discussed in the previous chapter, is a global
property of a CA. It asserts that certain local additive quantity,

which we call energy, is globally preserved. It does not, however, pro-
vide any microscopic mechanism behind this. Namely, it does not elabo-
rate how the energy is manipulated locally so that its global quantity re-
mains intact. As we shall see, microscopic explanations can be given for
any conservation law in CA in terms of “flows” of energy from one cell to
another. Needless to say, such explanations are utterly conceptual (as are
all mathematical models). They provide only a contrivance to make the
phenomenon more intuitive and perhaps easier to treat with some of our
mathematical or computational tools.

Since each conservation law may have many different “flow” expla-
nations, we may look for restricted types of flow that have some desired
properties. In the case that the energy concept of a conservation law has
a certain physical interpretation, we would like our flow explanation to be
compatible with that interpretation. An interesting case is when the energy
of a configuration is interpreted as the number of objects or “particles” dis-
tributed over the cells. We then expect our flow to explain the movement
of the particles. This gives rise to the concept of particle flows.

Finally, we might hope that following the approach in Section 2.4, we
can find a “canonical” flow explanation for each conservation law. We will
make an effort in this direction. The result, though not satisfactory, is per-
haps worth mentioning.

3.1 Flows and Local Conservation Laws

We would like to find an explanation for the microscopic dynamics of a
conserved energy, in terms of “flows” of energy from one cell to another.

Let F : SL → SL be an arbitrary CA. Let ∆ be the potential difference
generated by a local observable µ : SL → R. If x ∈ SL is a configuration,

31
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and a ∈ L a cell on the lattice, we may think of µ(σax) as the amount of
energy in x which is associated with (or is coming from) cell a.1 A “flow”
would describe how this value is redistributed among the neighboring cells
of a in one iteration of F .

Specifically, by a flow we mean a mapping x, i, j 7→ Φi→j(x) ∈ R for
x ∈ SL and i, j ∈ L that satisfies the following conditions:

i) For every i, j ∈ L, the mapping x 7→ Φi→j(x) is a local observable.

ii) For every configuration x, all cells i, j ∈ L, and every a ∈ L,

Φa+i→a+j(x) = Φi→j(σax) . (3.1)

iii) There is a finite set I ⊆ L such that, Φi→j = 0 unless i− j ∈ I .

Equivalently, a mapping x, i, j 7→ Φi→j(x) is called a flow if there exist finite
sets K, I ⊆ L, and a rule ϕ : SK × I → R such that

Φi→j(x) =

{
ϕ(x|K(j), i− j) if i− j ∈ I,
0 otherwise

(3.2)

for every x ∈ SL and i, j ∈ L. The value Φi→j(x) is referred to as the flow
from cell i to cell j in configuration x. The amount of flow to each cell is
decided locally, by looking at a finite neighborhood K of that cell. The set I
is the set of directions from which energy flows to a cell.

We say that a flow Φ is compatible with energy µ and cellular automa-
ton F (or, Φ is a flow for µ, under the dynamics of F ), if the following
continuity equations hold (see Figure 3.1(a)):

a) For every configuration x and every cell a,

µ(σax) =
∑
j∈L

Φa→j(x) . (3.3)

b) For every configuration x and every cell a,∑
i∈L

Φi→a(x) = µ(σaFx) . (3.4)

An energy µ is locally conserved by F if it has a flow under F . In fact, conser-
vation laws and local conservation laws are equivalent concepts in cellular
automata (see [41]):

1 This is not, strictly speaking, a universal meaning induced by ∆, but rather, subjective
to the specific observable µ. A different observable generating ∆ would claim a different
energy for cell a. We would like to see if the version of the story told by µ can be extended
to cover the movements of the energy.
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Figure 3.1: (a) Continuity of the flow:
∑

i ϕi = µ =
∑

j ψj .
(b, c) Two different flows for the car conservation law in the Traffic CA.

Proposition 3.1. Let ∆ be a potential difference generated by a local observable µ.
A cellular automaton F conserves ∆ if and only if it locally conserves µ.

Proof. [⇐] First, suppose that F locally conserves µ. Let Φ be a flow com-
patible with µ and F . For any two asymptotic configurations x and y, we
have

∆(x, y) =
∑
i∈L

[
µ(σiy)− µ(σix)

]
(3.5)

=
∑
i∈L

∑
j∈L

Φi→j(y)−
∑
j∈L

Φi→j(x)

 (3.6)

=
∑
j∈L

[∑
i∈L

Φi→j(y)−
∑
i∈L

Φi→j(x)

]
(3.7)

=
∑
j∈L

[
µ(σjFy)− µ(σjFx)

]
(3.8)

= ∆(Fx, Fy) . (3.9)

Therefore, F conserves ∆.
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[⇒] Next, suppose that F conserves ∆. We construct a flow compatible
with µ and F . The construction is similar to that in Proposition 2.1 where
we proved that every local potential difference is generated by a local ob-
servable.

Let us distinguish an arbitrary state � ∈ S, and denote the �-uniform
configuration by ♦. Let � be the lexicographic order on L, and for every
cell i ∈ L, denote by γ(i) the successor of i according to �. Recall that for
every pattern p : D → S, the operator ζp turns every pattern q : E → S into
q|E\D ∨ p. For every cell k ∈ L, let us use the shorthand ζk for the operator
ζrk , where rk is the restriction of ♦ to {i ∈ L : k � i}. In other words, the
operator ζk sets all the cells i � k to blank. Let N ⊆ L be the neighborhood
of F and M ⊆ L the neighborhood of µ.

Let x be an arbitrary configuration. Roughly speaking, starting from
the configuration ♦, we follow the order � and switch the state of the cells,
one by one, to their values in x. At each step, we look at the change in the
energy values of the cells before and after applying F , and try to match
them with each other.

For every a, i, j ∈ L, let us define

ε[a, i](x) , µ
(
σiζγ(a)x

)
− µ

(
σiζax

)
, (3.10)

ϑ[a, j](x) , µ
(
σjFζγ(a)x

)
− µ

(
σjFζax

)
. (3.11)

Note that

a)
∑

i∈L ε[a, i](x) = ∆(ζax, ζγ(a)x) = ∆(Fζax, Fζγ(a)x) =
∑

j∈L ϑ[a, j](x),

b) ε[a, i](x) = 0, unless i ∈M−1(a),

c) ϑ[a, j](x) = 0, unless j ∈M−1(N−1(a)),

d) ε[a, i](x) = ε[a, i](x′) if x|M(M−1(a)) = x′|M(M−1(a)),

e) ϑ[a, j](x) = ϑ[a, j](x′) if x|N(M(M−1(N−1(a)))) = x′|N(M(M−1(N−1(a)))).

For every configuration x, and all a, i, j ∈ L with i ∈ M−1(a) and j ∈
M−1(N−1(a)), let us choose δΦ[a, i→ j](x) ∈ R in such a way that∑

i∈M−1(a)

δΦ[a, i→ j](x) = ϑ[a, j](x) , (3.12)

∑
j∈M−1(N−1(a))

δΦ[a, i→ j](x) = ε[a, i](x) . (3.13)

Namely, for i 6= a, let us choose

δΦ[a, i→ j](x) ,

{
ε[a, i](x) if j = i,

0 otherwise,
(3.14)



§3.1 Flows and Local Conservation Laws 35

while we choose

δΦ[a, a→ j](x) ,

{
ϑ[a, j](x) if j = a,

ϑ[a, j](x)− ε[a, j](x) otherwise.
(3.15)

When i /∈M−1(a) or j /∈M−1(N−1(a)), define δΦ[a, i→ j](x) , 0.
Now we can construct a flow as follows. For every configuration x, and

every i, j ∈ L, define

Φi→j(x) , δij · µ(♦) +
∑
a∈L

δΦ[a, i→ j](x) , (3.16)

where δij , 1 if i = j and δij , 0 otherwise. The translation-invariance of
Φ (condition (ii)) follows from the translation-invariance of ε, ϑ and δΦ. For
fixed a, i, j ∈ L, clearly ε[a, i] and ϑ[a, j], and hence δΦ[a, i → j], are local
observables. Furthermore, δΦ[a, i → j] = 0, unless a ∈ M(i) ∩ N(M(j)).
Therefore, Φ is also a local observable (condition (i)). Finally, Φi→j = 0
whenever M(i)∩N(M(j)) = ∅; that is, unless i− j ∈M−1(N(M)) (condi-
tion (iii)). Therefore, Φ is a flow.

Let us verify that Φ also satisfies the continuity equations. For every
x ∈ SL and c ∈ L, we have

µ(σcx) = µ(♦) +
∑
a∈L

[
µ
(
σcζγ(a)x

)
− µ (σcζax)

]
(3.17)

= µ(♦) +
∑
a∈L

ε[a, c](x) (3.18)

= µ(♦) +
∑
a∈L

∑
j∈L

δΦ[a, c→ j](x) (3.19)

=
∑
j∈L

[
δcj · µ(♦) +

∑
a∈L

δΦ[a, c→ j](x)

]
(3.20)

=
∑
j∈L

Φc→j(x) . (3.21)

and

∑
i∈L

Φi→c(x) =
∑
i∈L

[
δic · µ(♦) +

∑
a∈L

δΦ[a, i→ c](x)

]
(3.22)

= µ(♦) +
∑
a∈L

∑
i∈L

δΦ[a, i→ c](x) (3.23)

= µ(♦) +
∑
a∈L

ϑ[a, c](x) (3.24)



36 3 Flows and Particles

= µ(♦) +
∑
a∈L

[
µ
(
σcFζγ(a)x

)
− µ (σcFζax)

]
(3.25)

= µ(♦) + µ(σcFx)− µ(σcF♦) (3.26)
= µ(σcFx) . (3.27)

(That µ(F♦) = µ(♦) follows, for example, from Theorem 2.12.) Therefore,
Φ is compatible with µ and F , which means µ is locally conserved by F . 2

It is clear that the choice of the flow Φ in the above construction was
quite arbitrary. In fact, there are infinitely many different flows compatible
with each conservation law. For example, Figure 3.1(b,c) shows two differ-
ent flows for the car conservation law in the Traffic CA, which was referred
to in the introduction. We next discuss the existence of a restricted type of
flow for interaction-free energies; that is, energies which can be defined via
local observables with singleton neighborhoods.

3.2 Particle Flows

In this section, we focus on interaction-free potentials; that is, those gener-
ated by observables with singleton neighborhood {0}. Moreover, we re-
strict ourselves to observables that take values in the set of non-negative
integers.

Let µ : SL → N (N , {0, 1, 2, . . .}) be a local observable with neigh-
borhood {0}. That is, µ is specified using an assignment g : S → N via
µ(x) , g(x[0]). We interpret g(s) as the number of “particles” attached to
state s. Or we may say that a cell with state s ∈ S carries g(s) particles. If a
CA F conserves the energy defined by µ, the total number of particles in a
configuration x after one iteration of F remains the same. Can we explain
this by providing an explicit recipe for the movement of each individual
particle? In other words, can we find a flow for µ whose values are all
non-negative integers? A flow Φ such that Φi→j(x) ∈ N for all i, j and x is
called a particle flow. The value Φi→j(x) suggests the number of particles in
configuration x traveling from cell i to cell j in one iteration step of F .

Remark 3.1. Let Φ be a flow for an interaction-free observable µ, and sup-
pose that Φ takes its values in Z. If I is the set of directions from which Φ
flows, for a sufficiently large k ∈ Z, the flow

Φ′i→j ,

{
Φi→j + k if i− j ∈ I,
0 otherwise,

(3.28)

takes its values in N, and hence is a particle flow for the observable
µ+ k|I|. #
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Remark 3.2. Recall that every finitely generated subgroup of R is isomor-
phic to Zm for some m ≥ 0. If an interaction-free energy µ : SL → Zm
is conserved by a cellular automaton F , each of its m components must
be conserved independently. If we are able to find particle flows for each
component, we can extend our interpretation for µ by assumingm different
types of particles, which flow independently. #

Let us call the assignment g : S → N, defining an interaction-free ob-
servable µ, a particle assignment. We say a CA F conserves g if it conserves
the potential difference generated by µ. By a flow for g, we mean a flow
for µ. Whether every conserved particle assignment has a particle flow is
not known. However, the following theorem, due to Pivato, strongly sug-
gests that such flows always exist. In the following two subsections, we
will present constructions of particle flows for two special cases: for the
one-dimensional CA (Fukś and Pivato) and for the two-dimensional CA
with radius-1

2 neighborhood.

Theorem 3.2 ([72]). A CA F : SL → SL with neighborhood N conserves a
particle assignment g : S → N if and only if∑

i∈A
g (x[i]) ≤

∑
i∈N−1(A)

g ((Fx)[i]) (3.29)

and ∑
i∈A

g ((Fx)[i]) ≤
∑

i∈N(A)

g (x[i]) (3.30)

for every configuration x and every finite set A ⊆ L.

Proof.
[⇒] Let ∆ be the potential difference generated by g. Let � ∈ S be a state
which minimizes g, and let ♦ be the �-uniform configuration. Then F♦ is
�′-uniform for some �′ ∈ S. It follows from Theorem 2.12 that g(�′) = g(�).

Let x be an arbitrary configuration and A ⊆ L a finite set of cells. Let
p , x|N(A). We have∑

i∈N(A)

g (x[i]) = ∆(♦, ζp♦) + |N(A)| · g(�) (3.31)

≥ ∆(F♦, F ζp♦) + |A| · g(�′) (3.32)

=
∑
i∈A

g ((Fx)[i]) +
∑

i∈N−1(N(A))\A

[
g((Fζp♦)[i])− g(�′)

]
(3.33)

≥
∑
i∈A

g ((Fx)[i]) . (3.34)
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Next, let r , ♦|A and r′ , (F♦)|N−1(A). We have∑
i∈A

g (x[i]) = ∆(ζrx, x) + |A| · g(�) (3.35)

≤ ∆(Fζrx, Fx) + |N−1(A)| · g(�′) (3.36)

= ∆(ζr′Fx, Fx)−∆(ζr′Fx, Fζrx) + |N−1(A)| · g(�′) (3.37)

=
∑

i∈N−1(A)

g ((Fx)[i])−
∑

i∈N−1(A)

g ((Fζrx)[i]) (3.38)

≤
∑

i∈N−1(A)

g ((Fx)[i]) . (3.39)

[⇐] Let µ : SL → N be the observable defined by g. By Theorem 2.12, it is
enough to show that µ(Fx) = µ(x) for every configuration x.

Let x be a configuration, and n ≥ 0. Recall that In , [−n, n]d is the
central hyper-cube of size (2n + 1)d in L. Let r ≥ 0 be such that N ⊆ Ir.
Then for n ≥ r we have

N−1(In−r) ⊆ In , and N(In) ⊆ In+r . (3.40)

Substituting In−r and In for A in (3.29) and (3.30), we get∑
i∈In−r

g (x[i])

|In−r|
· |In−r|
|In|

≤
∑

i∈In g ((Fx)[i])
|In|

≤
∑

i∈In+r
g (x[i])

|In+r|
· |In+r|
|In|

. (3.41)

Letting n→∞we obtain

µ(x) ≤ µ(Fx) ≤ µ(x) , (3.42)

which implies µ(Fx) = µ(x). 2

Let g : S → N be a particle assignment and N a finite neighborhood.
Given two configurations x and y, let us construct a bipartite graph
GN [g;x, y] = (U, V,E) as follows. For every particle in x, the graph has
a vertex in U . Similarly, for every particle in y, there is a vertex in V . A par-
ticle u ∈ U coming from cell i is connected by an edge to a particle v ∈ V
coming from cell j if and only if i is a neighbor of j; that is, if and only if
i− j ∈ N .

A perfect matching in graph GN [g;x, y] is a way of identifying particles
in x with particles in y in such a way that the position of each particle in
x is a neighbor of its position in y. A necessary and sufficient condition
for a (possibly infinite, but locally finite2) bipartite graph to have a perfect
matching is given by Hall’s Marriage Theorem (see e.g. [81]): a bipartite

2A graph is locally finite if every vertex has a finite degree.
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graph G = (U, V,E) has a matching that covers U if and only if for every
finite setA ⊆ U , the number of vertices in V that are adjacent toA is at least
|A|. If G has a matching that covers U and a matching that covers V , G has
a perfect matching.

It follows from Theorem 3.2 that if a CA with neighborhood N con-
serves g, then for every configuration x, the graph GN [g;x, Fx] must have
a perfect matching.

Corollary 3.3. A CA F : SL → SL with neighborhood N conserves a parti-
cle assignment g : S → N if and only if for every configuration x, the graph
GN [g;x, Fx] has a perfect matching.

3.2.1 One Dimension

For one-dimensional CA, it is known that every conserved particle assign-
ment has a compatible particle flow. Such a particle flow is not unique.
However, there are simple and natural criteria to single out one such parti-
cle flow.

Let F : SZ → SZ be a one-dimensional CA and g : S → N a particle
assignment that is conserved by F . Without loss of generality, we assume
that F has neighborhood N , [−r, r] for r ≥ 0. Let � ∈ S be a state which
minimizes g. Without loss of generality, we can assume g(�) = 0. Let ♦
be the �-uniform configuration and �′ ∈ S the state of the cells in F♦. By
Theorem 2.12, we know that g(�′) = g(�) = 0.

Let x be a �-finite configuration. There are a finite number of particles
on x, and the same number on Fx. If we assume that F preserves the order
of the particles, we can uniquely3 identify the particles on x with those on
Fx. As we shall see, this identification can, in fact, be done locally, via a
particle flow.

Using the above assumption, we can calculate the number of particles
Φi→j(x) which are moving from each cell i to any other cell j. Namely, for
every �-finite configuration x, and every k ∈ Z, let us define

`k(x) ,
∑
i≤k

g (x[i]) . (3.43)

It is easy to verify that

Φi→j(x) =



`i(x)− `j−1(Fx) if `i−1(x) ≤ `j−1(Fx) < `i(x) ≤ `j(Fx),
g (x[i]) if `j−1(Fx) < `i−1(x) ≤ `i(x) ≤ `j(Fx),
`j(Fx)− `i−1(x) if `j−1(Fx) ≤ `i−1(x) < `j(Fx) ≤ `i(x),
g ((Fx)[j]) if `i−1(x) < `j−1(Fx) ≤ `j(Fx) ≤ `i(x),
0 otherwise.

(3.44)

3provided that we do not distinguish between two particles that are on the same cell.
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Let a, b ∈ Z. If a ≤ b, let x′ , x|>a−r ∨ ♦|≤a−r. Since F conserves g, we
have

`a(x)− `b(Fx) =
∑
i≤a

g (x[i])−
∑
i≤b

g ((Fx)[i]) (3.45)

=
∑
i>b

g ((Fx)[i])−
∑
i>a

g (x[i]) (3.46)

=
∑
i>b

g
(
(Fx′)[i]

)
−
∑
i>a

g
(
x′[i]

)
(3.47)

=
∑
i≤a

g
(
x′[i]

)
−
∑
i≤b

g
(
(Fx′)[i]

)
, (3.48)

which depends only on the value of x on (a − r, b + r]. Similarly, if b < a,
let x′′ , x|<a+r ∨ ♦|≥a+r. Again, since F conserves g, we can write

`a(x)− `b(Fx) =
∑
i≤a

g (x[i])−
∑
i≤b

g ((Fx)[i]) (3.49)

=
∑
i≤a

g
(
x′′[i]

)
−
∑
i≤b

g
(
(Fx′′)[i]

)
(3.50)

=
∑
i>b

g
(
(Fx′′)[i]

)
−
∑
i>a

g
(
x′′[i]

)
, (3.51)

which depends only on the value of x on [b− r, a+ r). So in either case, we
obtain that `a(x)−`b(Fx) is a local observable. Therefore, for every i, j ∈ Z,
the mapping Φi→j is a local observable.

Next, it follows from Theorem 3.2 that whenever i < j − r, we have
`i(x) ≤ `j−1(Fx), and hence Φi→j(x) = 0. Similarly, whenever i > j + r,
we have `j(Fx) ≤ `i−1(x), and again Φi→j(x) = 0. Therefore, Φi→j(x) = 0,
unless i− j ∈ I , [−r, r].

Finally, Φ clearly takes its values in N. Furthermore, for every a ∈ L we
have Φa+i→a+j(x) = Φi→j(σax).

Note that Φi→j is defined only on �-finite configurations. However,
since �-finite configurations are dense in SZ, Φi→j can be uniquely extended
to a local observable on SZ. By the continuity of Φ, the above properties au-
tomatically extend to all configurations in SZ.

We conclude that Φ is a particle flow. Moreover, by construction, the
continuity equations

g (x[a]) =
∑

j∈I−1(a)

Φa→j(x) (3.52)

and ∑
i∈I(a)

Φi→a(x) = g ((Fx)[a]) (3.53)
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hold for every �-finite configuration x and every cell a ∈ Z. On the other
hand, the set of configurations for which the above continuity equations
hold is obviously closed. Therefore, the equations hold for every configu-
ration in SZ. That is, Φ is compatible with g and F .

Theorem 3.4 ([29, 72, 66]). Let F : SZ → SZ be a one-dimensional cellular
automaton and g : S → N a particle assignment conserved by F . There is a
particle flow compatible with g and F . Furthermore, provided g(�) = 0 for some
state � ∈ S, there is exactly one such flow which preserves the order of the particles.

Remark 3.3. There are very many particle flows compatible with a one-
dimensional CA and a conserved particle assignment. The above construc-
tion yields the flow which preserves the order of the particles. Alterna-
tively, we could pick this particular particle flow via a variational principle
(as is customary in physics). Namely, the above-constructed flow is that
which minimizes the total distance traveled by particles on each �-finite
configuration. #

3.2.2 Two Dimensions

Let F : SZ2 → SZ2
be a two-dimensional CA with neighborhood

N = {(0, 0), (0, 1), (1, 1), (1, 0)} (3.54)

and local rule f : SN → S. The neighbors (0, 0), (0, 1), (1, 1) and (1, 0)
are interpreted, respectively, as the down-left (dl), up-left (ul), up-right
(ur) and down-right (dr) neighbors. Such a neighborhood is often called a
radius-1

2 neighborhood.
To simplify our exposition, let us distinguish between the neighbors of

a cell i and the cells that are adjacent to it. The former are the cells i + dl,
i + ul, i + ur and i + dr at the previous step, while the latter are the cells
i+r, i+u, i+l and i+d at the current time step, where r , (1, 0), u , (0, 1),
l , (−1, 0) and d , (0,−1).

Let g : S → N be a particle assignment which is conserved by F . As
before, without loss of generality we can assume that µ(�) = 0 for a state
� ∈ S which we call blank. For every state x ∈ S, we define the free flows
going out of x by looking at the following configurations:

� � �
� x �
� � �

F−→
x2 x3

x1 x4
. (3.55)
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That is,

ϕ ↓ (x) , g(f(x •
�

� �)) , ϕ ←(x) , g(f(� •x

� �)) , (3.56)

ϕ →(x) , g(f(� • �
x �)) , ϕ ↑ (x) , g(f(� • �� x

)) . (3.57)

Since F conserves g, we have

ϕ ←(x) + ϕ ↑ (x) + ϕ →(x) + ϕ ↓ (x) = g(x) . (3.58)

When two states are adjacent, their out-going flows interfere and as a
result we have a flow deflection from one cell toward another.

� � � �
� x y �
� � � �

F−→
x2 a y3

x1 b y4
. (3.59)

Specifically, for every x, y ∈ S, define

ψ↑(x y) , max
{

0, g(f(� • �
x y))− ϕ →(x)− ϕ ↑ (y)

}
, (3.60)

ψ↓(x y) , max
{

0, g(f(x •
y

� �))− ϕ ↓ (x)− ϕ ←(y)
}
. (3.61)

Since F conserves g, we have

g(f(� • �
x y)) = ϕ →(x) + ϕ ↑ (y) + ψ↑(x y)− ψ↓(x y) , (3.62)

g(f(x •
y

� �)) = ϕ ↓ (x) + ϕ ←(y) + ψ↓(x y)− ψ↑(x y) , (3.63)

and either ψ↓(x y) or ψ↑(x y) is zero. The deflections ψ→(xy) and ψ←(xy) are
defined similarly, and in the same way we have

g(f(x •
�

y �)) = ϕ ↓ (x) + ϕ →(y) + ψ→(xy)− ψ←(xy) , (3.64)

g(f(� •x

� y)) = ϕ ←(x) + ϕ ↑ (y) + ψ←(xy)− ψ→(xy) , (3.65)

and either ψ←(xy) or ψ→(xy) is zero. The deflections summarize all the inter-
actions between the free flows:

Lemma 3.5. For every x, y, z, t ∈ S we have

g(f(
y
•
z

x t
)) = ϕ →(x) + ϕ ↓ (y) + ϕ ←(z) + ϕ ↑ (t)

+ ψ→(
y

x
) + ψ↓(y z) + ψ←(z

t
) + ψ↑(x t)

− ψ←(
y

x
)− ψ↑(y z)− ψ→(z

t
)− ψ↓(x t) . (3.66)
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Figure 3.2: Correcting the flows.

We shall think of the free flows and the flow deflections as weighted
arrows from one cell (in the space-time) to another. For example, in the
consecutive configurations

p
!!B

BB
y

}}||| !!B
BB

z
}}|||

a b

q

==|||
x

aaBBB ==|||
t

aaBBB
F−→

p y z

a // b

q x t

, (3.67)

the free flow ϕ ↓ (p) is depicted by an arrow toward the cell with state a
from its up-left neighbor in the previous time step, and so forth. Similarly,

there is a deflection arrow from a to b with weight ψ→(
y

x
) ≥ 0 and one in

the opposite direction with weight ψ←(
y

x
) ≥ 0, though at least one of their

values is zero. For two consecutive configurations x and y = Fx, let us
write Φ →[i] for the free flow arrow with value ϕ → (x[i+ dl]) from the cell
i+ dl (in x), to the cell i (in y), and so forth. Similarly, let Ψ↑[i], Ψ→[i], Ψ↓[i]
and Ψ←[i] be the deflection arrows from i (in y) to the cells i+ u, i+ r, i+ d
and i+ l (in y), respectively.

Deflections represent the deviation of g values from what is prescribed
by the free flows. If we split each deflection ψ↑ (resp. ψ→, ψ↓, ψ←) into two
parts ψ� and ψ� (resp. ψ⇀ and ψ⇁, ψ� and ψ�, ψ↽ and ψ↼) and use these
parts to correct the free flows, we obtain a flow compatible with g and F .
To be precise, at each cell i, the arrow Φ →[i] is corrected to

Φ′→[i] , Φ →[i]−Ψ�[i] + Ψ�[i+ d]−Ψ↽[i] + Ψ⇁[i+ l] , (3.68)

and so forth (Figure 3.2). We require the splits ψ�, ψ�, . . . to be non-negative
integers. In other respects the splitting can be arbitrary and may depend on
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the local neighborhood pattern. The main challenge here is to do the split-
ting in such a way that the corrected flow has only non-negative integer
values.

Let us say that a cell i on y is balanced if

a) Φ ↓ [i] + Φ ←[i] ≥ Ψ↑[i] (and its rotations),

b) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] ≥ Ψ↑[i] + Ψ→[i] (and its rotations), and

c) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] + Φ →[i] ≥ Ψ↑[i] + Ψ→[i] + Ψ↓[i] + Ψ←[i].

Observation 3.6. For every a, b, c ∈ S we have

a) ϕ ↓ (a) + ϕ ←(b) ≥ ψ↑(a b),

b) ϕ ↓ (a) + ϕ ←(b) + ϕ ↑ (c) ≥ ψ↑(a b) + ψ→(b
c
).

Lemma 3.7. If a cell is balanced, its out-going deflections can be split so that its
corrected in-coming flows remain non-negative and integer.

Proof. Let i be a balanced cell. Let us construct a bipartite graph H =
(X,Y,E) as follows. For each in-coming particle, put a vertex in X , and
for each out-going particle, put a vertex in Y . Connect with an edge each
particle associated with the in-coming free flow Φ →[i] to each particle as-
sociated with the out-going deflections Ψ←[i] and Ψ↓[i], and so forth. The
balancedness of i ensures that, for every subset A ⊆ X , the number of ver-
tices in Y that are connected to A is at least |A|. Therefore, by Hall’s Mar-
riage Theorem (see e.g. [81]), H has a perfect matching P ⊆ E. Let Ψ↽[i]
be the number of particles associated with Ψ←[i] which are matched with
particles associated with Φ →[i], and similarly choose the other splits. 2

Figure 3.3 shows the various deflection patterns that may occur around
a cell. The other possibilities are all symmetrically identical to these five
cases. According to Lemma 3.7, Observation 3.6 guarantees that, unless
there is exactly one deflection directing toward a cell (i.e., the cases (1-4)),
one can correct the in-coming free flows of that cell to satisfy its out-going
deflections in such a way that the corrected flows remain non-negative. Let
us call a cell problematic (represented by P) if the situation around it is as in
case (5) (or its symmetrically identical variants). We call a cell doubly prob-
lematic (represented by ~P) if it is problematic, and if furthermore the end-
points of its out-going deflection arrows are also problematic (Figure 3.4).
For two adjacent cells i and j, let us say j follows i if there is a deflection
arrow from i to j.

Observation 3.8. If j follows i, i and j cannot both be doubly problematic
at the same time.



§3.2 Particle Flows 45

�
!!B

BB �
}}|||

©// //
��
OO

�

==|||
�

aaBBB

(1)

�
!!B

BB �
}}|||

©// //

OO

OO

�

==|||
�

aaBBB

(2)

�
!!B

BB �
}}|||

©// oo

OO

��
�

==|||
�

aaBBB

(3)

�
!!B

BB �
}}|||

©oo //

OO

��
�

==|||
�

aaBBB

(4)

�
!!B

BB �
}}|||

©// //

OO

��
�

==|||
�

aaBBB

(5)

Figure 3.3: The deflection patterns that may occur around a cell.
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Figure 3.4: Doubly problematic cell.

Theorem 3.9 ([48]). Let F : SZ2 → SZ2 be a two-dimensional radius-1
2 cellular

automaton and g : S → N a particle assignment conserved by F . There is a
particle flow compatible with g and F .

Proof. Let x and y be two consecutive configurations in SZ2
. Let us set the

free flows as an initial approximation of the desired flow. That is, let Φ(0)
d ,

Φd (d ∈ { →, ↓ , ←, ↑ }). We construct a particle flow for g by correcting this
approximation in three steps. At each step a number of deflections are split
and redistributed into the affected flows.

Step 1
SPLITTING. For every cell i around which the pattern of deflection arrows
is in either of the cases (1-4) of Figure 3.3, we split the out-going deflections
as suggested in Lemma 3.7. If the cell is doubly problematic, we leave the
splitting of its out-going deflections for the next step. If the cell is prob-
lematic but not doubly problematic, we leave for the next step one of its
out-going deflections leading to a non-problematic cell and split the other
two, as described in Lemma 3.7.
CORRECTING. We use the already split deflections to correct the flows. Let
Φ(1)
d (d ∈ { →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.
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Step 2
SPLITTING. Let i be a problematic cell. Notice that unless i follows a doubly
problematic cell, its in-coming deflection has already been resolved in the
previous step. In this case, i is no longer problematic, and we can split
its out-going deflections as explained in Lemma 3.7. In particular, all out-
going deflections of (formerly) doubly problematic cells are split in this step
(Observation 3.8).
CORRECTING. We correct the flows using the newly split deflections. Let
Φ(2)
d (d ∈ { →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

Step 3
SPLITTING. The only unresolved deflections are those originating from a
problematic cell (such as i) that follows an initially doubly problematic cell.
But the out-going deflections of the doubly problematic cells are already
resolved. So i is no longer problematic. We split its unresolved out-going
deflection using Lemma 3.7.
CORRECTING. We correct the flows using the newly split deflections. Let
Φ(3)
d (d ∈ { →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

At this point, all the deflections are resolved. The corrected arrows Φ(3)
d

define a flow Φ by

Φi→j ,



Φ(3)

→
[j] if i = j + dl,

Φ(3)

↓ [j] if i = j + ul,

Φ(3)

←
[j] if i = j + ur,

Φ(3)

↑ [j] if i = j + dr,

0 otherwise,

(3.69)

which satisfies the continuity equations. Also, by construction, the values
of Φ are all non-negative integers. Therefore, Φ is a particle flow compatible
with g and F . 2

3.3 Interaction-type Flows

In this section, we take a different point of view to obtain a microscopic
explanation of a conservation law when presented in terms of interaction
potentials. Namely, we try to identify the contribution of a finite group of
cells to the energy of another finite group of cells one step later, by tinkering
around with the inclusion-exclusion principle as in Section 2.4.

Let F : SL → SL be a CA. For simplicity, in this section we assume that
F has a quiescent state � ∈ S. Denote the �-uniform configuration by ♦.
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Let ∆ be a local potential difference which is conserved by F . By Corol-
lary 2.4, this means that ∆(Fx) = ∆(x) for every �-finite configuration x.
Let θ : S# → R be the canonical interaction potential (with respect to �)
generating ∆.

Let K ⊆ 2L denote the collection of finite subsets of L. We are going to
work with elements of RK ; that is, the mappings which assign real values
to each finite set of cells. For every finite pattern p : D → S, let us define
G(p) ∈ RK as follows. For every finite K ⊆ L, let G(p)[K] , θ ((Fζp♦)|K),
that is the energy resulting from the interaction of the cells in K on the
configuration Fζp♦. For every finite p : D → S, define

H(p) ,
∑
q�p

(−1)|p|−|q|G(q) ∈ RK . (3.70)

By the Möbius Inversion Theorem (see e.g. [81]), or equivalently by the
inclusion-exclusion principle, for every finite p : D → S we have

G(p) =
∑
q�p

H(q) . (3.71)

For every configuration x and each two finite sets A,B ⊆ L, let us define

ΦA→B(x) , H(x|A)[B] . (3.72)

The following proposition shows that this can indeed be seen as the “flow”
of energy from A to B in one iteration of F on x.

Proposition 3.10. Let F , ∆, θ and Φ be as above. Let N be the neighborhood of
F and M the neighborhood of ∆. We have

i) ΦA→B(x) = 0, unless for all i, j ∈ B, we have M−1(i) ∩M−1(j) 6= ∅.

ii) ΦA→B(x) = 0, unless A ⊆ N(B).

iii) ΦA→B(x) = 0 if x[a] = � for some a ∈ A.

iv) For every B ∈ K , we have∑
A∈K

ΦA→B(x) = θ ((Fx)|B) . (3.73)

v) For every A ∈ K , we have∑
B∈K

ΦA→B(x) = θ (x|B) . (3.74)
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Proof.

i) Recall from the proof of Proposition 2.16, that for every finite pattern
p : D → S, θ(p) = 0, unless M−1(i) ∩M−1(j) 6= ∅ for all i, j ∈ D.

Suppose that for B ∈ K , there exist i, j ∈ B with M−1(i) ∩M−1(j) =
∅. Then for each finite pattern p, we haveG(p)[B] = 0. Hence for each
finite pattern p, we also have H(p)[B] = 0.

ii) Suppose that A 6⊆ N(B). Let a ∈ A \N(B). We have

H(x|A) =
∑
C⊆A
C3a

(−1)|A|−|C| [G(x|C)−G(x|Cra)] . (3.75)

But the state of the cell a does not affect the state of the cells in B
one step later. Therefore, G(x|C)[B] = G(x|Cra)[B] for each C ∈ K .
Therefore, H(x|A)[B] = 0.

iii) Suppose that x[a] = � for some a ∈ A. Then for every C 3 a we have
ζx|C♦ = ζx|Cra

♦. Therefore,

H(x|A) =
∑
C⊆A
C3a

(−1)|A|−|C| [G(x|C)−G(x|Cra)] = 0 . (3.76)

iv) We have ∑
A∈K

ΦA→B(x) =
∑

A⊆N(B)

H(x|A)[B] (3.77)

= G(x|N(B))[B] (3.78)

= θ
(
(Fζx|N(B)

♦)|B
)

(3.79)

= θ ((Fx)|B) . (3.80)

v) We have∑
B∈K

ΦA→B(x) =
∑
B∈K

H(x|A)[B] (3.81)

=
∑
B∈K

∑
C⊆A

(−1)|A|−|C|G(x|C)[B] (3.82)

=
∑
C⊆A

(−1)|A|−|C|
∑
B⊆K

G(C)[B] (3.83)

=
∑
C⊆A

(−1)|A|−|C|
∑
B⊆K

θ
(
(Fζx|C♦)|B

)
(3.84)
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=
∑
C⊆A

(−1)|A|−|C|∆
(
Fζx|C♦

)
(3.85)

=
∑
C⊆A

(−1)|A|−|C|∆
(
ζx|C♦

)
(3.86)

= θ(x|A) , (3.87)

where the last equality follows from the construction of θ in the proof
of Proposition 2.16 (i.e., by the Möbius Inversion Theorem). 2



50 3 Flows and Particles



CHAPTER 4

The Hierarchy of
Conservation Laws

RECALL from Chapter 2, that for every cellular automaton F , the col-
lection DF [M ] of local potential differences with neighborhood M

that are conserved by F form a finite dimensional linear space, which can
effectively be found. IfM ′ ⊇M is a larger neighborhood, the space DF [M ′]
contains DF [M ] as a subspace. Therefore, we have a hierarchy of linear
spaces whose structure we may want to understand. In particular, we may
wonder if for a large enough neighborhood M , all the conservation laws of
F are covered in DF [M ] (i.e., if DF = DF [M ]). Or we may ask whether F
has any non-trivial conservation law at all (i.e., whether DF is a non-trivial
space). In this chapter, we address such questions.

More generally, we study the structure of the hierarchy of conservation
laws for a CA. For this, it seems appropriate to consider a more general
class of conservation laws in which the energy values are from an arbitrary
commutative group (or semigroup). A remarkable (though easily recog-
nized) fact is that for each CA, among all conservation laws with a given
range of interaction, there is one which is the most general: it extracts what-
ever information about the CA that can be expressed in terms of conserva-
tion laws with that range. Any other conservation law with that range can
be derived from the most general one by applying an algebraic homomor-
phism. Therefore, our hierarchy can be seen as a hierarchy of more and
more general conservation laws.

We provide an example that the group-valued conservation laws give
strictly more information than the real-valued ones, and an example in
which the semigroup-valued conservation laws are strictly more general
than the group-valued ones. Needless to say, the semigroup-valued con-
servation laws can be quite expressive. Nevertheless, we prove that for
one-dimensional CA, the most general conservation law of each range, as
well as a finite presentation of the corresponding semigroup, can effectively

51
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be constructed. This is a good news, because the Word Problem for commu-
tative semigroups is also decidable (see e.g. [8]). Therefore the whole the-
ory, in the one-dimensional case, is algorithmically effective. For example,
we can effectively determine whether two (finite) configurations have the
same total energy, or if a given CA conserves a given energy. In higher di-
mensions, however, no such construction for the most general semigroup-
valued conservation laws is possible.

We also consider the interconnection between the hierarchy of conser-
vation laws and the dynamical behavior of the CA. We identify some re-
strictions that the existence of conservation laws imposes on the dynamics
of the CA.

4.1 Group-valued Conservation Laws

In this section, we consider the broader class of conservation laws, in which
the energy values are chosen from a commutative group. Let G be a com-
mutative group. A G-valued potential difference is defined in the same
way as a real-valued potential difference, except that it takes its values from
G. Also, similar to the real-valued case, a G-valued local potential differ-
ence can be generated either by a local observable (Proposition 2.1) or by
a G-valued interaction potential (Proposition 2.16). Likewise, conservation
laws are defined in the same way. However, in this setup, the notion of
average energy per cell is no longer meaningful.

Example 4.1 (XOR). Consider the one-dimensional XOR CA F , which has
state set S , {0, 1}, neighborhoodN , {−1, 0, 1}, and local rule f(a, b, c) =
a+ b+ c (mod 2). Figure 4.1 shows a typical snapshot. The time axis in the
figure goes downward. A well-known property of the XOR CA (and in
general, of every linear CA) is its replicating behavior. Specifically, every
finite pattern, after a finite number of steps, is replicated into three copies
with large 0 blocks in between. (Figure 4.1 depicts an example. This fact
is easy to verify using generating functions; see e.g. [75].) This implies that
F cannot have any non-trivial real-valued conservation law. On the other
hand, F preserves the parity of the configurations. Let G , Z2 be the binary
cyclic group, and consider the G-valued observable µ : SZ → Z2 defined by
µ(x) , x[0]. The potential difference ∆ generated by µ compares the parity
of the number of 1’s in two asymptotic configurations, and is conserved
by F . #

Let G be a commutative group and ∆ a G-valued local potential differ-
ence on SL. By the realizable subgroup of G we mean the subgroup

Ğ , G〈∆(x, y) : x and y asymptotic〉 (4.1)
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Figure 4.1: A space-time snapshot from the CA in Example 4.1.

generated by the range of ∆. Two local potential differences ∆1 : SL×SL →
G1 and ∆2 : SL×SL → G2 are considered to be equivalent, written ∆1 ≡ ∆2,
if there is a group isomorphism ι : Ğ1 → Ğ2 such that ∆2 = ι ◦∆1. We say
that ∆1 is at least as general as ∆2, written ∆2 v ∆1, if there is a group ho-
momorphism h : Ğ1 → Ğ2 such that ∆2 = h ◦ ∆1. This defines a partial
ordering (up to equivalence) on the collection of group-valued local poten-
tial differences on SL. The join of ∆1 and ∆2 is the local potential difference
∆1 ∨∆2 : SL×SL → G1×G2, where (∆1 ∨∆2)(x, y) , (∆1(x, y),∆2(x, y))
whenever x and y are asymptotic. It is the least general potential differ-
ence which is at least as general as ∆1 and ∆2. A local potential difference
∆ : SL × SL → G is trivial if the realizable subgroup Ğ is trivial. If a cel-
lular automaton F : SL → SL conserves a local potential difference ∆, it
also conserves every local potential difference ∆′ v ∆ that is less general
than ∆. If F conserves two local potential differences ∆1 and ∆2, it also
conserves ∆1 ∨∆2. The trivial local potential difference on SL is conserved
by every cellular automaton.

Let ∆ be a G-valued local potential difference on SL. Notice that either
of Propositions 2.1 or 2.16 implies that the realizable subgroup Ğ is finitely
generated. In fact, if θ : S# → G is the canonical interaction potential (with
any choice of the blank state) generating ∆, Equation (2.103) implies that Ğ
is exactly the subgroup generated by the values of θ.

An interesting observation is that any collection of group-valued local
potential differences with bounded “range of interaction” has a least upper-
bound with respect tov that is itself a local potential difference. In particu-
lar, we can merge any collection of conservation laws with bounded range
of interaction to obtain a single conservation law that embodies all of them.
Let � ∈ S be a fixed state which we will call blank.

Proposition 4.1. Let {∆i}i∈I be a collection of local potential differences on
SL. For every i ∈ I , let θi be the canonical interaction potential generating ∆i.
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If A ,
⋃
i∈I supp(θi) is finite, there is a unique (up to equivalence) least gen-

eral local potential difference
∨
i∈I ∆i that is at least as general as each ∆i. It is

generated by a canonical interaction potential θ̃ with supp(θ̃) = A. A cellular
automaton F conserves

∨
i∈I ∆i if and only if it conserves every ∆i.

Proof. For each i ∈ I , let ∆i take its values from a group Gi. Let Ği be the
realizable subgroup of Gi.

Let G0 be the free commutative group generated by S#. For every i ∈ I ,
let us extend θi : S# → Ği to a group homomorphismϕi : G0 → Ği. Denote
by ∼i the congruence on G0 that is induced by ϕi. Then ∼ ,

⋂
i∈I ∼i is

the least discriminating congruence on G0 that is more discriminating than
each ∼i. Let G̃ , G0/∼, and denote by h̃ : G0 → G̃ the corresponding
natural homomorphism. For each i ∈ I , there is a unique homomorphism
ϕ̃i : G̃→ Ği such thatϕi = ϕ̃i◦h̃. Furthermore, if G′ is any other factor of G0

and h′ : G0 → G′ and ϕ′i : G′ → Ği are homomorphisms with ϕi = ϕ′i ◦ h′,
there is another homomorphism ψ : G′ → G̃ such that h̃ = ψ ◦ h′ and
ϕ′i = ϕ̃i ◦ ψ. These are summarized in the following commuting diagram:

G0

h̃

��

ϕi

  @
@@

@@
@@

@@
@@

@@
@@

h′

		��
��
��
��
��
��
��
��
��
�

G̃
ϕ̃i // Gi

G′
ϕ′i

44jjjjjjjjjjjjjjjjjjjj

ψ
>>}

}
}

}

(4.2)

Let us define θ̃ : S# → G̃ by θ̃(p) , h̃(p). By assumption, whenever p ∈
S# \ A, we have θi(p) = 0 for each i ∈ I . Therefore, for each i ∈ I we have
ϕi(p) = 0 and p ∼i 0. This implies that p ∼ 0 and θ̃(p) = h̃(p) = 0. Hence, θ̃
is an interaction potential. Let ∆̃ be the potential difference generated by θ̃.
Since the elements ofA are all active patterns, θ̃ is the canonical interaction
potential generating ∆̃.

For each i ∈ I and p ∈ A we have

θi(p) = ϕi(p) = ϕ̃i ◦ h̃(p) = ϕ̃i ◦ θ̃(p) . (4.3)

Therefore, ∆i = ϕ̃i ◦ ∆̃, which means that ∆i v ∆̃.
On the other hand, let ∆′ be any other local potential difference such

that ∆i v ∆′ for each i ∈ I . Let θ′ : S# → G′ be the canonical interaction
potential generating ∆′, and let Ğ′ be the realizable subgroup of G′. Let
h′ : G0 → Ğ′ be the extension of θ′ to a group homomorphism. For each
i ∈ I , there is a group homomorphism ϕ′i : Ğ′ → Gi so that ϕ′i ◦∆′ = ∆i, or
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equivalently ϕ′i ◦ θ′ = θi. Therefore, ϕ′i ◦ h′ = ϕi. Now, the above universal
property of G̃ ensures that there exists a homomorphism ψ : Ğ′ → G̃ such
that h̃ = ψ ◦ h′. Therefore, θ̃ = ψ ◦ θ′, or equivalently, ∆̃ = ψ ◦∆′. Hence,
∆̃ v ∆′.

We conclude that
∨
i∈I ∆i , ∆̃ is the least general local potential differ-

ence that is at least as general as each ∆i. Any other potential difference
with the same property is as general as ∆̃, and hence equivalent with it.

Next, let F : SL → SL be a cellular automaton. If F conserves ∆̃, it also
conserves each ∆i, because ∆i v ∆̃. Conversely, suppose that F conserves
each ∆i.

Let θA0 : S# → G0 be the formal interaction potential defined by

θA0 (p) ,

{
p if p ∈ A,
0 otherwise.

(4.4)

Let ∆A0 be the potential difference generated by θA0 . Clearly, θi = ϕi ◦ θA0
(for each i ∈ I) and θ̃ = h̃ ◦ θA0 . Therefore, ∆i = ϕi ◦ ∆A0 (for each i ∈ I),
and ∆̃ = h̃ ◦∆A0 .

Let x and y be two asymptotic configurations. For each i ∈ I , we have
∆i(Fx, Fy) = ∆i(x, y), which means that ∆A0 (Fx, Fy) ∼i ∆A0 (x, y). So,
∆A0 (Fx, Fy) ∼ ∆A0 (x, y), which implies ∆̃(Fx, Fy) = ∆̃(x, y). Therefore, F
also conserves ∆̃. 2

The previous proposition implies that for every CA, there is no more
than a finite amount of information in conservation laws with a certain
range of interaction. In fact, using Theorem 2.2, we can algorithmically
construct the most general of such conservation laws.

Let F : SL → SL be a CA and A ⊆ S# a finite set of active patterns. As
before, let G0 be the free commutative group generated by S#, and define
the formal interaction potential θA0 : S# → G0 by

θA0 (p) ,

{
p if p ∈ A,
0 otherwise.

(4.5)

Let ∆A0 be the potential difference generated by θA0 . The realizable sub-
group of G0 is the free commutative group GA0 generated by A. Let GAF be
the commutative group generated by A with relations

∆A0 (Fx, Fy) ∼ ∆A0 (x, y) (4.6)

for all asymptotic x and y. This is the freest factor of GA0 that equalizes
∆A0 (x, y) and ∆A0 (Fx, Fy) for each asymptotic x and y. Let hAF : GA0 → GAF
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be the corresponding natural homomorphism, and define

∆AF , hAF ◦∆A0 , (4.7)

θAF , hAF ◦ θA0 . (4.8)

It is easy to verify that ∆AF is the most general potential difference con-
served by F that is generated by a canonical interaction potential θ with
supp(θ) ⊆ A.

However, following the argument of Theorem 2.2, we see that GAF is
equivalently generated with relations

∆A0 (Fx, Fy) ∼ ∆A0 (x, y) (4.9)

whenever x and y differ on exactly one cell. There are finitely many such
relations, which we can effectively find (see the comments after the proof
of Theorem 2.2). In conclusion, we can algorithmically construct a finite
presentation of the group GAF .

Proposition 4.2 ([27]). Let F : SL → SL be a CA and A ⊆ S# a finite set
of patterns. There is an algorithm to identify the most general conservation law
for F whose canonical interaction potential associates non-zero values only to the
elements of A. In particular, we can construct the canonical interaction potential
of this conservation law, as well as a finite presentation of the corresponding group.

4.2 Semigroup-valued Conservation Laws

Let us extend our framework even further and allow energy values to be
chosen from a commutative monoid. There is no well-defined concept of
semigroup-valued potential difference. We should therefore use a differ-
ent approach to define conservation laws. For simplicity, in this section we
restrict ourselves to those CA which have a quiescent state. We specify en-
ergies using observables or interaction potentials, and define conservation
laws using the characterization given in Corollary 2.4.

Example 4.2 (Spreading 1’s). Let F be the one-dimensional CA with state
set S , {0, 1}, neighborhood N , {−1, 0, 1}, and local rule f(a, b, c) = a ∨
b∨c . See Figure 4.2 for a typical snapshot. It is easy to see that every group-
valued conservation law for F is trivial. Notice that every non-quiescent
0-finite configuration eventually turns into a single ever-growing block of
ones. In contrast, F has a non-trivial semigroup-valued conservation law.
Let Φ = {0, 1} be the commutative semigroup with binary operation a+b ,
a ∨ b. Consider the observable µ : SL → Φ defined by µ(x) , x[0], and the
energy it specifies. The 0-uniform configuration has total energy 0, while
every other 0-finite configuration has total energy 1. #
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Figure 4.2: A space-time snapshot from the CA in Example 4.2.

Let Φ be an arbitrary commutative monoid. We denote its binary oper-
ation by + and its identity element by 0. Let us fix a state � ∈ S and denote
the �-finite configuration with ♦. We restrict ourselves to local observables
µ : SL → Φ with µ(♦) = 0. The potential generated by µ is the mapping
∆ : C�[S]→ Φ defined by

∆(x) ,
∑
i∈L

µ
(
σix
)
, (4.10)

which measures the total energy of �-finite configurations. This is well-
defined, because when x is a �-finite configuration, µ

(
σix
)
6= 0 for no more

than a finite number of choices of i. Let F : SL → SL be a CA in which �
is quiescent. We say that F conserves ∆ if for every �-finite configuration x
we have ∆(Fx) = ∆(x).

Let Φ be a commutative monoid and ∆ a Φ-valued potential (generated
by some local observable). Similarly to the previous section, by the realizable
sub-monoid of Φ we mean the sub-monoid

Φ̆ , Φ〈∆(x) : x �-finite〉 (4.11)

generated by the total energy of the �-finite configurations. Two potentials
∆1 : C�[S] → Φ1 and ∆2 : C�[S] → Φ2 are considered to be equivalent,
written ∆1 ≡ ∆2, if there is a monoid isomorphism ι : Φ̆1 → Φ̆2 such that
∆2 = ι ◦∆1. We say that ∆1 is at least as general as ∆2, written ∆2 v ∆1, if
there is a monoid homomorphism h : Φ̆1 → Φ̆2 such that ∆2 = h ◦∆1. As
before, this defines a partial ordering (up to equivalence) on the collection
of monoid-valued potentials on SL. The join of ∆1 and ∆2 is the potential
∆1∨∆2 : C�[S]→ Φ1×Φ2, where (∆1∨∆2)(x) , (∆1(x),∆2(x)) whenever
x is �-finite. It is the least general potential which is at least as general as
∆1 and ∆2. If ∆1 is generated by the observable µ1 : SL → Φ1 and ∆2 is
generated by the observable µ2 : SL → Φ2, then ∆1∨∆2 is generated by the
observable µ1 ∨ µ2 : SL → Φ1 × Φ2, where (µ1 ∨ µ2)(x) , (µ1(x), µ2(x)). A
potential ∆ : C�[S]→ Φ is trivial if the realizable sub-monoid Φ̆ is trivial. If
a cellular automaton F : SL → SL conserves a potential ∆, it also conserves
every potential ∆′ v ∆ which is less general than ∆. If F conserves two
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potentials ∆1 and ∆2, it also conserves ∆1 ∨∆2. The trivial potential on SL

is conserved by every cellular automaton.
Monoid-valued potentials can equivalently be generated using interac-

tion potentials. However, unlike in the group-valued case, here we can-
not identify a unique canonical interaction potential generating a given po-
tential. In particular, there is no immediate way to identify the realizable
sub-monoid. More importantly, the algorithm for deciding whether a CA
conserves a given real-valued (or group-valued) energy does not work for
monoid-valued energies.

On the other hand, as in the group-valued case, among all monoid-
valued conservation laws with a fixed “range of interaction”, there is one
which is the most general.

Proposition 4.3 ([27]). Let F : SL → SL be a cellular automaton for which �
is a quiescent state, and let M ⊆ L be a finite neighborhood. Among all monoid-
valued conservation laws which are defined using observables with neighborhood
M , there is one which is the most general.

Proof. Let ΦM
0 be the free commutative monoid generated by SM \ {�M}.

Let µM0 : SL → ΦM
0 be the formal observable defined by

µM0 (x) ,

{
x|M if x|M 6= ♦|M ,
0 otherwise,

(4.12)

and let ∆M
0 : C�[S]→ ΦM

0 be the potential it generates. Let∼ be the smallest
congruence on ΦM

0 such that ∆M
0 (Fx) ∼ ∆M

0 (x) for every �-finite configu-
ration x. Define ΦM

F , ΦM
0 /∼, and let hMF : ΦM

0 → ΦM
F be the correspond-

ing natural homomorphism. Define the potential ∆M
F , hMF ◦ ∆M

0 , which
is generated by the local observable µMF , hMF ◦ µM0 .

For every �-finite configuration x we have

∆M
F (Fx) = hMF ◦∆M

0 (Fx) = hMF ◦∆M
0 (x) = ∆M

F (x) . (4.13)

Hence, F conserves ∆.
On the other hand, let ∆′ be any other monoid-valued potential which

is conserved by F and is generated by an observable µ′ : SL → Φ′ with
neighborhood M and µ′(♦) = 0. Let g′ : SM → Φ′ be the local assignment
which defines µ′. For each p ∈ SM \ {�M}, let h′(p) , g′(p) and extend
h′ to a monoid homomorphism h′ : ΦM

0 → Φ′. We have µ′ = h′ ◦ µM0
and ∆′ = h′ ◦ ∆M

0 . Let ∼′ be the congruence on ΦM
0 that is induced by h′.

Since ∆′(Fx) = ∆′(x) for every �-finite configuration x, we have ∼′ ⊇ ∼.
Therefore, there is a homomorphism ψ : ΦM

F → Φ′ such that h′ = ψ ◦ hMF .
For every �-finite x, we have

∆′(x) = h′
(
∆M

0 (x)
)

= ψ ◦ hMF
(
∆M

0 (x)
)

= ψ
(
∆M
F (x)

)
. (4.14)
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Therefore, ∆M
F is at least as general as ∆′. 2

Naturally, we would like to be able to find the most general monoid-
valued conservation law corresponding to a given neighborhood. In par-
ticular, we would like to have an algorithm that, given a cellular automaton
F and a neighborhood M , constructs the monoid ΦM

F and the observable
µMF : SL → ΦM

F defined in the proof of Proposition 4.3. Note that since ΦM
F

is finitely generated, it has a finite presentation (see e.g. [38]). However,
it is not clear how to find such a finite presentation. A finite presentation
is needed if, for example, we want to algorithmically verify whether two
configurations have the same total energy (see e.g. [8]).

It turns out that for 2- or higher-dimensional CA, no algorithm can con-
struct such a finite presentation for the monoid ΦM

F . For one-dimensional
CA, we will show how to construct ΦM

F and µMF .
Let F : SL → SL be a CA with a quiescent state �. Clearly, (�, �) is a

quiescent state for the product F ×F : (S×S)L → (S×S)L. Let Φ , {0, 1}
be the Boolean monoid with a+b , a∨b for every a, b ∈ Φ. Define the local
observable µ : (S × S)L → Φ by

µ(x) ,

{
0 if x[0] = (a, a) for some a ∈ S,
1 otherwise,

(4.15)

and let ∆ be the potential generated by µ. The CA F ×F conserves ∆ if and
only if F is injective when restricted to �-finite configurations. According
to the Garden-of-Eden Theorem, F is injective on �-finite configurations if
and only if it is surjective. However, the question of whether a given 2-
or higher-dimensional CA is surjective is undecidable [45]. Therefore, no
algorithm can verify, for a given F , whether F × F conserves ∆.

Proposition 4.4 ([27]). There is no algorithm that, given a 2- or higher-dimensional
CA F and a local observable µ with values from a finitely presented commutative
monoid, determines whether F conserves the potential generated by µ.

Corollary 4.5 ([27]). There is no algorithm that, given a 2- or higher-dimensional
CA F : SL → SL and a finite neighborhood M , computes a finite presentation of
the semigroup ΦM

F and the observable µMF : SL → ΦM
F that, among the observables

with neighborhood M , generates the most general potential conserved by F .

Let us now focus on one-dimensional CA. Let F : SZ → SZ be a one-
dimensional CA with a quiescent state � ∈ S. Let Φ be a commutative
monoid and µ : SZ → Φ a local observable with µ(♦) = 0. Without loss of
generality we assume that F has a neighborhood [−l, r] with l+ r ≥ 0, and
that µ has a neighborhood [0,m). Let g : Sm → Φ be the local assignment
defining µ. Let ∆ be the potential generated by µ.



60 4 The Hierarchy of Conservation Laws

For k , l + r + m, consider the kth order De Bruijn representation
(Bk[S], λ) of F . This has a vertex �k, with a loop edge �k+1 that is labeled by
�m. Any path corresponding to a �-finite configuration starts by circulating
in the loop, and after possibly passing through a finite number of other
edges, eventually returns to this loop.

To each edge u0u1 · · ·uk ∈ Sk+1 let us assign two elements

α(u0u1 · · ·uk) , g(u0u1 · · ·um−1) (4.16)

and
β(u0u1 · · ·uk) , g(vlvl+1 · · · vl+m−1) (4.17)

from Φ, where vlvl+1 · · · vk−r , λ(u0u1 · · ·uk) is the label of u0u1 · · ·uk. The
total energy of a �-finite configuration x can be calculated by adding up the
values of α over the edges of the corresponding bi-infinite path on Bk[S].
Likewise, the sum of the β values on this path gives the total energy of Fx.
Note that the initial and final parts of such a path, where it is circulating in
the loop �k+1, do not contribute to the total energy, because g(�m) = 0. For
any path p = p1p2 · · · pn (pi being the ith edge of the path), let us use the
notation α(p) for the sum of the values of α over the edges of p; that is,

α(p) ,
n∑
i=1

α(pi) . (4.18)

Similarly, let β(p) be the sum of the values of β over the edges of p.
The requirements imposed by the conservation of ∆ can now be trans-

lated in terms of the values of α and β over finite paths on the graph Bk[S]:
the CA F conserves ∆ if and only if for each finite path p starting and end-
ing at vertex �k, we have α(p) = β(p).

Luckily, we can algorithmically verify this condition. Moreover, by run-
ning the algorithm on a formally generated potential, we can construct the
most general monoid-valued conservation law for F that is defined using
an observable with a given neighborhood.

Proposition 4.6 ([27]). Let G be a (finite, directed) graph with vertex set V and
edge set E, and let Σ be a finite symbol set. Let α, β : E → Σ∗ be arbitrary and
A,B ⊆ V . Let Φ be the largest commutative monoid generated by Σ satisfying
the equation

α(p) = β(p) (4.19)

for every finite path p starting from A and ending at B. There is an algorithmi-
cally constructible finite subset of the above equations, such that any commutative
monoid generated by Σ satisfying those equations is a factor of Φ.

Proof. We start by introducing the finite subset in question. For any vertex
v ∈ V , define the following three sets:
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Pv: The set of all simple paths starting from A and ending at v,

Qv: The set of all simple paths starting from v and ending at B, and

Cv: The set of all simple cycles (including the empty one) passing through v.

For any v, the set PvCvQv is finite, because each of Pv, Cv and Qv is finite.
The elements of PvCvQv are paths starting from A, passing through v (and
possibly a cycle around v), and ending at B. Define

R ,
⋃
v∈V

PvCvQv . (4.20)

We claim that, if for some monoid Φ′ generated by Σ, Equation (4.19) holds
for all paths r ∈ R, it also holds for any other path p from A to B.

The proof is by induction on the length of the path p. Note that any
sufficiently short path p from A to B is simple and passes through a vertex
like v. Therefore p is of the form xy where x ∈ Pv and y ∈ Qv. That is, p ∈ R
and Equation (4.19) holds by the assumption.

Suppose that Equation (4.19) holds for all paths of length at most n, and
let p be a path of length n + 1 from A to B. If p is not simple, it contains
at least one non-empty simple cycle, and hence can be written in the form
xcy where x is a (not necessarily simple) path from A to a vertex v, c is a
non-empty simple cycle starting and ending at v, and y is a (not necessarily
simple) path from v to B. On the other hand, x contains a subsequence x̃
that is a simple path from A to v, and we can write

α(x) =
∑
i

α(xi) = γx +
∑
i

α(x̃i) = γx + α(x̃) , (4.21)

where γx ∈ Φ is the sum of α over those edges from x that are not in x̃.
Similarly y contains a subsequence ỹ that is a simple path from v to B, and
we can write

α(y) = γy + α(ỹ) (4.22)

for some γy ∈ Φ. Writing Equation (4.19) for the paths x̃ỹ and x̃cỹ (note that
x̃ỹ, x̃cỹ ∈ R) and for the path xy (by induction hypothesis), we have

α(x̃) + α(ỹ) = β(x̃) + β(ỹ) , (4.23)
α(x̃) + α(c) + α(ỹ) = β(x̃) + β(c) + β(ỹ) , (4.24)

α(x) + α(y) = β(x) + β(y) , (4.25)
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from which we obtain that

α(p) = α(x) + α(c) + α(y) (4.26)
= γx + γy + α(x̃) + α(c) + α(ỹ) (4.27)
= γx + γy + β(x̃) + β(c) + β(ỹ) (4.28)
= γx + γy + α(x̃) + α(ỹ) + β(c) (4.29)
= α(x) + α(y) + β(c) (4.30)
= β(x) + β(y) + β(c) (4.31)
= β(p) , (4.32)

which is what we wanted to prove. Therefore, any equation satisfied by the
monoid Φ is also satisfied by Φ′, and Φ′ is a factor of Φ. 2

Corollary 4.7 ([27]). Let F : SZ → SZ be a one-dimensional CA and M ⊆ Z an
arbitrary neighborhood. There is an algorithm to identify the most general monoid-
valued conservation law for F among those which are defined using observables
with neighborhood M . In particular, we can construct both a finite presentation of
the monoid ΦM

F , and the observable µMF defining this conservation law.

Remark 4.1. In terms of formal language theory, Proposition 4.6 can be
translated into the following: let Σ and Γ be finite symbol sets, α, β : Σ∗ →
Γ∗ arbitrary morphisms, and L ⊆ Σ∗ a regular language. Then the largest
commutative monoid generated by Γ satisfying the equations

α(w) = β(w) (for all w ∈ L) (4.33)

is effectively finitely presentable. #

Remark 4.2. Another problematic issue is identifying the realizable sub-
monoid Φ̆ ⊆ Φ associated with a potential ∆ : C�[S] → Φ. For example,
it is not even clear whether Φ̆ is finitely generated or not. However, in the
one-dimensional case we can use Proposition 4.6, to decide whether a given
monoid-valued potential ∆ is trivial. #

4.3 The Existence Problem

Given a cellular automaton, we would like to understand the hierarchy of
its conservation laws. We already know that the conservation laws of a
given CA are partially ordered, and that for each fixed range of interac-
tion, there is a maximal conservation law that incorporates all the others
with that range. Furthermore, at least in the group-valued hierarchy, we
can algorithmically find these maximal laws. For a given CA, two extreme
possibilities regarding this hierarchy are imaginable:



§4.3 The Existence Problem 63

I. The hierarchy is trivial. That is, the CA has no non-trivial conserva-
tion law.

II. The hierarchy is unbounded. In other words, looking at larger and
larger ranges of interactions, we always find new conservation laws.

A CA which maps every configuration to a unique quiescent configuration
belongs to the first case. An example of the second case is the identity CA,
which keeps every configuration unchanged. The XOR CA from Exam-
ple 4.1 rests in neither of these two categories (see Section 4.4). As we shall
see, each of these two extreme cases is algorithmically undecidable. Even
worse, the two categories are algorithmically inseparable; no terminating
algorithm can distinguish between the two cases.

Let us introduce a rather large class of CA which belong to Category I.
Recall that a CA with a quiescent state � is said to be nilpotent over �-
finite configurations if every �-finite configuration eventually changes to
the quiescent configuration ♦.

Lemma 4.8. Let F : SL → SL be a cellular automaton with a quiescent state �.
Suppose that F is nilpotent over �-finite configurations. Then F has no non-trivial
(real-valued/group-valued/semigroup-valued) conservation law.

Recall that a local observable µ : SL → Σ partitions the space SL into
clopen sets. If µ is invariant under a cellular automaton F : SL → SL, each
block µ−1(a) of the partition is the basin of an attractor of F (see e.g. [53,
51]). Any CA which has a non-trivial invariant local observable belongs to
Category II.

Lemma 4.9. Let F : SL → SL be a cellular automaton and µ : SL → Σ a
non-trivial local observable that is invariant under F . Then F has an unbounded
hierarchy of conservation laws.

Proof. We present the proof in the group-valued setting. The same argu-
ment can be translated for the semigroup-valued or real-valued hierarchy.

Suppose that the hierarchy of conservation laws for F is bounded. Then
there is a local potential difference ∆̄ that is more general than any local po-
tential difference conserved by F . Such a potential difference is generated
by a local observable µ̄ : SL → Ḡ that has a neighborhood M̄ . We construct
a local potential difference ∆′ that is conserved by F , and yet ∆′ 6v ∆̄; hence
a contradiction.

First, note that F conserves any potential difference that is generated
by a group-valued F -invariant local observable. Let a ∈ L, and define the
observable

µ′ , µ ∨ (σa ◦ µ) : SL → Σ× Σ . (4.34)
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If µ has neighborhood M , µ′ has neighborhood M ′ , M ∪ M(a). Since
µ is invariant under F , so is µ′. Let G′0 be the free commutative group
generated by Σ× Σ.1 Then F conserves the G′0-valued potential difference
∆′ generated by µ′. We show that ∆′ 6v ∆̄, provided a is far enough from
the origin, namely, if a /∈ M−1(M̄(M̄−1(M))) and a /∈ M−1(M(M−1(M))).
To do this, it is sufficient to find two asymptotic configurations x and y such
that ∆̄(x, y) = 0 but ∆′(x, y) 6= 0.

Let � ∈ S be an arbitrary state, and denote the �-uniform configuration
by ♦. Let p : M → S be a pattern such that µ(ζp♦) 6= µ(♦). Such a pattern
exists because µ is assumed to be non-trivial. Let α , µ(♦) and β , µ(ζp♦).
We have α, β ∈ Σ and α 6= β.

Choose b /∈M−1(M ′(M ′−1(M))). Define two configurations

x , ζσ−apζp♦ , and y , ζσ−bpζp♦ . (4.35)

The idea is that on x and y, the two copies of p are too far away from each
other for ∆̄ to sense the difference between x and y. On the other hand, ∆′

can distinguish between x and y.
More precisely, since µ̄ has neighborhood M̄ , it is easy to see that ∆̄ has

neighborhood M̄(M̄−1). Therefore,

∆̄(♦, x) = ∆̄(♦, ζσ−ap♦) + ∆̄(ζσ−ap♦, x) (4.36)
= ∆̄(♦, ζσ−bp♦) + ∆̄(ζσ−bp♦, y) (4.37)

= ∆̄(♦, y) , (4.38)

which implies ∆̄(x, y) = 0. On the other hand, while every summand in
∆′(♦, y) is a pair of the form (u, α) or (α, v) for u, v ∈ Σ, ∆′(♦, x) contains a
summand (β, β), and we know that β 6= α. Since Σ×Σ is a free generating
set for G′0, we conclude that ∆′(♦, x) 6= ∆′(♦, y) and hence ∆′(x, y) 6= 0. 2

To prove the undecidability of Categories I and II, we use the follow-
ing theorem, due to Blondel, Cassaigne and Nichitiu. By a 2-counter ma-
chine we mean a finite automaton equipped with two unbounded counters.
The machine can increase or decrease the value of each counter, and can
test if either has value zero. 2-counter machines are known to be equiva-
lent in power to Turing machines — any algorithm can be implemented
on a 2-counter machine (see e.g. [63]). Following Blondel et al. [9], we
identify a 2-counter machine by a finite state set Q and a transition rule
δ : Q × {0, 1}2 → Q × {1, 2} × {−, 0,+}.2 A configuration of the machine
consists of its current state q ∈ Q, and the current value of its two registers

1Note that this is not the same as the direct product G0 × G0 where G0 is the free com-
mutative group generated by Σ.

2For our purposes there are no designated initial and halting states.
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x1, x2 ∈ N. The transition rule reads the current state, checks whether ei-
ther of the registers contains zero (1 means the value of the register is zero,
and 0 means otherwise), decides the new state, chooses one of the registers
(1 or 2 as the index of the chosen register), and instructs whether the chosen
register should be decreased (−), left unchanged (0) or increased (+). Thus,
it defines a dynamics on the configuration space Q× N× N.

Theorem 4.10 ([9]). It is undecidable whether a given 2-counter machine (with-
out initial and halting states) has a periodic orbit.

Theorem 4.11 ([27]). There is no algorithm to distinguish between Categories I
and II. In particular, given a (one-dimensional) cellular automaton F , the follow-
ing questions are undecidable:

i) Does F have any non-trivial (real-valued/group-valued/semigroup-valued)
conservation law?

ii) DoesF have an unbounded hierarchy of (real-valued/group-valued/semigroup-
valued) conservation laws?

Proof. We show how to reduce the problem of whether a given 2-counter
machine has a periodic orbit to the problem of distinguishing between one-
dimensional CA which have no non-trivial conservation law and those
with an unbounded hierarchy of conservation laws. Since there is no al-
gorithm for the former, none can either exist for the latter.

Let A be a 2-counter machine with state set Q, two registers x1 and x2,
and transition rule δ : Q× {0, 1}2 → Q× {1, 2} × {−, 0,+}. We construct a
CA F with a designated quiescent state �, such that

i) if A has no periodic orbit, F is nilpotent over �-finite configurations
(and hence, by Lemma 4.8, has no non-trivial conservation law), while

ii) if A has a periodic orbit, there is a non-trivial (real-valued) local ob-
servable which is invariant under F (therefore, by Lemma 4.9, F has
an unbounded hierarchy of conservation laws).

The CA F has two states L and R which are end-markers. In the interval
between a left end-marker L and a right end-marker R, the CA simulates
the machine A. The CA also constantly verifies the syntax of each block
between two end-markers to ensure that it corresponds with an actual sim-
ulation. If a syntax error is found, or if the simulation overflows the end-
markers, the CA erases the whole block by replacing the cell contents with
�. Blocks without end-markers are also erased.

If a machineA has no periodic orbit, every syntactically correct simula-
tion of A on a finite block eventually overflows its boundaries. Therefore,
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every �-finite configuration eventually goes quiescent; that is, F is nilpotent
over �-finite configurations.

On the other hand, if A has a periodic configuration, one can choose
a sufficiently large simulation block in F which evolves periodically and
never overflows. Let us fix a snapshot of such a periodic simulation block
(including its end-markers), and denote it by B = Lb1b2 · · · bn−1R. Let us
denote by B the set of all simulation blocks B′ ∈ Sn+1 that eventually turn
into B. Since no new end-marker is ever created by F , and since the in-
formation cannot pass through the end-markers, we can argue that the set
B is “stable”; once we know that a block in B occurs in a certain position
at a certain time during the evolution of the CA, we also know that in any
other time a block in B occurs in that same position. In other words, the
observable

µ(x) ,

{
1 if x|[0,n] ∈ B,
0 otherwise

(4.39)

is invariant under F .
Let us now describe the construction in detail. Let E , {L,R}, X ,

{0, 1}, K , {1, 2} and C , {0,+,−, 1}. The state set of F is S , {q} ∪
E ∪ Q ∪ (X ×X ×K × C), and its neighborhood is N = {−1, 0, 1}. Each
simulation block starts with a left end-marker L, followed by an element
from Q representing the state of the machine, and ends with a right end-
marker R. The space between the Q state and the right end-marker stores
the content of the two registers and manages the required signaling. The
first and the second components of X ×X ×K × C keep the unary value
of the registers x1 and x2 in the form of stacks extending to the right. The
K component corresponds to the second component of the range of δ, in-
dexing the register to be increased or decreased. The C component carries
a signal indicating whether the indexed counter should be increased (+),
decreased (−), or left unchanged (0), and an acknowledgment signal (1)
which returns to the left to initiate the simulation of the next step. The local
rule f : S3 → S of the CA is presented in Table 4.1. A sample syntactically
correct simulation block is depicted in Figure 4.3. 2

4.4 Restrictions on the Dynamics

In the previous section, we saw two simple examples of what the dynam-
ical properties of a CA may tell us about the structure of the hierarchy
of its conservation laws: according to Lemma 4.8, nilpotent CA have no
non-trivial conservation laws, while Lemma 4.9 implies that every non-
nilpotent equicontinuous CA has an unbounded hierarchy of conservation
laws. In this section, we will see two less trivial results about the inter-
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a−1 a0 a1 f(a−1a0a1) Condition

q q

L x L x ∈ Q
L x q x /∈ Q

(0, 0, k, c) R R k ∈ K and c 6= 0
x R q x /∈ {0} × {0} ×K × {+,−, 1}
L x (b1, b2, k, 1) x′ x ∈ Q and δ(x,¬b1,¬b2)

= (x′, k′, c′)
L x (b1, b2, k, c) x x ∈ Q and c 6= 1
y x q x ∈ Q but y 6= L

x R q x ∈ Q

x (b1, b2, k, 1) y (b1, b2, k
′, c′) x ∈ Q and y /∈ {q, L} and

δ(x,¬b1,¬b2)
= (x′, k′, c′)

(b′1, b
′
2, k

′, c′) (b1, b2, k, 1) y (b1, b2, k
′, c′) c′ 6= 0 and y /∈ {q, L}

(b′1, b
′
2, k

′, 0) (b1, b2, k, 1) y (b1, b2, k, 1) y /∈ {q, L}
x (b1, b2, k, 0) (b′1, b

′
2, k

′, 1) (b1, b2, k, 1) x /∈ {q, L, R}
x (b1, b2, k, 0) (b′1, b

′
2, k

′, c) (b1, b2, k, 0) c 6= 1 and x /∈ {q, L, R}
x (0, b2, 1, +) y (1, b2, 1, 1) x ∈ Q and y /∈ {q, L}

(b′1, b
′
2, k

′, c′) (0, b2, 1, +) y (b′1, b2, 1, 1) y /∈ {q, L}
x (1, b2, 1, +) y (1, b2, 1, 0) x /∈ {q, L, R} and y /∈ {q, L}
x (b1, 0, 2, +) y (b1, 1, 2, 1) x ∈ Q and y /∈ {q, L}

(b′1, b
′
2, k

′, c′) (b1, 0, 2, +) y (b1, b
′
2, 2, 1) y /∈ {q, L}

x (b1, 1, 2, +) y (b1, 1, 2, 0) x /∈ {q, L, R} and y /∈ {q, L}
x (0, b2, 1,−) y (0, b2, 1, 1) x /∈ {q, L, R} and y /∈ {q, L}
x (1, b2, 1,−) (0, b′2, k

′, c′) (0, b2, 1, 1) x /∈ {q, L, R}
x (1, b2, 1,−) (1, b′2, k

′, c′) (1, b2, 1, 0) x /∈ {q, L, R}
x (b1, 0, 1,−) y (b1, 0, 1, 1) x /∈ {q, L, R} and y /∈ {q, L}
x (b1, 1, 1,−) (b′1, 0, k′, c′) (b1, 0, 1, 1) x /∈ {q, L, R}
x (b1, 1, 1,−) (b′1, 1, k′, c′) (b1, 1, 1, 0) x /∈ {q, L, R}
L x q x 6= Q

x R q x /∈ {0} × {0} ×K × {+,−, 1}
y x q x 6= L and y ∈ {q, R}

x y q x 6= R and y ∈ {q, L}

Table 4.1: The local rule of the CA described in the proof of Theorem 4.11.

· · · q q q L x

0
2
1
1

0
2
1
1

0
2
0
1

+
2
0
1

1
1
0
1

1
1
0
1

1
1
0
0

1
1
0
0

-
1
0
0

1
1
0
0

R q q q · · ·

Figure 4.3: A syntactically correct simulation block in the CA described in
the proof of Theorem 4.11. The simulated machine is in state x ∈ Q. The
first register contains 2, while the second register contains 6. A signal is
moving to the right, commanding the second register to increase.
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connection between the dynamics of a CA and its hierarchy of conserva-
tion laws. First, we show that a positively expansive CA cannot have any
non-trivial real-valued conservation law. Next, we mention a result, due
to Formenti and Grange, that every surjective CA with a particular kind of
conserved energy has a dense set of temporally periodic points.

Given a real-valued potential difference ∆ on SL, let us call an element
x ∈ SL a ground configuration if for every configuration y asymptotic to
x, we have ∆(x, y) ≥ 0. Let us first show that for every local potential
difference, ground configurations exist.

Proposition 4.12. Every real-valued local potential difference has at least one
ground configuration.

Proof. Let♦ be an arbitrary configuration. Let M ⊆ L be the neighborhood
of ∆. Recall that for every n ∈ N, In , [−n, n]d denotes the central hyper-
cubic region of size (2n+ 1)d.

For every n ∈ N, let us choose a pattern pn : In → S such that ∆(♦, ζpn♦)
takes its minimum value. Since SIn is finite, such a minimum exists. For
every other pattern q : In → S we have

∆(ζpn♦, ζq♦) = ∆(♦, ζq♦)−∆(♦, ζpn♦) ≥ 0 . (4.40)

Let xn , ζpn♦, and consider the sequence x0, x1, . . . of configurations. Since
SL is compact, there is a subsequence xn0 , xn1 , . . . that converges in SL. Let
x , limi→∞ xni . We claim that x is a ground configuration.

Let y be any configuration that is asymptotic to x. Let D , {i : x[i] 6=
y[i]} be the set of cells on which x and y differ. Let k ∈ N be large enough
such that

i) Ink
⊇M(D), and

ii) xni and x agree on M(D), for every i ≥ k.

Let y′ be a configuration which agrees with y on M(D), with xnk
on Ink

\
M(D), and with ♦ everywhere else. We have

∆(x, y) = ∆(xni , y
′) ≥ 0 . (4.41)

Therefore, x is a ground configuration for ∆. 2

Let us denote the set of ground configurations of ∆ byZ∆. Let µ : SL →
R be a local observable generating ∆. Ground configurations minimize the
(upper) average energy per cell µ.

Proposition 4.13. Let ∆ be a real-valued local potential difference generated by
an observable µ : SL → R. For every ground configuration z ∈ Z∆ we have
µ(z) , infx∈SL µ(x).
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Proof. Let x be an arbitrary configuration. For every n ∈ L, let pn , x|In
and xn , ζpnz. That is, xn is the configuration which agrees with x on In
and with z everywhere else. We have

µIn(x) = µIn(z) + ∆(z, xn) + o(|In|) . (4.42)

Therefore,

µ(x) = lim sup
n→∞

µIn(x)
|In|

(4.43)

= lim sup
n→∞

µIn(z) + ∆(z, xn) + o(|In|)
|In|

(4.44)

≥ lim sup
n→∞

µIn(z)
|In|

(4.45)

= µ(z) . (4.46)

2

Remark 4.3. Recalling Corollary 2.11, one might expect that every local
potential difference has periodic ground configurations. In one dimen-
sion, this is indeed the case, as one may prove using the De Bruijn graph.
However, in higher dimensions, using an aperiodic set of Wang tiles (see
e.g. [46]), one can construct an energy for which no periodic configuration
achieves the minimum average energy per cell. #

We can measure the total energy of every configuration relative to the
ground configurations. Namely, for every configuration x, let us define

∆Z(x) ,

{
∆(z, x) if x asymptotic to z ∈ Z∆,

+∞ otherwise.
(4.47)

Note that if x is asymptotic to two different ground configurations z1, z2 ∈
Z∆, z1 and z2 are also asymptotic to each other, and we have ∆(z1, z2) = 0.
Thus, ∆(z1, x) = ∆(z2, x) and the total energy mapping ∆Z : SL → [0,+∞]
is well-defined.

Lemma 4.14. Let ∆ be a real-valued local potential difference, and x an arbitrary
configuration. Then

i) ∆Z(x) = 0 if and only if x is a ground configuration.

ii) ∆Z(x) = +∞ if and only if for every a ∈ R, there is a configuration x′

which is asymptotic to x and ∆(x′, x) > a.
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Proof. The first part is trivial. Let us prove the second part.
First, note that for every real-valued local potential difference, there is

a positive number ε > 0 such that whenever ∆(x, y) > 0, we also have
∆(x, y) > ε. This follows from the fact that ∆ takes its values from a finitely
generated subgroup of R.

Assume that ∆Z(x) = +∞. This implies that x is not a ground con-
figuration. So there is a configuration x1 that is asymptotic to x, and we
have ∆(x1, x) > ε > 0. Notice that x1 itself is not a ground configuration,
because it is asymptotic to x. Therefore, there is yet another configuration
x2 which is asymptotic to x1 and we have ∆(x2, x1) > ε > 0. Clearly, x and
x2 are also asymptotic, and we can write

∆(x2, x) = ∆(x2, x1) + ∆(x1, x) > 2ε . (4.48)

Repeating this, we find a configuration xn that is asymptotic to x, and
∆(xn, x) > daε eε ≥ a.

Conversely, suppose that ∆Z(x) < +∞. Then there is a ground config-
uration z that is asymptotic to x and ∆(z, x) = ∆Z(x) < +∞. For every
other configuration x′ that is asymptotic to x we can write

∆(x′, x) = ∆(z, x)−∆(z, x′) ≤ ∆Z(x) . (4.49)

2

The total energy mapping ∆Z has a weak continuity property.

Proposition 4.15. Let ∆ be a real-valued local potential difference. The total
energy mapping ∆Z : SL → [0,+∞] is lower semi-continuous; for every a ≥ 0,
the set {x : ∆Z(x) > a} is open.

Proof. Let M be the neighborhood of ∆. Let A , {x : ∆Z(x) > a}. For each
x ∈ A, we show that there is a cylinder around x which is included in A.

For every x ∈ A, there is a configuration x′ asymptotic to x such that
∆(x′, x) > a. If ∆Z(x) = +∞, this is guaranteed by Lemma 4.14. If
∆Z(x) < +∞, there is a ground configuration x′ ∈ Z∆ which is asymp-
totic to x and we have ∆(x′, x) = ∆Z(x) > a.

Define D , {i : x[i] 6= x′[i]}. We claim that [x]M(D) ⊆ A. Let y ∈
[x]M(D). If y is not asymptotic to any ground configuration, we have ∆Z(y) =
+∞ > a, and hence y ∈ A. Suppose that y is asymptotic to a ground con-
figuration z. Let y′ be a configuration which agrees with x′ on M(D) and
with y outside M(D). We have

∆Z(y) = ∆(z, y) (4.50)
= ∆(z, y′) + ∆(y′, y) (4.51)
= ∆(z, y′) + ∆(x′, x) (4.52)
> a . (4.53)
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Therefore, y ∈ A. 2

Lemma 4.16. Let F : SL → SL be a cellular automaton and ∆ a real-valued
local potential difference conserved by F . For every x ∈ SL, we have ∆Z(x) ≤
∆Z(Fx).

Proof. For every real number a < ∆Z(x), there is a configuration y asymp-
totic to x such that ∆(y, x) > a. Then ∆(Fy, Fx) > a, which means that
∆Z(Fx) > a. Therefore, ∆Z(Fx) ≥ ∆Z(x). 2

A dynamical system (X , F ) is strongly transitive if for every x ∈ X , the
set
⋃
t>0 F

−tx is dense (see [61]). Equivalently, this means that for every
open set U ⊆ X and every point x ∈ X , there is a time t > 0 such that
x ∈ F tU .

Theorem 4.17. A CA with a non-trivial real-valued conservation law cannot be
strongly transitive.

Proof. Let F : SL → SL be a strongly transitive CA, and let ∆ be a real-
valued local potential difference which is conserved by F . Let z ∈ Z∆ be
an arbitrary ground configuration.

Since F is strongly transitive, the set
⋃
t>0 F

−tz is dense. Then for every
configuration x, there is a sequence z1, z2, . . . of configurations converg-
ing to x such that F tizi = z for some ti > 0. Since F conserves ∆, by
Lemma 4.16 we have that for each i, ∆Z(zi) ≤ ∆Z(z) = 0. Now, the lower
semi-continuity of ∆Z implies that

∆Z(x) = ∆Z( lim
i→∞

zi) ≤ 0 , (4.54)

which means that ∆Z(x) = 0. Therefore, ∆ is trivial. 2

Every positively expansive CA is topologically conjugate to a mixing
one-sided shift space of finite type [68, 50]. Every transitive one-sided shift
space of finite type is, in fact, strongly transitive. Therefore, every posi-
tively expansive CA is strongly transitive.

Corollary 4.18. Positively expansive CA have no non-trivial real-valued conser-
vation laws.

The XOR cellular automaton in Example 4.1 is positively expansive, and
as we already knew, has no non-trivial real-valued conservation law. On
the other hand, we saw that it has at least one non-trivial group-valued
conservation law. The following proposition implies that the parity conser-
vation law is, in fact, its only non-trivial conservation law.

A CA with neighborhood N and local rule f : SN → S is permutive
on a neighbor k ∈ N if for every pattern p : N r {k} → S, the mapping



72 4 The Hierarchy of Conservation Laws

x 7→ f(p∨ x) (for x ∈ S{k}) is bijective. A one-dimensional CA, with neigh-
borhood [l, r], where l < r, that is permutive on both l and r is said to
be bi-permutive. Bi-permutive CA are positively expansive, so they cannot
have non-trivial real-valued conservation laws. We show that they also
have a bounded hierarchy of group-valued conservation laws.

Proposition 4.19 ([16]). Every bi-permutive one-dimensional CA has a bounded
hierarchy of group-valued conservation laws. Its most general conservation law is
determined by an interaction-free potential difference.

Proof. Let F be a bi-permutive one-dimensional CA and ∆ a local potential
difference with values from a commutative group G that is conserved by F .
Suppose that ∆ has neighborhood M , [−m,m] and F has neighborhood
[−l, r], where m > 0 and −l < r. Note that, without loss of generality, we
can assume r + l ≥ m. Otherwise, instead of F we can take F t for a large
enough t > 0 such that tr + tl ≥ m. Clearly, F t is still bi-permutive with
neighborhood [−tl, tr], and conserves ∆.

Let �′ ∈ S be a fixed state, and denote by ♦′ the �′-uniform configura-
tion. Then♦ , F♦′ is also �-uniform for some state � ∈ S. Let p : [a, b]→ S
and q : [c, d] → S be any two finite patterns with a ≤ b < c ≤ d. We show
that

∆(♦, ζpζq♦) = ∆(♦, ζp♦) + ∆(♦, ζq♦) . (4.55)

For the depiction of the following argument, see Figure 4.4. Let x ,
ζpζq♦. Since F is bi-permutive, there is a configuration x′ with x′[i] = �′
for every b − l < i < c + r, such that Fx′ = x. Let p′ , x′|[a−m−l,b−l] and
q′ , x′|[c+r,d+m+r]. Let y′ , ζp′ζq′♦′ and y , Fy′. Let u , y|[a−m−l−r,a−m]

and v , y|[d+m,d+m+r+l]. Then clearly y = ζuζpζqζv♦. Moreover,

Fζp′♦′ = ζuζp♦ and Fζq′♦′ = ζqζv♦ . (4.56)

By the additivity of ∆ (since ∆ has neighborhood [−m,m]), on the one hand
we can write

∆(♦, ζuζpζqζv♦) = ∆(♦, ζpζq♦) + ∆(♦, ζu♦) + ∆(♦, ζv♦) , (4.57)

and on the other hand we have

∆(♦, ζuζpζqζv♦) = ∆(♦′, ζp′ζq′♦′) (4.58)
= ∆(♦′, ζp′♦′) + ∆(♦′, ζq′♦′) (4.59)
= ∆(♦, ζuζp♦) + ∆(♦, ζqζv♦) (4.60)
= ∆(♦, ζp♦) + ∆(♦, ζq♦) + ∆(♦, ζu♦) + ∆(♦, ζv♦) . (4.61)

Putting these together, we obtain

∆(♦, ζpζq♦) = ∆(♦, ζp♦) + ∆(♦, ζq♦) . (4.62)
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Figure 4.4: Illustration of the proof of Proposition 4.19.

For every state s ∈ S, let xs be the configuration with x[0] , s and
x[i] = � for i 6= 0. Define θ(s) , ∆(♦, xs) and θ(p) , 0 for any pattern
p ∈ S# with more than one cell. It is easy to see that θ generates ∆.

We conclude that every local potential difference conserved by F is
interaction-free. 2

According to Devaney’s formulation [22], a chaotic dynamical system is
one which is sensitive and transitive, and has a dense set of periodic points.
For infinite compact metric spaces (including all cellular automata), the
sensitivity condition is implied by the other two conditions [3, 33] (see [52]).
It is conjectured that every surjective cellular automaton (in particular, ev-
ery transitive one) has a dense set of temporally periodic configurations
(see e.g. [47, 17]).

We will now prove that a one-dimensional surjective CA has a dense set
of temporally periodic configurations, provided it has a real-valued con-
servation law with a unique ground configuration. The result is due to
Formenti and Grange, though in a slightly different setting.

Let ∆ be a real-valued local potential difference on SL. If ∆ has a unique
ground configuration, that unique ground configuration is necessarily a
uniform configuration like ♦, in which every cell is in a state � ∈ S. If a
CA F : SL → SL conserves ∆, then by Lemma 4.16, we must also have
F♦ = ♦; that is, � is a quiescent state.

Theorem 4.20 ([26]). Let F : SZ → SZ be a one-dimensional surjective CA.
Suppose that there is a real-valued local potential difference ∆ that has a unique
ground configuration and that is conserved by F . Then, the set of temporally
periodic points under F is dense in SZ.

Proof. Let♦ be the unique ground configuration for ∆. Then♦ is �-uniform
for some quiescent state � ∈ S, which we will call blank. Since F is surjec-
tive, by the Garden-of-Eden Theorem we have that each �-finite configura-
tion has at most one �-finite pre-image. On the other hand, by Lemma 4.16,
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every pre-image of a �-finite configuration has a finite total energy, and
hence is itself a �-finite configuration. We conclude that every �-finite con-
figuration has a unique pre-image which is itself �-finite.

Let F have neighborhood N , [−r, r]. Let x be an arbitrary �-finite
configuration. Then x = ζp♦, where p : [a, b] → S is a finite pattern with
a ≤ b. Let y be the unique pre-image of x. It is easy to verify that y = ζq♦ for
some finite pattern q : [a− (22r + r − 1), b+ (22r + r − 1)]→ S. Otherwise,
one could make a periodic configuration z 6= ♦ with Fz = ♦, which is
impossible. Set R , [−(22r + r − 1), (22r + r − 1)].

On a configuration x, let us connect two non-blank cells i and j by an
edge if N−1(R(i)) ∩ N−1(R(j)) 6= ∅. Let us call a maximal connected col-
lection of non-blank cells a cluster. The pre-images of disjoint finite clusters
do not interact.

To state the latter claim precisely, suppose that a configuration x con-
sists of finite clusters D1, D2, . . .. Then x , ζ(p1∨p2∨··· )♦, where pi , x|Di .
For each i, let ζqi♦ be the unique pre-image of ζpi♦, where qi : R(Di)→ S is
a finite pattern. Since the sets N−1(R(Di)) are mutually disjoint, it follows
that y , ζ(q1∨q2∨··· )♦ is a pre-image of x.

Let µ : SZ → R be a local observable generating ∆ that has neighbor-
hood M , [0,m), and let µ(♦) = 0. We claim that for each real number
E, there is a number TE such that every spatially periodic configuration
x, with period k ≥ TE and energy per period kµ(x) ≤ E, has only finite
clusters.

For, suppose that for every t > 0, there is a periodic configuration xt,
with period kt ≥ t and energy per period at most E, that has an infinite
cluster. Without loss of generality, we can assume that on each xt, the cell 0
belongs to this infinite cluster. By compactness, the sequence {xn}∞n=0 has
a converging sub-sequence {xni}∞i=0. Let x , limi→∞ xni . Clearly, x has an
infinite cluster which contains cell 0. In particular, x cannot be �-finite.

On the other hand, x can be written as the limit x = limi→∞ ζpi♦where
pi , xni |Dni

and

Dni , [−bkni

2
c, dkni

2
e − 1] . (4.63)

Set yi , ζpi♦. It is easy to see that for each i we have

∆Z(yi) ≤ kµ(xni) + δ ≤ E + δ , (4.64)

where δ ≥ 0 is a sufficiently large constant. But according to Proposi-
tion 4.15, this means that ∆Z(x) ≤ E+ δ < +∞. Since♦ is the only ground
configuration, it follows that x is asymptotic to ♦, which is a contradiction.

Next, we show that every spatially periodic configuration with suffi-
ciently small average energy per cell is temporally periodic. Namely, for
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every E > 0 and k ≥ Tk, define the set PE,k of all spatially periodic config-
urations with period k and energy per period at most E. We show that F
acts periodically on PE,k. Since PE,k is a finite set, it is enough to show that
every element of PE,k has a pre-image in PE,k.

Let x be an arbitrary element of PE,k. Then x has no infinite clusters.
Let D1, D2, . . . be the finite clusters of x. These are translations of a finite
number of different clusters. We can write

x = ζ(
W

i∈I

W
j∈Z σ

−jkpi)♦ , (4.65)

where pi , x|Di and I is a finite set. For every i ∈ I , let qi : R(Di) → S be
such that Fζqi♦ = ζpi♦. Then

y , ζ(
W

i∈I

W
j∈Z σ

−jkqi)♦ (4.66)

is a pre-image of x. Clearly, y has period k and its energy per period is at
most E. Therefore y ∈ PE,k.

Let U be a non-empty open set. Choose a finite pattern p : D → S
such that U contains the cylinder [p]D. Let E , ∆Z(ζp♦), and choose a
sufficiently large k ≥ TE so that the sets kj + M(N−1(R(D))) (j ∈ Z) are
mutually disjoint. The configuration

x , ζ(
W

j∈Z σ
−jkp)♦ (4.67)

is clearly in [p]D ⊆ U . It is also in PE,k, because it has spatial period k and
energy per period E. Hence, it is temporally periodic. 2



76 4 The Hierarchy of Conservation Laws



CHAPTER 5

Statistical Mechanics
in Surjective CA

STATISTICAL physics is the attempt to deduce macroscopic physical
phenomena by statistical analysis of microscopic models of the un-

derlying processes. Classic examples are the study of thermodynamics via
microscopic models of a gas or liquid consisting of a huge number of in-
teracting particles, and the study of ferromagnetism by analyzing the mag-
netic field of the tiniest pieces of the material and their interactions. Often
this underlying process can be approximated on a lattice. Each cell of the
lattice is assigned a state (typically from a finite set) representing, for exam-
ple, the number of particles in that approximate position or the magnetic
field vector resulting from that piece of the material.

The similarity to our framework is already apparent. In both cellular
automata and lattice statistical mechanics, the space SL (or its subspaces)
serves as the overall state space of the system. The concepts of observables,
potential differences and interaction potentials in our formalism are bor-
rowed from statistical mechanics. In fact, Takesue’s early study of conser-
vation laws in cellular automata was motivated by problems of statistical
mechanics [79].

This chapter is dedicated to the connection between conservation laws
and equilibrium states in reversible and surjective cellular automata. An
equilibrium state of a statistical mechanics system refers to a probability
measure that describes a typical state of the system in equilibrium. In equi-
librium statistical mechanics, the model does not include any dynamics.
Rather, the system is microscopically modeled via its Hamiltonian. The
Hamiltonian, which corresponds to our concept of potential difference, is
specified by assigning energy to the interaction of different parts of the sys-
tem, corresponding to interaction potentials in our setting. The equilibrium
states are then (macroscopically) identified via a variational principle, as is
customary in the classical approach to physics. A fundamental theorem

77
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of equilibrium statistical mechanics due to Dobrushin, Lanford and Ruelle
characterizes the equilibrium states as the translation-invariant Gibbs mea-
sures associated with the Hamiltonian of the system.

In cellular automata, the equilibrium condition is naturally understood
as time-invariance. It turns out, as one might expect, that in surjective CA,
the equilibrium states as offered by the variational principle are indeed in-
variant (at least in some suitable sense). In reversible CA, even more can be
said: a Gibbs measure is invariant (in the same suitable sense) if and only
if it is associated with a conserved potential difference. Curiously, the lat-
ter has a simple proof independent of the above-mentioned fundamental
theorem.

In Section 5.1 we will review the basic theory of Gibbs measures. Each
Gibbs measure is defined by means of a local potential difference. Alter-
natively, these are the measures satisfying a certain Markovian property.
In particular, the one-dimensional Gibbs measures coincide with the usual
notion of Markov chains. Next, in Section 5.2, we prove the correspon-
dence between conservation laws and Gibbs measures in reversible CA.
One direction of this correspondence can be extended to one-dimensional
surjective CA. For general surjective CA, an even more general correspon-
dence can be proved in the almost sure sense. This is done in Section 5.3.
Finally, in Section 5.4, we exploit the fundamental theorem of equilibrium
statistical mechanics to prove one direction of the correspondence for gen-
eral surjective CA.

5.1 Gibbs-Markov Measures

In this section, we review the definition of Gibbs-Markov measures and
some basic facts about them. Gibbs measures were introduced by Do-
brushin, Lanford and Ruelle in the late 1960’s, as a natural extension of the
Gibbs distribution to infinite lattices (see e.g., [31, 77, 78, 74, 37]). Soon af-
ter, it was shown by Averintsev and Spitzer that Gibbs measures are exactly
those measures that satisfy certain a Markovian property (see e.g. [74, 37]).
Here, we define these measures using this Markovian property and show
their connection with potential differences.

Let M ⊆ L be a finite neighborhood. A Markov measure on SL with
neighborhood M is a Borel probability measure π : B → [0, 1] with the
following property: for each finite set D ⊆ L, and each finite pattern p :
E → S, where E ⊇M(D) and π([p]E\D) > 0, we have

π
(
[p]D | [p]E\D

)
= π

(
[p]D | [p]∂M(D)

)
. (5.1)

(Recall that ∂M(D) = M(D) \ D denotes the M -boundary of D.) We say
that π is locally Markovian if (5.1) holds for all singletons D = {i}.
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If π is a Markov measure with neighborhood M , the collection of con-
ditional probabilities π([p] | [∂p]), for finite p : D → S and ∂p : ∂M(D)→ S
with π([∂p]) > 0, is called the (conditional) specification1 of π. More gener-
ally, letM be an arbitrary neighborhood and suppose that for each finite set
D ⊆ L and each pattern ∂p : ∂M(D) → S, we are given a probability dis-
tribution γD(· | ∂p) : SD → [0, 1]. The family γ = {γD(· | ∂p)}D,∂p is called
a Markovian specification if for all finite sets of cells D and E ⊇ D, and for
each pattern w : M(E)→ S, it satisfies the consistency equation:

γE (q | ∂q) =

 ∑
p′:D→S

γE
(
p′ ∨ r | ∂q

) · γD (p | ∂p) , (5.2)

where q , w|E , ∂q , w|∂M(E), p , w|D, ∂p , w|∂M(D), and r , w|E\D.
A positive specification is one with non-zero values. A specification γ with
neighborhood M is translation-invariant if

γi+D(σ−ip |σ−i∂p) = γD(p | ∂p) (5.3)

for every i ∈ L, and for all finite p : D → S and ∂p : ∂M(D) → S. We say
that a probability measure π is specified by (or is compatible with) γ if for all
finite sets D and E ⊇ M(D), and for each finite pattern p : E → S with
π([p]E\D) > 0, we have

π([p]D | [p]E\D) = γD

(
p|D

∣∣∣ p|∂M(D)

)
. (5.4)

Clearly, every probability measure specified by a Markovian specification
is a Markov measure.

Proposition 5.1 (see e.g. [31, 74]). For every [translation-invariant] Markovian
specification γ, there is at least one [translation-invariant] measure π compatible
with γ.

Proof. Let M be the neighborhood of γ. Let � ∈ S be an arbitrary state and
♦ the �-uniform configuration. We prove the existence of a measure com-
patible with γ using the compactness of the space M . We choose ♦ as the
boundary condition, and construct measures in M which are compatible
with γ on larger and larger finite sets.

For a finite set A ⊆ L, let us define the measure πA such that outside A,
all its probability mass is concentrated on ♦|L\A, while inside A it agrees
with γA(· | ♦|∂M(A)). Namely, for every E ⊇M(A) and every p : E → S, let

πA([p]E) ,

{
γ
(
p|A
∣∣♦|∂M(A)

)
if p|E\A = ♦|E\A,

0 otherwise.
(5.5)

1Such conditional specifications can also be defined for arbitrary measures, which how-
ever involves technical difficulties that are irrelevant to our discussion. See [31].
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This clearly defines a probability measure, because γA(· | ♦|∂M(A)) is a prob-
ability distribution. Note that it automatically follows from this definition
that for every D and E ⊇ M(D) with E ⊆ A, and for all p : E → S with
πA([p]E\D) > 0, πA satisfies (5.4). This is guaranteed by the consistency
condition (5.2) of Markovian specifications. Namely, let q : M(A) → S be
any extension of p with πA([q]M(A)\D) > 0. We have

πA([q]D | [q]M(A)\D) =
πA([q]A | [q]∂M(A))
πA([q]A\D | [q]∂M(A))

(5.6)

=
γA
(
q|A
∣∣ q|∂M(A)

)∑
p′:D→S γA

(
q|A\D ∨ p′

∣∣ q|∂M(A)

) (5.7)

= γD
(
p|D

∣∣ p|∂M(D)

)
. (5.8)

It follows that

πA([p]D | [p]E\D) =
∑

r:M(A)\E→S

πA([r]M(A)\E) · πA([p]D | [p ∨ r]M(A)\D) (5.9)

=
∑

r:M(A)\E→S

πA([r]M(A)\E) · γD
(
p|D

∣∣ p|∂M(D)

)
(5.10)

= γD
(
p|D

∣∣ p|∂M(D)

)
. (5.11)

Now, consider the sequence {πIn}n, where, as usual, In , [−n, n]d de-
notes the central hyper-cube with sides of length 2n + 1 on L. Since M is
compact, there is a sequence 0 < n1 < n2 < · · · such that the subsequence
{πIni

}i converges to a measure π ∈ M . We claim that π is compatible
with γ.

Let us use the shorthand πi , πIni
. Let D and E ⊇ M(D) be finite sets

and p : E → S a pattern with π([p]E\D) > 0. Then πi([p]E\D) > 0 for all
sufficiently large i. On the other hand, for sufficiently large i, Ini contains
E. Therefore,

π([p]D | [p]E\D) = lim
i→∞

πi([p]D | [p]E\D) (5.12)

= lim
i→∞

γD
(
p|D

∣∣ p|E\D) (5.13)

= γD
(
p|D

∣∣ p|E\D) . (5.14)

Therefore, π is compatible with γ.
Next, suppose that γ is translation-invariant. Let G be the set of mea-

sures compatible with γ. The set G is a non-empty, closed, convex, and
translation-invariant subset of M . Choose an arbitrary element π of G . For
every finite D ⊆ L, the measure

νD ,

∑
i∈D σ

iπ

|D|
(5.15)
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is in G . Consider the sequence {νIm}m. Since M is compact, there is a se-
quence 0 < m1 < m2 < · · · such that the sequence {νImi

}i converges. Since
G is closed, the limit measure ν is also in G . We claim that ν is translation-
invariant.

Let p : D → S be an arbitrary pattern and k ∈ L. For m > 0, we have

νIm(σ−k[p])− νIm([p]) =

∑
i∈Im

[
π(σ−k−i[p])− π(σ−i[p])

]
|Im|

(5.16)

=

∑
i∈(k+Im)\Im π(σ−i[p])

|Im|
(5.17)

−
∑

i∈Im\(k+Im) π(σ−i[p])

|Im|
(5.18)

=
o(|Im|)
|Im|

. (5.19)

Therefore,

(σkν)([p])− ν([p]) = lim
i→∞

νImi
(σ−k[p])− lim

i→∞
νImi

([p]) (5.20)

= lim
i→∞

[
νImi

(σ−k[p])− νImi
([p])

]
(5.21)

= 0 . (5.22)

Hence ν is translation-invariant. 2

Proposition 5.2 (e.g. [20]). A positive Markovian specification γ is uniquely
determined by those of its elements γD(· | ∂p) in which D is singleton.

Proof. Let γ̆ denote the family {γi(· | ∂p)}i,∂p. The claim is that γ̆ uniquely
determines γ.

Let M be the neighborhood of γ and D ⊆ L any finite set. By the con-
sistency condition of γ, for a pattern p : M(D)→ S and a cell i ∈ D, we can
write

γD
(
p|D

∣∣ p|∂M(D)

)
= γD

(
p|Dri

∣∣ p|∂M(D)

)
· γi
(
p|i
∣∣ p|∂M(i)

)
, (5.23)

where we have used the natural shorthand

γD
(
p|Dri

∣∣ p|∂M(D)

)
,

∑
r:{i}→S

γD
(
p|Dri ∨ r

∣∣ p|∂M(D)

)
. (5.24)

Therefore, if p′ : M(D) → S is any other pattern which agrees with p ev-
erywhere except on i, the value

γD
(
p′|D

∣∣ p′|∂M(D)

)
γD
(
p|D

∣∣ p|∂M(D)

) =
γi
(
p′|i
∣∣ p′|∂M(i)

)
γi
(
p|i
∣∣ p|∂M(i)

) (5.25)
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is uniquely determined by γ̆.
Since D is finite, we have that for every two patterns x, y ∈ SD, there

is a finite sequence x = x0, x1, . . . , xk = y of elements of SD such that xi
and xi+1 agree everywhere but on a single cell. It follows that for every
x, y ∈ SD, the value

c(x, y) ,
γD
(
y
∣∣ p|∂M(D)

)
γD
(
x
∣∣ p|∂M(D)

) (5.26)

is uniquely determined by γ̆.
It is easy to see that the system of equations

h(y) = c(x, y) · h(x) (∀x, y ∈ SD) , (5.27)∑
x∈SD

h(x) = 1 , (5.28)

has exactly one solution h : SD → [0, 1]. Hence the value

γD
(
x
∣∣ p|∂M(D)

)
= h(x) (5.29)

is uniquely determined by γ̆. 2

Corollary 5.3. Every full-support locally Markovian measure is a Markov mea-
sure.

A full-support Markov measure has a positive specification. The con-
verse, however, is not true in general; a measure compatible with a posi-
tive specification is not necessarily full-support. Similarly, the specification
of a translation-invariant Markov measure is clearly translation-invariant,
but a Markov measure with a translation-invariant specification does not
need to be translation-invariant. There is a nice connection between posi-
tive translation-invariant Markovian specifications and local potential dif-
ferences.

Proposition 5.4 (see e.g. [37]). There is a one-to-one correspondence γ ↔ ∆ be-
tween positive translation-invariant Markovian specifications and local potential
differences on SL.

Proof. Let ∆ ∈ D be a local potential difference with neighborhood M ⊆ L
on SL. Let � ∈ S be an arbitrary state and ♦ the �-uniform configuration.
For all finite patterns p : D → S and ∂p : ∂M(D)→ S, define

γD(p | ∂p) , Z−1
D,∂p · 2

−∆(ζ∂p♦,ζpζ∂p♦) , (5.30)

where
ZD,∂p ,

∑
q:D→S

2−∆(ζ∂p♦,ζqζ∂p♦) . (5.31)
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(The normalizing constant ZD,∂p is often called the partition function.)
In order to show that γ , {γD(· | ∂p)}D,∂p is a Markovian specification,

we need to prove that it satisfies the consistency equations (5.2). Let D and
E ⊇ D be finite, let w : M(E) → S be a pattern, and suppose that q, ∂q, p,
∂p and r are defined as in (5.2). Since ∆ is a local potential difference, for
every p′ : D → S we have

∆(ζ∂q♦, ζp′ζrζ∂q♦) = ∆(ζ∂q♦, ζrζ∂q♦) + ∆(ζrζ∂q♦, ζp′ζrζ∂q♦) (5.32)
= ∆(ζ∂q♦, ζrζ∂q♦) + ∆(ζ∂p♦, ζp′ζ∂p♦) . (5.33)

Therefore, ∑
p′:D→S

γE
(
p′ ∨ r | ∂q

)
(5.34)

= Z−1
E,∂q ·

∑
p′:D→S

2−∆(ζ∂q♦,ζp′ζrζ∂q♦) (5.35)

= Z−1
E,∂q · 2

−∆(ζ∂q♦,ζrζ∂q♦) ·
∑

p′:D→S
2−∆(ζ∂p♦,ζp′ζ∂p♦) (5.36)

= Z−1
E,∂q · 2

−∆(ζ∂q♦,ζrζ∂q♦) · ZD,∂p , (5.37)

and so  ∑
p′:D→S

γE
(
p′ ∨ r | ∂q

) · γD (p | ∂p) (5.38)

=
[
Z−1
E,∂q · 2

−∆(ζ∂q♦,ζrζ∂q♦) · ZD,∂p
]
· Z−1

D,∂p · 2
−∆(ζ∂p♦,ζpζ∂p♦) (5.39)

= Z−1
E,∂q · 2

−∆(ζ∂q♦,ζrζ∂q♦)−∆(ζ∂p♦,ζpζ∂p♦) (5.40)

= Z−1
E,∂q · 2

−∆(ζ∂q♦,ζqζ∂q♦) (5.41)

= γE(q | ∂q) . (5.42)

Hence, γ is a Markovian specification. That γ is positive is trivial. That γ is
translation-invariant follows from the fact that ∆ is translation-invariant.

Next, let γ be a positive translation-invariant Markovian specification
with neighborhood M . For every two asymptotic configurations x and y
with D , {i : x[i] 6= y[i]}, define

∆(x, y) , − log
γD

(
y|D

∣∣∣ y|∂M(D)

)
γD

(
x|D

∣∣∣x|∂M(D)

) . (5.43)

It is easy to see that ∆ is a potential difference. Since γ is positive, ∆ is
defined for all asymptotic pairs of configurations. Since γ is translation-
invariant, so is ∆. Let p : D → S be a finite pattern, and let x and y be two
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configurations that agree on M(D). We have

∆(y, ζpy) = − log
γD

(
p
∣∣∣ y|∂M(D)

)
γD

(
y|D

∣∣∣ y|∂M(D)

) (5.44)

= − log
γD

(
p
∣∣∣x|∂M(D)

)
γD

(
x|D

∣∣∣x|∂M(D)

) (5.45)

= ∆(x, ζpx) . (5.46)

Therefore, ∆ is local.
Finally, it is easy to see that γ is the specification associated to ∆ if and

only if ∆ is the potential difference derived from γ. 2

Let ∆ ∈ D be a local potential difference on SL with neighborhood M .
A Gibbs measure with potential ∆ is a probability measure π ∈M such that
for every two asymptotic configurations x and y, with D , {i : x[i] 6= y[i]},
and for every finite set E ⊇M(D) with π([x]E\D) > 0, we have

π
(
[y]D | [y]E\D

)
= 2−∆(x,y) · π

(
[x]D | [x]E\D

)
. (5.47)

From the proof of Proposition 5.4, we know that Gibbs measures (in our set-
ting) are exactly those Markov measures which have positive translation-
invariant specifications. For such measures we may interchangeably use
the names Gibbs or Markov measures. From now on, we shall work only
with positive, translation-invariant Markovian specifications, which we may
call simply specifications.

Lemma 5.5. Let π ∈M be a Gibbs measure with local potential difference ∆ ∈ D .
Let x and y be asymptotic configurations in the support of π, where D , {i :
x[i] 6= y[i]} and q , y|D.

a) For every finite A ⊇ D and B ⊇M(A), we have

∆(x, y) = − log
π
(
[y]A

∣∣ [y]B\A)
π
(
[x]A

∣∣ [x]B\A) = − log
π ([y]B)
π ([x]B)

. (5.48)

b) For every Borel set U ⊆ [x]M(D) with π(U) > 0, we have

∆(x, y) = − log
π(ζqU)
π(U)

= − log π(ζqU) + log π(U) . (5.49)
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Proof.

a) We have

π ([y]B)
π ([x]B)

=
π
(
[y]B\A

)
· π
(
[y]A

∣∣ [y]B\A)
π
(
[x]B\A

)
· π
(
[x]A

∣∣ [x]B\A) =
π
(
[y]A

∣∣ [y]B\A)
π
(
[x]A

∣∣ [x]B\A) , (5.50)

because y|B\A = x|B\A. This is true in particular for A = D.

b) First suppose that U is open. Then U is a countable union of disjoint
cylinders, and we can write

U =
⋃

(α,A)∈J

[α]A , (5.51)

where J is a countable set consisting of pairs (α,A), where A ⊇ M(D)
is a finite set and α : A → S a pattern that agrees with x on M(D).
Similarly, ζqU can be written as the disjoint union

ζqU =
⋃

(α,A)∈J

[ζqα]A . (5.52)

Note that for every (α,A) ∈ J , we have on the one hand α|M(D) =
x|M(D) and (ζqα)|M(D) = y|M(D), and on the other hand (ζqα)|A\D =
α|A\D. So we can write

π(ζqU)
π(U)

=

∑
(α,A)∈J π ([ζqα]A)∑
(α,A)∈J π ([α]A)

(5.53)

=

∑
(α,A)∈J π

(
[ζqα]A\D

)
· π
(
[ζqα]D

∣∣ [ζqα]∂M(D)

)∑
(α,A)∈J π

(
[α]A\D

)
· π
(
[α]D

∣∣ [α]∂M(D)

) (5.54)

=
π
(
[y]D

∣∣ [y]∂M(D)

)
·
∑

(α,A)∈J π
(
[ζqα]A\D

)
π
(
[x]D

∣∣ [x]∂M(D)

)
·
∑

(α,A)∈J π
(
[α]A\D

) (5.55)

=
π
(
[y]D

∣∣ [y]∂M(D)

)
π
(
[x]D

∣∣ [x]∂M(D)

) . (5.56)

We obtain that

− log
π(ζqU)
π(U)

= ∆(x, y) . (5.57)

For an arbitrary Borel set U ⊆ [x]M(D), the result follows from the regu-
larity of π. Let [x]M(D) ⊇ E1 ⊇ E2 ⊇ · · · ⊇ U be a sequence of open sets
such that

π(U) = lim
i→∞

π(Ei) , and π(ζqU) = lim
i→∞

π(ζqEi) . (5.58)
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We have

− log
π(ζqU)
π(U)

= − log
limi→∞ π(ζqEi)
limi→∞ π(Ei)

(5.59)

= lim
i→∞
− log

π(ζqEi)
π(Ei)

(5.60)

= ∆(x, y) . (5.61)

2

Let γ be a positive, translation-invariant Markovian specification, and
let ∆ the corresponding potential difference. The collection of probabil-
ity measures compatible with γ is denoted by G (γ) or G (∆). The set of
translation-invariant elements of G (γ) is denoted by Gσ(γ) or Gσ(∆). In
general, G (∆) (and Gσ(∆)) may contain more than one element. This is in-
terpreted in statistical mechanics, as the possibility of the existence of mul-
tiple phases into which a system in equilibrium can settle (see [78, 31, 32]).
The sets G (∆) and Gσ(∆) are clearly convex and compact. The extreme el-
ements of G (∆) are called the phases of γ (or of the system it is modeling).2

See Appendix B for an example of a Markovian specification with multiple
phases. On the other hand, the extreme elements of Gσ(∆) are exactly those
which are σ-ergodic (see [31, 77]).

One-dimensional Markov measures agree with the usual notion of finite-
state (time-invariant) Markov chains. A Markov chain with memorym ≥ 0
is identified by its probability distribution — a probability measure π on
SZ which satisfies the one-sided Markov property: for every two patterns
w : [a, b]→ S and u : [a− l, a)→ S with a ≤ b and l ≥ m, we have

π
(
[w][a,b] | [u][a−l,a)

)
= π

(
[w][a,b] | [u][a−m,a)

)
, (5.62)

provided π([u][a−l,a)) > 0. The transition probabilities of a time-invariant
Markov chain are summarized in its transition matrix P = [P (u, v)]u,v∈Sm .
This is an m-stochastic matrix;3 that is, P (u, v) = 0, unless ub = av for
some a, b ∈ S, while

∑
b∈S P (aw,wb) = 1 for all a ∈ S and w ∈ Sm−1.

If the matrix P is also m-positive, that is, if all the transition probabilities
P (aw,wb) (for a, b ∈ S and w ∈ Sm−1) are positive, it uniquely determines
the measure π. Specifically, in this case P is primitive, that is, Pn > 0 for
some n > 0, and according to Perron-Frobenius Theorem (see e.g. [30]),
there is a unique positive probability vector ν : Sm → [0, 1] such that

2See [32] for the beautiful justification of the name.
3Non-standard term.
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νP = ν. The measure π is uniquely identified via

π([w][i,j)) = ν(w|[i,i+m)) · P (w|[i,i+m), w|[i+1,i+m+1))

· P (w|[i+1,i+m+1), w|[i+2,i+m+2))

· · · ·
· P (w|[j−m−1,j−1), w|[j−m,j)) (5.63)

for all w : [i, j)→ S with i+m ≤ j. In particular, π is translation-invariant
and full-support.

Proposition 5.6 (see e.g. [31, 37]). The distribution of a Markov chain with
memory m is a Markov measure with neighborhood [−m,m].

Proof. Let π be the distribution of a Markov chain with memory m ≥ 0. Let
M , [−m,m]. Let D ⊆ Z and E ⊇ M(D) be finite, and let p : E → S an
arbitrary pattern with π

(
[p]E\D

)
> 0. Without loss of generality, we can

assume that D = [a, b] and E = [a− l, b+ r], where a ≤ b and l, r ≥ m. Let
u , p|[a−l,a), w , p|[a,b] and v , p|(b,b+r]. Let û , u|[a−m,a) and v̂ , v|(b,b+m].
For brevity, let us write π(w) for π([w][a,b]), and so forth. We have

π(w |u ∨ v) =
π(u ∨ w ∨ v)
π(u ∨ v)

(5.64)

=
π(u ∨ w ∨ v)∑

w′:[a,b]→S π(u ∨ w′ ∨ v)
(5.65)

=
π(u) · π(w ∨ v̂ | û) · π(v | v̂)∑

w′:[a,b]→S π(u) · π(w′ ∨ v̂ | û) · π(v | v̂)
(5.66)

=
π(û) · π(w ∨ v̂ | û)∑

w′:[a,b]→S π(û) · π(w′ ∨ v̂ | û)
(5.67)

= π(w | û ∨ v̂) . (5.68)

Therefore, π is a Markov measure with neighborhood [−m,m]. 2

The converse has more dramatic implications for us. We state it without
the proof.

Theorem 5.7 (see e.g. [31]). Every one-dimensional Markov measure π with
neighborhood [−m,m] and positive, translation-invariant specification is the dis-
tribution of a Markov chain with memory m. Moreover, the specification of π
uniquely determines the transition matrix of the associated Markov chain.

Corollary 5.8. Every one-dimensional, positive, translation-invariant, Marko-
vian specification has a unique phase which is translation-invariant.
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Remark 5.1. Let π be the unique measure specified by a one-dimensional,
positive, translation-invariant Markovian specification γ with neighbor-
hood [−m,m], where m > 0. By Theorem 5.7, π is the distribution of a
Markov chain with memory m. The potential difference ∆, correspond-
ing to γ, has a simple form in terms of the transition matrix of the Markov
chain. Namely, it is easy to verify that an observable with local assignment

g(awb) , − log π(wb | aw) (for all a, b ∈ S and w ∈ Sm−1) (5.69)

generates ∆. When m = 0 (i.e., when π is a Bernoulli measure), ∆ can be
generated by an observable with local assignment

g(a) , − log π(a) (for all a ∈ S) . (5.70)

#

5.2 Conservation Laws and Invariant Gibbs Measures

In this section, we will show that the correspondence given by Proposi-
tion 5.4 is respected by reversible cellular automata. In particular, for every
“locally” invariant Gibbs measure, there is a corresponding conservation
law, and vice versa. By locally invariant, we mean here that π and Fπ have
the same Markovian specification. We do not know if the same correspon-
dence holds for surjective CA in general; we will, however, prove some
partial results.

The following theorem was proved by Ruelle [77] in a slightly different,
more general setup. Let G +(∆) denote the set of full-support elements
of G (∆).

Theorem 5.9 ([77]). Let F be a reversible cellular automaton and ∆ a local po-
tential difference. Then F conserves ∆ if and only if it maps G +(∆) into itself.

Proof. Let γ be the Markovian specification corresponding to ∆. Let M be
the neighborhood of ∆ and N ′ the neighborhood of F−1. Since π is full-
support, so is Fπ.
[⇐] Let Fπ be also a Gibbs measure with potential ∆, that is, a Markov
measure with specification γ. Let x and y be asymptotic configurations, and
let x′ , Fx and y′ , Fy. LetD , {i : x[i] 6= y[i]} andD′ , {i : x′[i] 6= y′[i]}.
Note that D ⊆ N ′−1(D′). Let B ⊇ N ′

(
N ′−1(D′)

)
be a finite set. Clearly

F−1[x′]M(B) ⊆ [x]M(D) and F−1[y′]M(B) ⊆ [y]M(D).
Let q , y|D. Let us verify that ζqF−1[x′]M(B) = F−1[y′]M(B). Let x̄ ∈

F−1[x′]M(B). If q′ , y′|D′ , we have ζq′Fx̄ ∈ [y′]M(B). We claim that ζq′Fx̄ =
Fζqx̄. We have (ζq′Fx̄)|N ′(N ′−1(D′)) = y′|N ′(N ′−1(D′)). Therefore,

(F−1ζq′Fx̄)|N ′−1(D′) = y|N ′−1(D′) = (ζqx̄)|N ′−1(D′) . (5.71)
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On the other hand, we have (ζq′Fx̄)|L\D′ = x̄|L\D′ , which implies

(F−1ζq′Fx̄)|L\N ′−1(D′) = x̄|L\N ′−1(D′) = (ζqx̄)|L\N ′−1(D′) . (5.72)

All in all, we have ζq′Fx̄ = Fζqx̄. Therefore, ζqF−1[x′]M(B) ⊆ F−1[y′]M(B).
Similarly, if p , x|D, we obtain that ζpF−1[y′]M(B) ⊆ F−1[x′]M(B). But
for every ȳ ∈ F−1[y′]M(B) we have ζqζpȳ = ȳ. Therefore F−1[y′]M(B) ⊆
ζqF

−1[x′]M(B). We conclude that ζqF−1[x′]M(B) = F−1[y′]M(B).
By Lemma 5.5 we can write

∆(Fx, Fy) = − log
π
(
[y′]B

∣∣ [y′]∂M(B)

)
π
(
[x′]B

∣∣ [x′]∂M(B)

) (5.73)

= − log
(Fπ)

(
[y′]B

∣∣ [y′]∂M(B)

)
(Fπ)

(
[x′]B

∣∣ [x′]∂M(B)

) (5.74)

= − log
(Fπ)

(
[y′]M(B)

)
(Fπ)

(
[x′]M(B)

) (5.75)

= − log
π
(
F−1[y′]M(B)

)
π
(
F−1[x′]M(B)

) (5.76)

= ∆(x, y) . (5.77)

[⇒] Suppose that Fπ is not compatible with γ. Pick finite sets D and E ⊇
M(D) and patterns p, q : D → S and r : E \D → S such that

(Fπ)
(
[p]D

∣∣ [r]E\D) > π
(
[p]D

∣∣ [r]E\D) , (5.78)

(Fπ)
(
[q]D

∣∣ [r]E\D) < π
(
[q]D

∣∣ [r]E\D) . (5.79)

Dividing (5.79) by (5.78) we get

(Fπ)
(
[q]D

∣∣ [r]E\D) < π
(
[q]D

∣∣ [r]E\D)
π
(
[p]D

∣∣ [r]E\D) · (Fπ)
(
[p]D

∣∣ [r]E\D) , (5.80)

which can rewritten

(Fπ)
(
[q]D ∩ [r]E\D

)
<
π
(
[q]D

∣∣ [r]E\D)
π
(
[p]D

∣∣ [r]E\D) · (Fπ)
(
[p]D ∩ [r]E\D

)
. (5.81)

For B ⊇ N ′
(
N ′−1(E)

)
this is equivalent to∑

w:M(B)\E→S

(Fπ)
(
[q]D ∩ [r]E\D ∩ [w]M(B)\E

)
<

∑
w:M(B)\E→S

π
(
[q]D

∣∣ [r]E\D)
π
(
[p]D

∣∣ [r]E\D) · (Fπ)
(
[p]D ∩ [r]E\D ∩ [w]M(B)\E

)
. (5.82)
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Therefore, for some w : M(B) \ E → S we have

(Fπ)
(
[q]D ∩ [r]E\D ∩ [w]M(B)\E

)
<
π
(
[q]D

∣∣ [r]E\D)
π
(
[p]D

∣∣ [r]E\D) · (Fπ)
(
[p]D ∩ [r]E\D ∩ [w]M(B)\E

)
. (5.83)

Choose two configurations x and y with

x|D = p , (5.84)
y|D = q , (5.85)

x|E\D = y|E\D = r , (5.86)

x|M(B)\E = y|M(B)\E = w , (5.87)

and x|L\M(B) = y|L\M(B). We have

π
(
F−1[y]M(B)

)
π
(
F−1[x]M(B)

) =
(Fπ)

(
[y]M(B)

)
(Fπ)

(
[x]M(B)

) < π
(
[y]D

∣∣ [y]E\D)
π
(
[x]D

∣∣ [x]E\D) . (5.88)

If q′ , (Fy)|N ′−1(D), similarly to the above, we can verify that ζq′F−1[x]M(B) =
F−1[y]M(B). Therefore, by Lemma 5.5 we obtain that

∆(F−1x, F−1y) = − log
π
(
F−1[y]M(B)

)
π
(
F−1[x]M(B)

) (5.89)

> − log
π
(
[y]D

∣∣ [y]E\D)
π
(
[x]D

∣∣ [x]E\D) (5.90)

= ∆(x, y) , (5.91)

which completes the proof. 2

In one dimension, we can prove one direction of the above correspon-
dence even when the CA is assumed to be merely surjective.

Lemma 5.10. Let c1, c2, . . . , ck > 0 and z1, z2, . . . , zk ≥ 0. Suppose that for
infinitely many integers t > 0, we have

c1z
t
1 + c2z

t
2 + · · ·+ ckz

t
k = 1 . (5.92)

Then for each i ∈ {1, 2, . . . , k}, either zi = 0 or zi = 1.

Theorem 5.11. Let F be a one-dimensional surjective CA, ∆ a local potential
difference, and π the (unique) Gibbs measure with potential ∆. If F preserves π, it
also conserves ∆.
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Proof. Let [−r, r] be the neighborhood of F . According to Theorem 5.7, π
is the distribution of a Markov chain with memory m ≥ 0. Let µ be the
observable given in Remark 5.1 which generates ∆. It follows from the
balance property of surjective CA that F is finite-to-one. In particular, this
implies that each pre-image of a spatially periodic configuration is itself
spatially periodic.

Suppose that π is F -invariant. Let y be a spatially periodic configura-
tion and F−1y = {x1, x2, . . . , xk}. Let p > 2r,m be a common period of
x1, x2, . . . , xk and y. Let us consider the cylinders [y][−tp,tp) for sufficiently
large integers t > 0. We have

π
(
[y][−pt,pt)

)
= π

(
[y][−p,0)

)
·
[
π
(
[y][0,p)

∣∣ [y][−m,0)) ]2t−1
. (5.93)

Let b > 0 be an integer constant such that for every sufficiently large t, each
pre-image of [y][−tp,tp) agrees on [−(t− b)p−m, (t− b)p+m) with some xi
(i = 1, 2, . . . , k). That such a constant exists is easy to see. Define

Ui ,
{
u ∈ S[−bp−r,0) : F ([u] ∩ [xi][0,p+r)) ⊆ [y][−bp,p)

}
, (5.94)

Vi ,
{
v ∈ S[0,bp+r) : F ([v] ∩ [xi][−p−r,0)) ⊆ [y][−p,bp)

}
. (5.95)

We have (see Figure 5.1)

F−1[y][−pt,pt) =
k⋃
i=1

⋃
u∈Ui

⋃
v∈Vi(

[σ(t−b)pu] ∩ [xi][−(t−b)p,(t−b)p) ∩ [σ−(t−b)pv]
)
. (5.96)

Note that, by construction, every u ∈ Ui agrees with xi on [−m, 0), and
similarly, every v ∈ Vi agrees with xi on [0,m). Therefore,

π
(
[y][−pt,pt)

)
=

k∑
i=1

∑
u∈Ui
v∈Vi

π([u]) ·
[
π
(
[xi][0,p)

∣∣ [xi][−m,0)) ]2t−2b
· π
(
[v]
∣∣ [xi][−m,0)) (5.97)

=
k∑
i=1

∑
u∈Ui
v∈Vi

π([u]) · π
(
[v]
∣∣ [xi][−m,0))

 · [π ([xi][0,p) ∣∣ [xi][−m,0)) ]2t−2b
. (5.98)

Dividing (5.98) by (5.93) we obtain

1 =
k∑
i=1

αi

(
π
(
[xi][0,p)

∣∣ [xi][−m,0))
π
(
[y][0,p)

∣∣ [y][−m,0))
)2t

, (5.99)
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r bp

u ∈ Ui
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bp r
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p p p p p p p p

segment of y

Figure 5.1: Illustration of the proof of Theorem 5.11.

where αi (i = 1, 2, . . . , k) are positive constants independent of t. Note that
since π is full-support, both π

(
[xi][0,p)

∣∣ [xi][−m,0)) and π
(
[y][0,p)

∣∣ [y][−m,0))
are positive.

Since (5.99) holds for all sufficiently large t > 0, Lemma 5.10 implies
that for each i = 1, 2, . . . , k, we must have

π
(
[xi][0,p)

∣∣ [xi][−m,0)) = π
(
[y][0,p)

∣∣ [y][−m,0)) . (5.100)

Therefore,

µ(xi) =
− log π

(
[xi][0,p)

∣∣ [xi][−m,0))
p

(5.101)

=
− log π

(
[y][0,p)

∣∣ [y][−m,0))
p

(5.102)

= µ(y) , (5.103)

which by Theorem 2.12 means that F conserves ∆. 2

5.3 Almost-sure Correspondence

In this section, we prove a variant of the correspondence discussed in the
previous section that is true for every probability measure and every sur-
jective CA, but is true only in the probabilistic sense.

For every probability measure π and every x ∈ supp(π), define

µπ(x) , lim sup
n→∞

− log π ([x]In)
|In|

, (5.104)

where In , [−n, n]d is the central hyper-cube of size (2n + 1)d. We show
that, for every surjective CA F and for every probability measure π, we
have µFπ(Fx) = µπ(x) for π-almost all x.

If we were to interpret µπ as the average information content per cell on
x with respect to π, the result would indicate that surjective CA conserve
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information content, almost surely. That surjective CA in some sense con-
serve information is already suggested by the Garden-of-Eden Theorem,
which is also used in the proof of the following theorem. A closely related
result was obtained by Helvik, Lindgren and Nordahl [43].

Theorem 5.12. For every probability measure π and every surjective CA F ,

µFπ(Fx) = µπ(x) (5.105)

for π-almost all x.

Proof. Let x ∈ supp(π) be arbitrary and let y = Fx. Let N = [r, r]d be the
neighborhood of F . Recall that for everyA ⊆ L, ∂N(A) denotes the bound-
ary ofA, that is, the setN(A)\A. Let us use an additional notation; let us de-
fine the inside-outside boundary of A by ∂N(A) , N(A) \ {i : N−1(i) ⊆ A}.

By the Garden-of-Eden Theorem, for every finite D ⊆ L we have

F−1[y]D ∩ [x]∂N(D) = [x]N(D) , (5.106)

and hence,

− log π
(
[x]N(D)

)
|N(D)|

=
− log π

(
F−1[y]D ∩ [x]∂N(D)

)
|N(D)|

(5.107)

=

[
− log π

(
F−1[y]D

)
|D|

· |D|
|N(D)|

+
− log π

(
[x]∂N(D)

∣∣F−1[y]D
)

|N(D)|

 . (5.108)

Let D ⊆ L be finite. Let us define

A ,
{

(p, ∂q) : p : D → S, ∂q : ∂N(D)→ S, F−1[p]D ∩ [∂q]∂N(D) 6= ∅
}
, (5.109)

and use pA and A∂q with their natural meanings. By the Gibbs inequality,
for every p : D → S we have

−
∑
∂q∈pA

π
(
[∂q] |F−1[p]

)
log π

(
[∂q] |F−1[p]

)
≤ −

∑
∂q∈pA

π
(
[∂q] |F−1[p]

)
log

1
|pA|

= log |pA| , (5.110)
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in which 0 log 0 is interpreted as 0. By the balance property of the surjective
CA, we have |pA| = |S||∂N(D)|. Therefore,

−
∑

(p,∂q)∈A

π
(
[∂q] ∩ F−1[p]

)
log π

(
[∂q] |F−1[p]

)
≤
∑
p∈SD

π(F−1[p]) log |pA| = |∂N(D)| log |S| . (5.111)

By the Markov inequality, for every K > 0 this implies

π
{
x : − log π

(
[x]∂N(D)

∣∣F−1[Fx]D
)
≥ K|∂N(D)| log |S|

}
≤ 1
K

. (5.112)

This means that for every K > 0, with a probability of at least 1 − 1
K we

have

− log π
(
[x]N(In)

)
|N(In)|

=
− log π

(
F−1[y]In

)
|N(In)|

+
− log π

(
[x]∂N(In)

∣∣F−1[y]In
)

|N(In)|
(5.113)

=
− log π

(
F−1[y]In

)
|In|

· |In|
|N(In)|

+
o(|In|)
|N(In)|

. (5.114)

Hence, for every K > 0, with a probability of at least 1− 1
K we have

lim sup
n→∞

− log π
(
F−1[y]In

)
|In|

= lim sup
n→∞

− log π
(
[x]N(In)

)
|N(In)|

(5.115)

= lim sup
n→∞

− log π
(
[x]In+r

)
|In+r|

, (5.116)

which means µFπ(Fx) = µπ(x) for π-almost all x. 2

Remark 5.2. LetM be a finite neighborhood. Using a similar argument, we
can show that for every probability measure π,

µπ(x) = lim sup
n→∞

− log π
(
[x]In | [x]∂M(In)

)
|In|

(5.117)

for π-almost all x. This is true in particular when π is a Gibbs measure with
potential difference ∆ and neighborhood M , in which case µπ is the same
as the average energy per cell with respect to ∆. #

Remark 5.3. Suppose that π is translation-invariant and σ-ergodic. Accord-
ing to the Shannon-McMillan-Breiman Theorem (Theorem A.15), µπ(x) is
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π-almost surely equal to hπ(σ), the entropy of the shift space (SL, σ) with
respect to π. Recall that if π is σ-ergodic, so is Fπ (Proposition A.2). It
follows from Theorem 5.12 that whenever π is σ-ergodic and F is surjec-
tive, hFπ(σ) = hπ(σ). This is, in fact, true even when π is not σ-ergodic:
surjective CA preserve the average entropy per cell (Proposition A.13). #

5.4 Equilibrium States and Surjective CA

As mentioned earlier, Gibbs measures characterize the macroscopic equi-
librium of statistical mechanical systems. The macroscopic equilibrium is
formulated via a variational principle: an equilibrium state is a state that
maximizes the difference between entropy (per cell) and energy (per cell).
More precisely, for every local observable µ on SL, let

P (µ) , sup
π∈Mσ

[hπ(σ)− π(µ)] . (5.118)

Depending on the physical context, the value P (µ) may be interpreted
as pressure or as free energy. Observe that, since both hπ(σ) and π(µ) are
bounded, the value P (µ) always exists and is in R. Furthermore, the com-
pactness of Mσ ensures that the supremum is achieved for some elements
in Mσ. A measure π ∈Mσ for which the supremum is achieved is called an
equilibrium state for energy µ. Note that the equilibrium states are indeed
a property of the energy defined by µ. Namely, if two observables µ and
µ′ generate the same potential difference, they have the same equilibrium
states (Proposition 2.5). The set of all equilibrium states for µ is denoted by
E (µ); that is,

E (µ) , {π ∈Mσ : hπ(σ)− π(µ) = P (µ)} . (5.119)

If µ generates a potential difference ∆, we may also write E (∆) for E (µ).
The following theorem, due to Dobrushin, Lanford and Ruelle, establishes
the connection between equilibrium states and Gibbs measures.

Theorem 5.13 (see e.g. [77, 31]). The equilibrium states for a local potential
difference ∆ on SL are exactly the translation-invariant Gibbs measures with po-
tential ∆. That is, E (∆) = Gσ(∆) for every ∆ ∈ D .

In reversible cellular automata, the assertion of Theorem 5.9 is compat-
ible with this picture: if ∆ is a conserved potential difference, the Gibbs
measures with potential ∆ are exactly those that are “locally” invariant.
Recall that by local invariance we mean that the CA maps G (∆) into G (∆).
However, a few points are worth mentioning:
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i) In reversible CA, the potential ∆ is not unique; hence there is no
unique concept of the pressure or free energy of a reversible CA. The
equilibrium states, as specified by the variational principle, are mean-
ingful for a reversible CA only in connection with a specific conserved
energy.

ii) The variational principle, and therefore also Theorem 5.13, speak only
of translation-invariant measures. In Theorem 5.9, the translation-
invariance is not assumed, but the measures are required to be full-
support.

iii) Theorem 5.9 does not say anything about the invariance of arbitrary
measures. It only characterizes the Gibbs measures that are (locally)
invariant.

Exploiting Theorem 5.13, we immediately obtain a one-sided connec-
tion between Gibbs measures and conservation laws in the more general
class of surjective cellular automata. Surjective CA preserve the equilib-
rium associated with conserved energies.

Proposition 5.14. Let F be a surjective cellular automaton and ∆ a local potential
difference. If F conserves ∆, it also maps E (∆) into itself.

Proof. Let µ : SL → R be a local observable generating ∆. Since F con-
serves ∆, we have by Theorem 2.12 that for every measure π ∈ Mσ,
(Fπ)(µ) = π(µ). Since F is surjective, we have by Proposition A.13 that
it preserves entropy; that is, for every π ∈ Mσ, we have hFπ(σ) = hπ(σ).
Therefore, for every π ∈ E (∆) we have

hFπ(σ)− (Fπ)(µ) = hπ(σ)− π(µ) (5.120)
= P (µ) . (5.121)

Hence, Fπ ∈ E (∆). 2

Corollary 5.15. Let F be a surjective cellular automaton and ∆ a local potential
difference. If F conserves ∆, it also maps Gσ(∆) into itself.



CHAPTER 6

Conclusion

WE have studied conservation laws in cellular automata from dif-
ferent points of view. We now conclude the thesis with a number

of comments and open problems.
The problem of finding a particle representation for arbitrary interaction-

free conservation laws in higher-dimensional CA remains open. A draw-
back of our solution for the two-dimensional CA is the arbitrariness in-
volved. There is an infinite number of ways in which one can assign a flow
to a given conservation law. Can we (possibly by introducing additional
constraints, or by formalizing the concept of the flows in a different way)
obtain a unique “natural” flow for each conservation law? One criterion
for naturalness is that for a reversible CA, the flows in the backward direc-
tion of time should be obtainable from the flows in the forward direction,
merely by reversing the direction of the arrows.

Another open issue is the possible relationship between the conserva-
tion laws and the symmetries of (reversible) cellular automata. Several re-
searchers (e.g., Margolus [62], Baez and Gilliam [2], Boykett [14, 15], and
Bernardi [70]) have proposed variants of Noether’s theorem (see e.g. [55, 1])
that are applicable to classes of cellular automata.

Group-valued conservation laws are more descriptive than those that
are real-valued, and equally tractable. Semigroup-valued conservation laws
are even more expressive, but unless for one-dimensional CA, they are not
algorithmically verifiable. The hierarchy of conservation laws for a CA
seems to provide useful information about the behavior of the CA. Fur-
ther study of the relationship between this hierarchy and the dynamical
properties of the CA may be rewarding.

Reversible CA, as a particularly important class of CA, are worth spe-
cial attention. We do not know whether every reversible CA has at least
one real-valued conservation law (though there are examples that suggest
a negative answer). Finding specialized flow explanations for this class of
CA would also be interesting.
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The connection between the conservation laws and the equilibrium states
of a reversible CA needs further exploration. Statistical mechanics and cel-
lular automata are two fields of research which have been developed in-
dependently, though they concern the same kind of question: each tries to
deduce information about the macroscopic behavior of a system consisting
of a huge number of tiny interacting elements. Applying tools and insight
from one field to another would be fruitful.

Finally, let us state two miscellaneous questions, which, to our knowl-
edge, are open:

Question 6.1. Let F be a CA and ∆ a potential difference conserved by F .
Is the image of every ground configuration itself a ground configuration?
If so, conservation laws can be expressed in terms of total energy relative
to the ground configurations.

Question 6.2. Given a local potential difference ∆, is it decidable whether
|G (∆)| > 1?



APPENDIX A

Basic Ergodic Theory
for Shift Spaces

Throughout the thesis, we occasionally need to apply a modest level of
ergodic theory to multi-dimensional shift spaces. However, the standard
texts in ergodic theory, such as [83], often base their treatment on one-
dimensional dynamics. It therefore seems appropriate to go through the
basic theory, retold in the multi-dimensional setting.

A.1 Ergodicity

Let X ⊆ SL be a shift space, and let Mσ[X ] be the set of translation-
invariant Borel probability measures on X . As usual, In , [−n, n]d ⊆ L
denotes the centered hyper-cube of side 2n + 1 in L. A σ-invariant set is a
setB such that σ−aB = B for all a ∈ L. A mapping g : X → R is σ-invariant
if g ◦σa = g for all a ∈ L. A measure π ∈Mσ[X ] is σ-ergodic (or shift-ergodic)
if for every σ-invariant Borel set B ⊆ X , either π(B) = 0 or π(B) = 1.

Theorem A.1 (Theorems 1.5 and 1.6 in [83]). Let π ∈Mσ[X ] be a probability
measure. The following statements are equivalent.

i) π is σ-ergodic.

ii) For every Borel set B ⊆ X with π(B) > 0, we have π
(⋃

a∈L σ
−aB

)
= 1.

iii) For every Borel setsA,B ⊆ X with π(A), π(B) > 0, there exists a ∈ L with
π (A ∩ σ−aB) > 0.

iv) For every measurable function g : X → R such that g (σax) = g(x) for
every a ∈ L and π-almost all x, there exists g ∈ R such that g(x) = g for
π-almost all x.
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Proof.
[i⇒ii] The set

⋃
a∈L σ

−aB is σ-invariant and contains B.

[ii⇒iii] Let A,B ⊆ X be Borel sets with π(A), π(B) > 0. Choose n > 0 such
that π

(⋃
a∈In σ

−aB
)
> 1− π(A). Then

∑
a∈In

π
(
A ∩ σ−aB

)
≥ π

(
A ∩

⋃
a∈In

σ−aB

)
> 0 , (A.1)

which implies π (A ∩ σ−aB) > 0 for some a ∈ In.

[iii⇒i] Suppose that B is σ-invariant, but π(B), π (X \B) > 0. There exists
a ∈ L such that π (σ−aB ∩ (X \B)) > 0. Since B is σ-invariant, this gives
π (B ∩ (X \B)) > 0, which is a contradiction.

[i⇒iv] For every n ∈ Z+ let us partition R into intervals of length 2−n,
and denote the ith interval by Jn(i). Namely, for every i ∈ Z, let Jn(i) ,
[i/2n, (i+ 1)/2n) ⊆ R. For every n ∈ Z+ and i ∈ Z, consider the set

An(i) , {x ∈ X : g (σax) ∈ Jn(i) for every a ∈ L} . (A.2)

Every An(i) is σ-invariant, hence either π (An(i)) = 0 or π (An(i)) = 1.
Furthermore, by assumption, for every n, the sets An(i) cover π-almost all
elements of X ; that is,

∑
i∈Z

π (An(i)) = π

(⋃
i∈Z

An(i)

)
= 1 . (A.3)

Therefore, there is a unique in ∈ Z such that π (An(in)) = 1. It follows that
J1(i1) ⊇ J2(i2) ⊇ · · · . Let g be the unique element of

⋂
n>0 Jn(in). We have

π
(⋂

n>0An(in)
)

= 1 and g(x) = g for every x ∈
⋂
n>0An(in).

[iv⇒i] Let B be σ-invariant. Consider its characteristic function χB . We
have χB ◦ σa = χB . Therefore, there exists b ∈ R such that χB(x) = b for
π-almost every x. Either b = 0, which means that π(B) = 0, or b = 1, which
implies π(B) = 1. 2

Cellular automata preserve the ergodicity.

Proposition A.2. Let F be a CA with FX ⊆ X . If π ∈Mσ[X ] is σ-ergodic, so
is Fπ.

Proof. Clearly Fπ is translation-invariant. If B ⊆ X is a σ-invariant Borel
set, so is F−1B. Therefore, either (Fπ)(B) = π(F−1B) = 0 or (Fπ)(B) =
π(F−1B) = 1. 2
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A.2 Ergodic Theorem

For every bounded measurable mapping g : X → R and every finite set
D ⊆ L, let us define the spatial averageRDg : X → R of g over D by

RDg(x) ,

∑
i∈D g

(
σix
)

|D|
. (A.4)

Define the upper and the lower averagesRg,Rg : X → R by

Rg(x) , lim sup
n→∞

RIng(x) , Rg(x) , lim inf
n→∞

RIng(x) . (A.5)

Proposition A.3. For every bounded measurable mapping g : X → R, the aver-
agesRg andRg are measurable and σ-invariant.

Proof. The Borel σ-algebra on R is generated by the intervals (a,+∞) with
a ∈ R. For each a ∈ R, the set(

Rg
)−1 (a,+∞) =

⋂
n>0

⋃
i>n

(RIig)
−1 (a,+∞) (A.6)

is measurable. SoRg (and similarly,Rg) is measurable.
For every finite D ⊆ L and all a ∈ L, we have

RDg (σax)−RDg(x) =
1
|D|

∑
i∈D

g
(
σa+ix

)
− 1
|D|

∑
i∈D

g
(
σix
)

(A.7)

=
|(a+D) \D|

|D|
R(a+D)\Dg(x)

− |D \ (a+D)|
|D|

RD\(a+D)g(x) . (A.8)

Since g is bounded, we get

RIng (σax)−RIng(x) =
o(|In|)
|In|

O(1)→ 0 (A.9)

as n→∞. HenceRg andRg must be σ-invariant. 2

We will denote the integral
∫
gdπ by π(g). The following weak form

of the (Pointwise) Ergodic Theorem, due to Birkhoff (L = Z) and Weiner
(L = Zd, d ≥ 1), is sufficient for our purposes. Its proof can be found
in [31]. See [69] for more general variants.

Theorem A.4 (Theorem 1.14 in [83] or Theorem 14.A8 in [31]). Let π ∈
Mσ[X ] be σ-ergodic. For every bounded measurable mapping g : X → R we
haveRg(x) = Rg(x) = π(g) for π-almost every x.
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A.3 Geometry of Mσ[X ]

By an extreme point of a convex set U we mean a point x ∈ U such that every
convex combination

∑n
i=1 λixi = x with xi ∈ U is trivial; that is, for each

i = 1, 2, . . . , n, either λi = 0 or xi = x. Two measures π, π′ onX are mutually
singular if there exists a Borel set B ⊆ X with π(B) = π′(X \B) = 0.

Theorem A.5 (Theorem 6.10 in [83]).

i) Mσ[X ] is compact.

ii) Mσ[X ] is convex.

iii) A measure π ∈ Mσ[X ] is σ-ergodic if and only if it is an extreme point of
Mσ[X ].

iv) Every element of Mσ[X ] is a limit of convex combinations of σ-ergodic ele-
ments of Mσ[X ].

v) Distinct σ-ergodic measures in Mσ[X ] are mutually singular.

Proof.

i) Mσ[X ] is a closed subset of the compact space M .

ii) Trivial.

iii) [⇐] Suppose that π is not σ-ergodic. There is a σ-invariant Borel set
B ⊆ X with 0 < π(B) < 1. Define the measures π1, π2 by

π1(A) ,
π (A ∩B)
π (B)

and π2(A) ,
π (A ∩ (X \B))

π (X \B)
(A.10)

for every A ⊆ B. Clearly π1 and π2 are in Mσ[X ]. Furthermore, π =
π(B) · π1 + π(X \B) · π2.

[⇒] Suppose that π is σ-ergodic, and that π = λπ1 + (1 − λ)π2 for
some 0 < λ < 1 and π1, π2 ∈ Mσ[X ]. For every σ-invariant B, if
π(B) = 0, we have π1(B) = π2(B) = 0, and if π(B) = 1, we have
π1(B) = π2(B) = 1. So, π1 and π2 are both σ-ergodic. Let B ⊆ B be
arbitrary. Consider the characteristic function χB ofB. By the Ergodic
Theorem, we have RχB(x) = π(χB) = π(B) on a set Y ⊆ X with
π(Y ) = 1. Similarly, for i = 1, 2, we have RχB(x) = πi(χB) = πi(B)
on a set Yi ⊆ X with πi(Y ) = 1. But π(Y ) = 1 implies πi(Y ) = 1. So
πi(Y ∩ Yi) = 1, which means that Y ∩ Yi 6= ∅. For each x ∈ Y ∩ Yi we
have π(B) = RχB(x) = πi(B). Therefore, π1 = π2 = π.
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iv) This follows from the Krein-Milman Theorem, which states that ev-
ery compact and convex subset of a locally convex topological vector
space (i.e., a topological vector space that has a basis consisting of
convex sets) is the closure of the convex hull of its extreme points. See
e.g. [76] for the proof of this.

v) Let π1 and π2 be two distinct σ-ergodic measures in Mσ[X ]. There
exists a Borel set B ⊆ X such that π1(B) 6= π2(B). Consider the
characteristic function χB of B. By the Ergodic Theorem, the aver-
age RχB(x) is equal to π1(B) on a set E1 with π1(E1) = 1, and equal
to π2(B) on a set E2 with π2(E2) = 1. The fact that π1(B) 6= π2(B)
implies that E1 and E2 are disjoint, which means that π1 and π2 are
mutually singular. 2

A.4 Entropy

Let A be a finite sub-σ-algebra of B, the Borel subsets of X . We see A
as a finite variety of distinguishable events on X . The minimal non-empty
elements of A form a finite partition ofX , which is denoted by ξ(A ). These
are the primitive events in A . Every other event is a conjunction of the
primitive events. Every finite measurable partition of X generates a finite
sub-σ-algebra of B.

Given two finite sub-σ-algebras A ,C , we denote by A ∨ C the coars-
est (i.e., the smallest) σ-algebra containing A and C . The elements of the
partition ξ(A ∨C ) are the non-empty intersections of the elements of ξ(A )
and ξ(C ). For every measurable mapping F : X → X , F−1A denotes
the sub-σ-algebra

{
F−1A : A ∈ A

}
. For example, σ−aA consists of the

events similar to those in A , but occurring around position a. Note that
F−1ξ(A ) = ξ(F−1A ) and F−1(A ∨ C ) = F−1A ∨ F−1C .

Let π be a Borel probability measure on X , and let A be a finite sub-σ-
algebra of B. Let ξ(A ) = {A1, A2, . . . , An} be the partition generating A .
The entropy of A with respect to π is defined by

Hπ(A ) , −
n∑
i=1

π(Ai) log π(Ai) , (A.11)

in which 0 log 0 is interpreted as 0. When A and C are two finite sub-σ-
algebras, the entropy of A given C is defined to be

Hπ(A |C ) , Hπ(A ∨ C )−Hπ(C ) . (A.12)

The following proposition summarizes some basic properties of entropy.
See [83, 21, 44].



104 A Basic Ergodic Theory for Shift Spaces

Proposition A.6. Let A , C and D be finite sub-σ-algebras of the Borel sets of X ,
and let π be a probability measure on X . We have

i) 0 ≤ Hπ(A ) ≤ log |ξ(A )|.

ii) 0 ≤ Hπ(A |C ) ≤ Hπ(A ).

iii) Hπ(C ) ≤ Hπ(C ∨D) ≤ Hπ(C ) +Hπ(D).

iv) If C ⊆ D , then Hπ(C ) ≤ Hπ(D).

v) If C ⊆ D , then Hπ(A |D) ≤ Hπ(A |C ).

vi) Hπ(F−1A ) = HFπ(A ) for every measurable F : X → X .

Proposition A.7 (Theorem 2.7.3 in [21]). The mapping π 7→ Hπ(·) is concave.
That is, for every π1, π2 and 0 ≤ λ ≤ 1, we have

λHπ1 + (1− λ)Hπ2 ≤ Hλπ1+(1−λ)π2
≤ λHπ1 + (1− λ)Hπ2 + δ , (A.13)

where δ , −λ log λ− (1− λ) log(1− λ).

Let J ⊆ L be a finite set of cells. Let A (J) be the sub-σ-algebra gen-
erated by the cylinders [x]J for all x : J → S. This is the algebra of
events occurring on J . We sometimes use the intuitive shorthand Hπ(J)
for Hπ (A (J)), and call it the entropy of the cells J (with respect to π).

Recall that In , [−n, n]d is the centered hyper-cube of size (2n + 1)d

on the lattice. In order to define the entropy of a shift space, we need the
following technical lemma.

Lemma A.8 (Theorem 4.9 in [83]). Let {sU}U be a family of real numbers where
U ranges over the finite subsets of L. Suppose that

i) sa+U = sU for every finite set U ⊆ L and all a ∈ L, and

ii) sU∪V ≤ sU + sV for every two disjoint finite sets U, V ⊆ L.

Then the sequence {sIn/|In|}
∞
n=0 converges to its infimum.

Proof. Fix p > 0. Let n ≥ 0 be arbitrary. We have (2n + 1) = k(2p + 1) + i
for some k ≥ 0 and 0 ≤ i < 2p + 1. We can pack kd copies of Ip inside In,
leaving o(|In|) cells uncovered. Therefore,

sIn
|In|
≤
kdsIp + o(|In|)

|In|
=
kd|Ip|
|In|

·
sIp
|Ip|

+
o(|In|)
|In|

, (A.14)

which as n→∞, gives

lim sup
n→∞

sIn
|In|
≤
sIp
|Ip|

. (A.15)
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Hence,
lim sup
n→∞

sIn
|In|
≤ inf

p

sIp
|Ip|
≤ lim inf

n→∞

sIn
|In|

, (A.16)

which proves the claim. 2

Let π ∈Mσ[X ] be a translation-invariant probability measure on X . For
every finite sub-σ-algebra A , define

hπ(σ,A ) , lim
n→∞

Hπ

(∨
i∈In σ

−iA
)

|In|
. (A.17)

Lemma A.8 and Proposition A.6.iii ensure that the above limit always ex-
ists.

Proposition A.9. Let C and D be finite sub-σ-algebras of the Borel sets of X , and
let π be a translation-invariant probability measure on X . We have

i) 0 ≤ hπ(σ,C ) ≤ Hπ(C ).

ii) hπ(σ,C ) ≤ hπ(σ,C ∨D) ≤ hπ(σ,C ) + hπ(σ,D).

iii) If C ⊆ D , then hπ(σ,C ) ≤ hπ(σ,D).

iv) hπ(σ,C ) ≤ hπ(σ,D) +Hπ(C |D).

v) hπ(σ, F−1C ) = hFπ(σ,C ) for every cellular automaton F : X → X .

Proposition A.10. The mapping π 7→ hπ(σ, ·) is affine. That is, for every π1, π2

and 0 ≤ λ ≤ 1, we have

hλπ1+(1−λ)π2
(σ, ·) = λhπ1(σ, ·) + (1− λ)hπ2(σ, ·) . (A.18)

Proof. Let An ,
∨
i∈In σ

−iA . According to Proposition A.7, we have

λHπ1(An) + (1− λ)Hπ2(An)
≤ Hλπ1+(1−λ)π2

(An) (A.19)

≤ λHπ1(An) + (1− λ)Hπ2(An) + δ , (A.20)

where δ is a constant. Dividing these expressions by |In| and letting n go to
infinity gives the result. 2

The (Kolmogorov-Sinai) entropy of the dynamical system (X , σ) with
respect to π is hπ(σ) , supA hπ(σ,A ), where the supremum is taken over
all finite sub-σ-algebras A of B.

Proposition A.11. Let π be a translation-invariant probability measure on X ,
and let F : X → X be a cellular automaton. Then hFπ(σ) ≤ hπ(σ).
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The following is a special case of the Kolmogorov-Sinai Theorem (Theo-
rem 4.17 in [83]).

Theorem A.12. For every translation-invariant probability measure π ∈Mσ[X ]
we have

hπ(σ) = lim
n→∞

Hπ(In)
|In|

= inf
n≥0

Hπ(In)
|In|

. (A.21)

Proof. The second equality follows from Lemma A.8. For every n ≥ 0,
let An , A (In) be the σ-algebra of events occurring on In. Observe that
Am+n =

∨
i∈In σ

−iAm whenever m,n ≥ 0. Therefore, for m ≥ 0, we get

hπ(σ,Am) = lim
n→∞

Hπ

(∨
i∈In σ

−iAm

)
|In|

(A.22)

= lim
n→∞

|Im+n|
|In|

· Hπ(Am+n)
|Im+n|

(A.23)

= lim
n→∞

Hπ(In)
|In|

. (A.24)

Let C be any finite sub-σ-algebra of B. By Proposition A.9.iv, for every
n ≥ 0, we have

hπ(σ,C ) ≤ hπ(σ,An) +Hπ(C |An) . (A.25)

It remains to show that limn→∞Hπ(C |An) = 0.
Let ξ(C ) = {C1, C2, . . . , Ck} be the partition generating C . Since π is

regular, for each l = 1, 2, . . . , k and every ε > 0, there is an open set U ⊇ Cl
such that π(U \ Cl) < ε. Recall that the cylinders [p]In (where p : In → S)
form a basis for the topology of X . So U is a countable union π(U) =⋃∞
i=0Ai, whereAi ∈ Ai. Since A0 ⊆ A1 ⊆ · · · , we haveBi ,

⋃i
k=0Ak ⊆ Ai.

So U =
⋃∞
i=0Bi, where Bi ∈ Ai and B0 ⊆ B1 ⊆ · · · . For every ε′ > 0,

we can find m ≥ 0 such that π(U \ Bm) < ε′. Altogether, we obtain that
π(Cl4Bm) < ε+ ε′.

Let δ > 0 be arbitrary. The above discussion implies that form ≥ 0 large
enough, there is a sub-σ-algebra D ⊆ Am with generating partition ξ(D) =
{D1, D2, . . . , Dk} such that for each l = 1, 2, . . . , k, we have π(Cl4Dl) < δ.
In particular, we can choose m ≥ 0 and D ⊆ Am so that π(Ci |Di) > 1 − δ
while π(Ci |Dj) < δ for each i and j 6= i.

This implies that by choosing m ≥ 0 large enough, one can make
Hπ(C |D) arbitrarily small. But Hπ(C |Am) ≤ Hπ(C |D). Hence,

lim
m→∞

Hπ(C |Am) = 0 , (A.26)

concluding the proof. 2
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Note that this, together with Proposition A.6.i, implies that hπ(σ) ≤
log |S| < ∞. Inspired by the above theorem, we call hπ(σ) the average en-
tropy per cell of measure π. Theorem A.12 also implies that surjective cellu-
lar automata preserve entropy.

Proposition A.13 ([60]). Let π be a translation-invariant probability measure on
SL, and let F : SL → SL be a surjective cellular automaton. Then hFπ(σ) =
hπ(σ).

Proof. According to Proposition A.11, hFπ(σ) ≤ hπ(σ). We show that when
F is surjective, hFπ(σ) ≥ hπ(σ). Let [−r, r]d (r ≥ 0) be a neighborhood for
F . For every n ≥ 0, we have

HFπ (A (In)) = Hπ

(
F−1A (In)

)
(A.27)

≤ Hπ (A (In+r)) (A.28)

≤ Hπ

(
F−1A (In)

)
+ |In+r \ In| · log |S| (A.29)

= HFπ (A (In)) + o(|In|) , (A.30)

where (A.27) and (A.30) follow from Proposition A.6.vi, (A.28) from Propo-
sition A.6.iv, and (A.29) from the balance property of surjective CA and
Proposition A.6.iii. Dividing by |In|, we get

|In+r|
|In|

· Hπ (A (In+r))
|In+r|

≤ HFπ (A (In))
|In|

+
o(|In|)
|In|

, (A.31)

which as n→∞ proves the claim. 2

Theorem A.14 (Theorem 8.1 in [83]). The mapping π 7→ hπ(σ) is affine. That
is, for every π1, π2 and 0 ≤ λ ≤ 1, we have

hλπ1+(1−λ)π2
(σ) = λhπ1(σ) + (1− λ)hπ2(σ) . (A.32)

Proof. From Proposition A.10 we immediately get

hλπ1+(1−λ)π2
(σ) ≤ λhπ1(σ) + (1− λ)hπ2(σ) . (A.33)

Let ε > 0 be arbitrary. Choose sub-σ-algebras A1,A2 such that

hπ1(σ,A1) > hπ1(σ)− ε and hπ2(σ,A2) > hπ2(σ)− ε . (A.34)

Let A , A1 ∨A2. Then

hλπ1+(1−λ)π2
(σ,A ) = λhπ1(σ,A ) + (1− λ)hπ2(σ,A ) (A.35)

≥ λhπ1(σ,A1) + (1− λ)hπ2(σ,A2) (A.36)
> λhπ1(σ) + (1− λ)hπ2(σ)− ε . (A.37)
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Since ε is arbitrary, we obtain that

hλπ1+(1−λ)π2
(σ) ≥ λhπ1(σ) + (1− λ)hπ2(σ) , (A.38)

which together with (A.33) proves the claim. 2

The following is the Shannon-McMillan-Breiman Theorem. See [59] for a
more general variant.

Theorem A.15 (Theorem 13.1 in [7]). For every σ-ergodic measure π ∈Mσ[X ]
we have

lim sup
n→∞

− log π ([x]In)
|In|

= lim inf
n→∞

− log π ([x]In)
|In|

= hπ(σ) , (A.39)

for π-almost every x ∈ X .



APPENDIX B

Example: The Ising Model

The Ising model, suggested by Lenz and Ising, is intended to describe the
phase transition in ferromagnetic material (see e.g. [78, 31, 32]). A piece of
iron can form a permanent magnet at room temperature. However, there
is a certain critical temperature, above which the iron loses its magnetic
property. The main reason for interest in the Ising model is that, despite
its simplistic construction, it exhibits such phase transition. Understanding
phase transition is one of the central goals of statistical physics (see e.g. [77,
31, 78, 57]).

In the Ising model, each cell on the lattice represents a tiny piece of
a ferromagnetic material having a spin (i.e., a magnetic moment resulting
from the angular momentum of the electrons). For simplicity, each spin is
approximated by either of two values: ↑ (spin-up) or ↓ (spin-down). Adja-
cent spins tend to align. This tendency is depicted by assigning an energy
−ς(a)ς(b) to each pair of adjacent cells with states a and b, where ς(↑) , 1
and ς(↓) , −1.

A simple CA-like deterministic dynamics on the Ising model was intro-
duced by Gérard Vichniac [82] (see e.g. [19, 80]). There, the lattice is parti-
tioned into black and white cells, as on a chess board. At each time step,
the cells in only one of the two partitions update their states. This is to re-
move the artifacts of synchronous updating. Thus it may be, for example,
that on odd time steps, only the black cells are updated, while on even time
steps, only the white cells. The spin of an updating cell is flipped (from
↑ to ↓, and vice versa) if and only if the flip does not require any energy
exchange; that is, if and only if the change does not affect the total energy
of the bonds in the vicinity of that cell. Figure B.1 shows few snapshots of
the two-dimensional Ising CA.

109
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(a) (b) (c)

Figure B.1: Simulation of Vichniac’s dynamics on a spatially periodic con-
figuration of the two-dimensional Ising model. Black represents ↑. White
represents ↓. (a) The initial configuration. (b) The configuration at time
t = 10. (c) The configuration at time t = 60.

B.1 The One-dimensional Model

Let S , {↑, ↓}. A configuration of the one-dimensional Ising model is an
element of SZ. Vichnic’s dynamics is defined using two continuous map-
pings F0 and F1, which are iterated alternatingly on the configuration. For
every configuration x : Z→ S and every cell i ∈ Z, we have

(F0x)[i] ,

{
¬x[i] if i even and ς(x[i− 1]) + ς(x[i+ 1]) = 0,
x[i] otherwise,

(B.1)

(F1x)[i] ,

{
¬x[i] if i odd and ς(x[i− 1]) + ς(x[i+ 1]) = 0,
x[i] otherwise,

(B.2)

where ¬ ↑,↓ and ¬ ↓,↑, and where ς(↑) , 1 and ς(↓) , −1.
For every pattern p : {a, b} → S with b = a + 1, let

θ(p) , −ς(p[a]) · ς(p[b]), and define θ(p) , 0 for other patterns p ∈ S#. By
construction, each of F0 and F1 conserves the potential difference ∆ gener-
ated by θ. As we shall see, F0 and F1 also preserve any Gibbs measure with
potential difference ∆.

For β ∈ R+, let π ∈ G (β∆) be a Gibbs measure with potential β∆.
Equivalently, π would be a Markov measure with neighborhood {−1, 0, 1}
and conditional probabilities satisfying

π(↑ | a b) = 2−β·∆(a↓b,a↑b) · π(↓ | a b) . (B.3)
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a x b π (x|a b)
β β=0.05 β=0.5 β=1.5

↓ ↓ ↓ 22β

22β+2−2β 0.5346
4
5 0.9846

↓ ↓ ↑ 1
2

1
2

1
2

1
2

↓ ↑ ↓ 2−2β

22β+2−2β 0.4654
1
5 0.0154

↓ ↑ ↑ 1
2

1
2

1
2

1
2

↑ ↓ ↓ 1
2

1
2

1
2

1
2

↑ ↓ ↑ 22β

22β+2−2β 0.5346
4
5 0.9856

↑ ↑ ↓ 1
2

1
2

1
2

1
2

↑ ↑ ↑ 2−2β

22β+2−2β 0.4654
1
5 0.0154

Table B.1: The conditional probabilities of the equilibrium measure in the
one-dimensional Ising model. Parameter β represents the inverse of the
temperature.

Here β is a parameter, physically interpreted as the inverse of the abso-
lute temperature. According to Proposition 5.1 and Corollary 5.8, such a
Markov measure always exists and is unique. Table B.1 shows the condi-
tional probabilities at a few sample temperatures. Notice that the higher the
temperature (the smaller the β), the closer the conditional distributions get
to the uniform distribution. This is consistent with the physical situation, in
which at high temperatures, the interaction between spins are undermined
by the thermal motions. On the other hand, when the temperature is close
to zero (i.e., as β → ∞), every spin with probability 1 is aligned with its
neighboring spins. In other words, the configuration tends to subside to
the lowest energy level possible.

According to Theorem 5.7, the measure π defines a Markov chain with
memory 1. Calculating the transition matrix of this Markov chain we get

A =
[
π (↓ | ↓) π (↓ | ↑)
π (↑ | ↓) π (↑ | ↑)

]
=

1
2β + 2−β

[
2β 2−β

2−β 2β

]
. (B.4)

For sample inverse temperature values β = 0.05, 0.5, 1.5, we get the matri-
ces

A0.05 ≈
[

0.5173 0.4827
0.4827 0.5173

]
, A0.5 =

[
2
3

1
3

1
3

2
3

]
, A1.5 ≈

[
0.8889 0.1111
0.1111 0.8889

]
. (B.5)
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Let us now verify that F0 preserves the measure π. Let p : [i, j] →
S be an arbitrary pattern, where i, j ∈ Z are both odd and i ≤ j. Then
F−1

0 [p][i,j] = [q][i,j], where q : [i, j]→ S is a pattern which agrees with p on i
and j, and we have ∆(p, q) = 0. Therefore,

(F0π)
(
[p][i,j]

)
= π

(
[q][i,j]

)
(B.6)

= π
(
[q]{i,j}

)
· π
(
[q](i,j) | [q]{i,j}

)
(B.7)

= π
(
[q]{i,j}

)
· 2−β·∆(p,q) · π

(
[p](i,j) | [p]{i,j}

)
(B.8)

= π
(
[p][i,j]

)
. (B.9)

Similarly, one sees that π is preserved by F1 as well.
Let us finally remark that F0 and F1 can be combined to make a CA

(e.g. [80]). The one-dimensional Ising CA has state set S×S, neighborhood
{−1, 0, 1}, and local rule

f

(
a1

a2
,

x1

x2
,

b1

b2

)
,


x2

¬x1

if ς(a2) + ς(b2) = 0,

x2

x1

otherwise.
(B.10)

A configuration of this CA can be interpreted as two Ising configuration
woven into each other. At each time step, the CA applies F0 on one thread
and F1 on the other, and then swaps the place of the two threads.

B.2 The Two-dimensional Model

A configuration of the two-dimensional Ising model is an element of SZ2
,

with S , {↑, ↓}. Vichniac’s dynamics are defined as in the one-dimensional
case, using Equations B.1 and B.2, where a cell i = (i1, i2) ∈ Z2 is called even
(or odd), if i1 + i2 is even (respectively, odd). The potential difference is also
defined similarly. For every pattern p : {a, b} → S with ‖b − a‖ = 1, let
θ(p) , −ς(p[a]) · ς(p[b]), and define θ(p) , 0 for other patterns p ∈ S#.
Again, by construction, each of F0 and F1 conserves ∆.

Let π be a Markov measure with neighborhood {(i1, i2) : |i1|+ |i2| ≤ 1}
and conditional probabilities satisfying

π

↑ ∣∣∣∣∣
a

b c

d

 = 2
−β·∆

 
a

b ↓ c
d

,
a

b ↑ c
d

!
· π

↓ ∣∣∣∣∣
a

b c

d

 , (B.11)

where β represents the inverse of the temperature. Table B.2 shows the
conditional probabilities.
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p π(↓ | p) π(↑ | p)

↓
↓ ↓
↓

24β

24β+2−4β
2−4β

24β+2−4β

↓
↓ ↓
↑

22β

22β+2−2β
2−2β

22β+2−2β

↓
↓ ↑
↑

,
↑

↓ ↓
↑

1
2

1
2

Table B.2: The conditional probabilities of the equilibrium measure in the
two-dimensional Ising model. Parameter β represents the inverse of the
temperature. Symmetrically identical cases are omitted.

A Markov measure π with such specification always exists, but is not
unique! In fact, there is a critical value βc = 1

2 log(1 +
√

2) such that for
β < βc (high temperatures), the above specification has a unique phase,
while for β > βc (low temperatures), there are two distinct phases. See
e.g. [32, 31, 78] for the proof of this fact.

Exactly as in the one-dimensional case, one can verify that each such
Markov measure is preserved by F0 and F1.



114 B Example: The Ising Model



Bibliography

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag,
2nd edition, 1989. English Translation.

[2] John C. Baez and James Gilliam. An algebraic approach to discrete me-
chanics. Letters in Mathematical Physics, 31:205–212, 1994.

[3] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey. On Devaney’s defini-
tion of chaos. The American Mathematical Monthly, 99(4):332–334, 1992.

[4] Heinz Bauer. Probability Theory and Elements of Measure Theory. Academic
Press, 2nd edition, 1981. English Translation.

[5] Vincent Bernardi. Lois de conservation sur automates cellulaires. PhD thesis,
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∅ empty set or pattern 5

(a, b) open (integer) interval {i : a < i < b} 9

[a, b) half-open (integer) interval {i : a ≤ i < b} 9

[a, b] closed (integer) interval {i : a ≤ i ≤ b} 9

A (J) σ-algebra generated by cylinders [x]J 104

A ∨ C smallest σ-algebra containing A and C 103

A4B symmetric difference (A \B) ∪ (B \A) 106

B Borel σ-algebra on configuration space 7

Bk[S] De Bruijn graph of order k over alphabet S 9

χB characteristic function of set B 100

Cq[S] set of q-finite configurations 6

D linear space of local potential differences on SL 25

δij Kronecker’s delta 35

∆1 ≡ ∆2 ∆1 and ∆2 are equivalent 53

∆1 ∨∆2 (∆1 ∨∆2)(x, y) , (∆1(x, y),∆2(x, y)) 53

δp characteristic function of cylinder [p] 5

∆2 v ∆1 ∆1 is at least as general as ∆2 53

DF space of potential differences conserved by F 25

D [M ] space of potential differences with neighborhood M 25

∆Z(x) total energy of x relative to ground configurations 69
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122 Notation Index

E (∆) set of equilibrium states for energy ∆ 95

E (µ) set of equilibrium states for energy µ 95

f |A restriction of mapping f to set A 5

Fc image of c under F 5

Fπ image measure π ◦ F−1 7

F ∗∆ potential difference (F ∗∆)(x, y) , ∆(Fx, Fy) 25

F × F ′ Cartesian product of CA F and F ′ 59

G〈A〉 subgroup of G generated by A 53

Ğ realizable subgroup of G 53

G (∆) set of Gibbs measures with potential ∆ 86

G (γ) set of Gibbs measures compatible with γ 86

GN [g;x, y] particle identification graph 38

G +(∆) set of full-support elements of G (∆) 88

G +(γ) set of full-support elements of G (γ) 88

Gσ(∆) translation-invariant elements of G (∆) 86

Gσ(γ) translation-invariant elements of G (γ) 86

Hπ(A ) entropy of σ-algebra A w.r.t. measure π 103

Hπ(A |C ) entropy of A given C 103

Hπ(J) entropy of cells J w.r.t. measure π 104

hπ(σ) entropy of σ with respect to measure π 105

hπ(σ,A ) entropy of σ with respect to sub-σ-algebra A 105

In centered (integer) hyper-cube [−n, n]d 99

K finite subsets of L 47

L integer lattice Zd 5

L(X ) set of finite patterns appearing in X 7

M set of Borel probability measures 7
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MF set of F -invariant probability measures 7

Mσ set of translation-invariant probability measures 7

Mσ[X ] set of measures π ∈Mσ with supp(π) ⊆ X 8

µ typical local observable µ : SL → R 13

µD µ-content of D 17

µ(x) lower average µ per cell in x 17

µ1 ∨ µ2 (µ1 ∨ µ2)(x) , (µ1(x), µ2(x)) 57

π(µ) expected µ per cell w.r.t. π 17

µπ(x) average information content per cell on x w.r.t. π 92

µ+ µ+ c > 0 for some constant c ∈ R 24

µ(x) upper average µ per cell in x 17

N set of non-negative integers 36

N(A) neighborhood of A 5

N−1(A) {i : N(i) ∩A 6= 0} 5

∂N(A) boundary of A 5

p(n) = O (q(n)) p grows no faster than q; lim supn→∞ p/q <∞ 101

p(n) = o (q(n)) p grows slower than q; lim supn→∞ p/q = 0 101

[p] shorthand for [p]D 5

〈p〉 p modulo translation 5

[p]A cylinder set with base p and support A 5

∂N(A) inside-outside boundary of A 93

Φ〈A〉 sub-monoid of Φ generated by A 57

Φ̆ realizable sub-monoid of Φ 57

Φi→j(x) flow from cell i to cell j on configuration x 32

p[i] state of cell i on pattern p 5

π(g)
∫
gdπ 101
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π(p) shorthand for π ([p]D) 8

πx probability measure associated to x 19

P (µ) pressure or free energy 95

p ≡ q (mod σ) q = σap for some a ∈ L 5

p ∨ q join of p and q 5

qL q-uniform configuration 6

q � p q sub-pattern of p 5

RDg average of mapping g over set D 101

Rg lower average lim infnRIng 101

Rg upper average lim supnRIng 101

S typical state set (finite) 5

S# set of finite patterns modulo translation 5

σ shift operator 7

σa translation by a 5

ζp (for pattern p : D → S) operator that sets D into p 5

supp(π) support of π 8

supp(θ) set of patterns with non-zero θ value 26

T Cantor topology on configuration space 6

ΘA amount of energy concentrated in A 29

ΘA,B energy coming from interaction of A and B 29

θ(x) upper average θ per cell in x 29

Θ(x) total energy in x 29

ξ(A ) partition generating σ-algebra A 103

XK shift space defined by forbidding patterns p ∈ K 7

x(K) K-block-presentation of x 8

Y X set of mappings X → Y 5

Z∆ set of ground configurations for ∆ 68

Z+ set of positive integers 100
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2-counter machine, 64
µ-content, see energy content

additivity, 12
Averintsev, M. B., 78

Baez, J. C., 97
Bernardi, V., 97
Birkhoff, G. D., 101
block-presentation, 8
Blondel, V. D., 64
Borel σ-algebra, 7
boundary, 5

inside-outside, 93
Boykett, T., 97

CA, see cellular automaton
Cantor topology, 6
Cassaigne, J., 64
cell, 4

adjacent, 41
balanced, 44
doubly problematic, 44
neighbor, 41
problematic, 44
state of, 4

cellular automaton, 1, 4
bi-permutive, 72
bijective, 6
configuration of, see — lattice
d-dimensional, 5
equicontinuous, 66
global mapping of, 5
Greenberg-Hastings, 2
injective, 6

Ising, 109, 112
local rule of, 5
nilpotent, 63, 66
number-conserving, 4
permutive, 71
positively expansive, 68, 71
pre-injective, 6
product, 59
reversible, 7
stongly transitive, see — dynam-

ical system
surjective, 6, 68

balance, 6, 91, 94
denseness of periodic points,

68
Traffic, 2
XOR, 52

chaos, 73
clopen, 6
cluster, 74
configuration, 5

asymptotic, 6
q-finite, 6
generic, 19
ground, 68
periodic

fundamental domain of, 6
q-uniform, 5

configuration space, 6
conservation law, 12, 57

local, 32
range (of interaction), 13

consistency equations, 8
continuity
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equations, 32
continuous

Lipschitz, 18
counter, 64
counter machine, 64
critical temperature, 109, 113
Curie temperature, see critical —
cylinder, 5

deflection, see flow —
Devaney, R., 73
De Bruijn graph, 9
Dobrushin, R. L., 78, 95
dynamical system, 6

chaotic, 73
denseness of periodic points, 73
mixing, 71
sensitive, 73
shift, see shift space
strongly transitive, 71
transitive, 73

energy
average — per cell

lower, 17
upper, 17

content, 17
equivalent, 53, 57
expansion rate, 24
expected — per cell, 17
free, 95
interaction-free, 36
more general, 53, 57
range (of interaction), 13
total, 57, 69
trivial, 53, 57

entropy, 95
affineness of, 105, 107
average — per cell, 95, 107
concavity of, 104
conditional, 103
Kolmogorov-Sinai, 105
of a σ-algebra, 103

of Benoulli shift, 8
of cells, 104
of dynamical system, 105
of shift space, 105

equilibrium, 78, 95
state, 95

equilibrium state, 77
ergodic, see — measure
excitable medium, 2
expansion rate, 24
extreme point, 102

q-finite, 6
flow, 32

deflection, 42
free, 41
particle, 36

Formenti, E., 68, 73
free energy, 95
frequency of occurrence, 19
Fukś, H., 37
full shift, 7
fundamental domain, 6

Gilliam, J., 97
global mapping, 5
Grange, A., 68, 73
graph

locally finite, 38
Greenberg, J. M., 2
Greenberg-Hastings model, 2

Hamiltonian, 78
Hastings, S. P., 2
Hattori, T., 3, 15
Helvik, T., 93

inclusion-exclusion principle, 46
inequality

Gibbs, 93
Markov, 94

information content
average — per cell, 92

interaction potential, 26
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canonical, 29
formal, 55

invariant
mapping, 99
measure, 7
set, 99

Ising model, 109
Ising, Ernst, 109

Kakutani, Shizuo, 19
Kepler’s Laws, 1
Kepler, Johannes, 1
Khayyám, Omar, 1
Kronecker’s delta, 5, 14

Lanford, O. E., 78, 95
lattice, 4

cells of, 4
configuration of, 5
d-dimensional, 5
integer, 5
square, 5

Lenz, Wilhelm, 109
lexicographic order, 13
Lindgren, K., 93
local rule, 5
locality, 12

machine
counter, 64
Turing, 64

Margolus, N., 97
Markov chain, 86

distribution of, 86
time-invariant, 86

Markov property, 78
one-sided, 86

marriage, 38
matrix

m-positive, 86
m-stochastic, 86

measure
Bernoulli, 8
ergodic, 99

full-support, 8
Gibbs, 84

locally-invariant, 88, 95
Gibbs-Markov, 78
invariant, 7
Markov, 78
mutually singular, 102
product, see Bernoulli —
regular, 7
support of, 8
translation-invariant, 7

mutually singular, 102

neighborhood, 4
radius-1

2 , 41
Nichitiu, C., 64
Noether, Emmy, 97
Nordahl, M. G., 93

observable, 13
discrete, 13
interaction-free, 36
local, 13

elementary, 14
quasilocal, 14
void, 25

particle, 36
particle assignment, 37
particle flow, 36
partition function, 83
pattern, 5

active, 27
empty, 5
finite, 5
forbidden, 7
improbable, 8
probable, 8
size of, 5
sub-, 5

perfect matching, 38
period, 6
periodic

spatially, 6
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temporally, 6
phase, 86

multiplicity, 86
Pivato, Marcus, 37
potential, 26, 57

interaction-free, 36
join, 57
trivial, 57

potential difference, 12
equivalent, 53, 57
join, 53
local, 12
more general, 53, 57
quasilocal, 14
trivial, 53

pressure, 95

quiescent, 6

realizable
sub-monoid, 57
subgroup, 52

reversible, 7
Ruelle, D., 78, 88, 95

semi-continuous, 70
SFT, see shift space of finite type
shift, see translation

operator, 7
space, 7

full, 7
mixing, 71
of finite type, 7
one-sided, 71

σ-algebra
Borel, 7
product, 7

spatial average, 101
lower, 101
upper, 101

specification
Markovian, 79
phase, 86
positive, 79

translation-invariant, 79
spin, 109
spin-down, 109
spin-up, 109
Spitzer, F., 78
state, 4

active, 27
blank, 13, 27, 41
quiescent, 6

statistical mechanics, 86
subshift, see shift space
support, 8

Takesue, S., 3, 15, 77
theorem

Curtis-Hedlund-Lyndon, 7
Ergodic, 19
Ergodic (Birkhoff-Weiner), 101
Ergodic (pointwise), 101
Garden-of-Eden, 6, 59, 73, 93
Hall’s, 38, 44
Kolmogorov-Sinai, 106
Krein-Milman, 103
Möbius inversion, 27, 47
Marriage, 38, 44
Perron-Frobenius, 86
Shannon-McMillan-Breiman, 94,

108
topology

Besicovitch, 18
Cantor, 6
of weak convergence, 7
product, 6
vague, 7
weak*, 7, 19

translation, 5
Turing machine, 64

q-uniform, 5

variational principle, 41, 77
Vichniac, Gérard, 109

Wang tiles, 69
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weak convergence, 7, 19
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