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Abstract

Conservation laws in physics are numerical invariants of the dynamics
of a system. This article concerns conservation laws in a fictitious universe
of a cellular automaton. We give an overview of the subject, with particular
attention to problems of combinatorial flavor.

1 Kepler’s Laws and Selective Observation

Much of science arises from looking at nature through a highly selective glass,
which eliminates all the irrelevant details and singles out a particular feature to
be studied. The strength of this approach flourishes when the filtered feature has
a nice description of its own, which is independent of the eliminated parts. A
conservation law is the simplest of such descriptions. It asserts that a certain
quantity associated to a system remains constant throughout the evolution of the
system.

Perhaps the first example of a conservation law found in physics is the intrigu-
ing discovery by the German astronomer Johannes Kepler (1571-1630) [27] of the
laws governing the motion of the planets. Kepler knew from his large collection
of data, gathered from astronomical observations, that each planet follows, not a
perfectly circular orbit, but an elliptic one, with sun on one of the focal points.
The speed of the planet is not uniform either. Whenever it is farther from the sun,
the planet moves slowly, while once it comes closer to the sun it circles around
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Figure 1: Kepler’s selective observation: dS’ = dS

it faster. Kepler was able to put this quantitatively, by realizing that the axis con-
necting the planet to the sun sweeps out equal areas within equal time segments
(Figure [T). In other word, all through its orbit, the area-sweeping rate dS /dt of
each planet remains constant (cf. [1])[]

In this article we discuss such laws in cellular automata. A cellular automaton
(CA for short) is an abstract structure, consisting of a d-dimensional checkerboard
(d=1,2,3,...). Eachcell of the board has a state chosen from a finite set of states.
The state of each cell changes with time, according to a uniform, deterministic
rule, which takes into account the previous state of the cell itself and those in its
neighborhood. The changes, however, happen synchronously, and in discrete time
steps.

One of the simplest CA exhibiting a non-trivial conservation law is the Traffic
CA, which resembles cars moving on a highway. This is a one-dimensional CA,
consisting of an infinite number of cells arranged next to each other on a line. Each
cell has two possible states: m (interpreted as a “car”) or 1 (“empty space”). At
each step, a car moves one cell forward, if and only if, its front cell is empty.
Figure [2| shows a typical space-time diagram of the evolution of the Traffic CA.
Not surprisingly, the number of cars on the highway is preserved by the evolution
of the CA.

As a two-dimensional example, consider the following discrete model of an
excitable medium due to Greenberg and Hastings [[16]. The CA runs on a two-
dimensional board. Each cell is either “at rest” (state ), or “excited” (state m),
or is in a “refractory phase” (state @m). A cell which is at rest remains so unless
it is “stimulated” by one or more of its four neighbors (i.e., if at least one of the
neighbors is excited). An excited cell undergoes a 1-step refractory phase, before
going back to rest. Typically, a configuration of the infinite board contains a num-
ber of “singularities” with waves continuously swirling around them. See Figure3]

!"This was later coined the law of conservation of angular momentum.



Figure 2: A typical space-time diagram of the Traffic CA. Time evolves down-
ward. The highway is directed toward left.

(a) (b) ()

Figure 3: Simulation of Greenberg-Hastings model on a spatially periodic config-
uration. (a) The initial configuration. (b) The configuration at time ¢t = 10. (c) The
configuration at time ¢ = 60.

for a few snapshots. The singularities are never created, nor are they destroyed.
Therefore, the number of such singularities remains constant throughout time. To

put it precisely, the singularities are the 2 x 2 blocks of cells with states "™, #%

® or their rotations or mirror images. It is a matter of mechanical verification to
see that a singular 2 X 2 block remains singular after one step, and a non-singular
one remains non-singular. See [[16} (15, [17] for the fascinating study of this CA
and the like.

2 Conservation Laws: How to verify them?

The first thing we may want to know is whether we can algorithmically verify the
validity of a certain conservation law in a cellular automaton. But first we need to



fix the notations and make it clear what exactly we mean by a conservation law.

The cells of a d-dimensional checkerboard are indexed by the elements of Z¢.
The state set of the CA is a finite set S. By a configuration of the board we
mean any mapping ¢ : Z¢ — S that assigns a state to each cell on the board.
When A C Z¢ is finite, an assignment p : A — S is called a pattern. The
neighborhood is specified by a finite set N € Z¢. The neighborhood of a cell
i€Z'istheseti+ N = {i+k : k € N}. The neighborhood of a set A of
cellsisthe set A+ N = {i+ k : i € A,k € N}. For convenience we always
assume 0 € N. The state of the cells are updated by a local rule, which is a
function f : S¥ — S that assigns a new state f(p) to each neighborhood pattern
p: N — S. The global mapping of the CA is the mapping F : SZ' — SZ’, that
maps each configuration ¢ of the board to a new configuration F(c), in which a
cell i has state F(c)[i] = f(c[i + N ])E] The evolution of the CA starting from an
initial configuration c is seen as the iteration of F on c.

Two configurations ¢ and e are said to be asymptotic, if they agree on all but
possibly finitely many cells; i.e., if the set {i : c[i] # e[i]} is finite. When s is an
arbitrary state, the s-uniform configuration, denoted by c;, is the one with s on
every cell. An s-finite configuration is one which is asymptotic to the s-uniform
one. A state s is called quiescent, provided F(c,) = c,. If s is quiescent, F maps
s-finite configurations to s-finite ones.

Suppose that each state s € S is given a real number u(s) which we call the
energy of that state. The energy-content of a pattern p : A — § is the sum
u(p) = Yicam(plil). To assert that the energy u is “conserved” by the CA, we
might be tempted to require that the u-content of every configuration c is preserved
by the application of . However, the u-content of a configuration in general is not
well-defined, as there are infinitely many cells on the board. Here there are several
approaches one can take, that are all more or less equivalent. See [19, 8 28, [10]]
for a handful.

When two configurations ¢ and e are asymptotic, the difference between their
p-content can be defined as

Su(c,e) 2 Y [u(eliD) - u(cliD)] (1

iez4
(only finitely many terms are non-zero). We say that F' conserves u, if
o (F(c), F(e)) = du(c,e) , 2)

for every two asymptotic configurations ¢ and e (Figure @).

2Here we write g[A] for the restriction of the mapping g to the subset A of its domain.
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Figure 4: Conservation law: ou (F(c), F(e)) = ou(c, e)

The car conservation law in the Traffic CA comes with the energy valuations
u(m) =1 and () = 0. To express the conservation of the number of singulari-
ties in the Greenberg-Hastings model we need energy functions that assign energy
to patterns, instead of single states. We shall discuss that in Section 3]

The conservation of the number of cars in the Traffic CA could also be stated in
a different way, by saying that whenever there are only finite number of cars on the
highway, their number is preserved throughout time. In general, if u(¢) = 0 for a
quiescent state ¢ € §, we can define the p-content of every ¢-finite configuration ¢
by the sum pu(c) = 3;cz« 1 (c[i])) with no problem. This gives rise to an equivalent
definition of a conservation law:

Proposition 1. Letu : S — R be an energy assignment, and suppose that u(¢) = 0
for a quiescent state o € S. The following are equivalent:

a) u(F(c)) = u(c), for every o-finite configuration c.
b) ou(F(c), F(e)) = ou(c,e), for every two asymptotic configurations c and e.

Is there an easy way to verify the validity of an arbitrary conservation law
in a cellular automaton? Neither of the two definitions above is directly helpful,
because they involve infinitely many equalities. Playing a bit with the Traffic
CA we may convince ourselves that it indeed conserves the number of cars: An
empty highway clearly remains empty. If we add or remove a single car from a
configuration only 3 cells may notice the change in one step (the cell where we
put the car, and its left and right neighbors). Therefore, we can verify that such a
change does not destroy the validity of the conservation law. In fact, this is all we
need to do! Notice that starting from the empty highway we can reach any finite
configuration of the highway by adding cars on it one by one.

The same idea works in general. The key observation is that for every two
asymptotic configurations ¢ and e, there is a finite sequence ¢ = ¢y, cy,...,C, = €,



such that ¢; and c¢;_, differ on exactly one cell. Furthermore,

Ou(x,z) = ou(x,y) + ou(y, z) (3)

whenever x, y and z are asymptotic configurations. Therefore, to verify that an
energy u is conserved by a CA F, one needs to verify Equation (2)) only for those
configurations ¢ and e that differ on exactly one cell.

Proposition 2 (Hattori and Takesue [19]). An energy u is conserved by a CA F, if
and only if, Equation (2)) holds for every ¢ and e that agree everywhere except on
a single cell.

Proposition [2] immediately gives an algorithms that verifies whether given a
conservation law is valid within a given cellular automaton. In fact, it allows us
to find all such conservation laws held in the CA. The set of energy assignments
u: S — Rthat are conserved by a CA F form a vector space — the solution space
of a finite system of linear equations obtained from (2)) for every ¢ and e that differ
on exactly one cell — which can be found effectively.

3 Flow of Energy and Local Conservation Laws

A conservation law, as we defined it above, is a global property. It asserts that
the energy is globally preserved, but it does not explain how this energy is re-
distributed on the configuration at each step. Is this redistribution local? Or are
cells arbitrarily far from each other working together (whatever it means) to keep
the total amount of energy intact? The answer to the latter question is intuitively
negative, but we would like to be able to express the microscopic dynamics of the
energy in terms of “flows” of energy to understand things better.

More specifically, on every configuration x, we would like to assign a value
®;_, j(x) to each pair of cells i and j (not too far from each other), as the amount
of energy flowing from i to j, such that the in-coming and out-going flows of each
cell are compatible with the energy of that cell (Figure [5(a)). Furthermore, this
value should depend only on the states of a limited number of cells in the vicinity
of i and j.

To be precise, a flow for an energy u is a mapping x, i, j = ®;,;(x) € R that
satisfies the following conditions:

a) For every configuration x and every cell a,

pdal = ) @asy(0), @)

jezd
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Figure 5: (a) Continuity of the flow: 3, ¢; = u = 3, ¢;.
(b, ¢) Two different flows for the car conservation law in the Traffic CA.

b) For every configuration x and every cell a,

D 0iy(x) = p(Folal) (5)

iezd

c) There exist finite sets K, I C Z¢, and a rule ¢ : S¥ x I — R such that,

o o(x[j+Kl,i-)) ifi—jel,
D, (x) = { 0 otherwise, ©

for every x € SZ and i, j € 7.

Equations () and (5) are called the continuity equations. Equation (6) states that
the amount of the flows toward each cell is decided locally, by looking at a finite
neighborhood K of that cell. The set [ is the set of directions from which energy
flows into a cell.

An energy u is locally conserved by F, if it has a flow. In cellular automata,
conservation laws and local conservation laws (as we defined them) are equivalent
concepts.

Proposition 3 (Hattori and Takesue [19]). In cellular automata, conserved ener-
gies are locally conserved.



The argument is a refinement of that in Proposition [2] Let us emphasize that
the choice of the flow mapping @ is not unique. Figures [5|b) and [5[c) show
two different flows for the conservation of cars in the Traffic CA. In fact, every
conservation law has infinitely many flows compatible with it. See Sections [
and [6] below.

4 Pebbles, Matchings and the Quanta of Energy

Let us introduce a game which is, not quite untypically [2], played by the cells of
a cellular automaton We start with an arbitrary configuration x. Initially, each
cell on the board is given a number of pebbles, depending only on its current state.
That is, every cell i is given 7 (x[i]) pebbles, where 1 : S — Z*° is arbitrary. At
each step, every cell (besides changing its own state) is to distribute its pebbles
among a number of cells in its vicinity (it can keep some for itself), in such a
way that after one step, each cell has exactly as many pebbles as is assigned to its
new state. That is, after one step, cell i must have n (F(x)[]) pebbles. Is there a
uniform and local strategy for each cell to win the game on every configuration?
By “uniform” we mean that every cell should use the same strategy which is in-
dependent of the configuration of the board. By “local” we mean that every cell is
only allowed to look at the states of a bounded number of cells around it, to make
its decision.

You might have recognized that such a strategy is nothing but an energy flow
with values from non-negative integers. Therefore, we immediately see that a nec-
essary condition for the existence of a winning strategy is that the CA conserves 1.
But is it also sufficient? In other words, given a conserved energy 7 : S — Z2°,
is it always possible to construct a suitable pebble redistribution rule (i.e., a flow
with non-negative integer values)? Such a rule would provide us with a clear un-
derstanding of the dynamics of 7 in terms of the local movements of the tiniest
bits of 7 — the “quanta” of 7.

Proposition 4 (Fuks$ [14] and Pivato [28]]). For every one-dimensional CA F,
and every conserved pebble assignment 1, the pebble redistribution game has a
winning strategy.

The existence of a winning strategy in higher-dimensional CA is still open.
See [21]] for a partial solution in two dimensions. This game and its various gen-
eralizations are addressed in [23, 26, [7, 3]].

Rather than discussing the argument behind Proposition {4 let us point out
a natural representation of a pebble redistribution rule (in any number of dimen-
sions) as a perfect matching in a bipartite graph. A matching in a graph G = (V, E),

3Here, however, unlike in the Conway’s game, there is something to win!



is a collection M C E of edges such that no two of them are incident. A matching
M covers a subset A C V of vertices, if every vertex in A is incident to an element
of M. A perfect matching is one which covers all the vertices.

Let7n: S — Z*° be a pebble assignment function. Given a configuration x, let
us construct a bipartite graph G[n, x] = (U, V, E) in the following way. For each
pebble on x, the graph has a vertex which is in U. Similarly, for every pebble on
F(x), there is vertex inside V. A pebble u € U, coming from a cell i, is connected
by an edge to a pebble v € V, coming from a cell j, if and only if i is a neighbor
of j (i.e.,if and only if i — j € N, N being the neighborhood of the CA).

A perfect matching in graph G[n, x] can be interpreted as a way of moving
the pebbles on configuration x, so that we obtain a redistribution of pebbles as on
configuration F(x). In particular, an edge between a pebble u € U on cell i and a
pebble v € V on cell j would mean that u is moved from cell i to cell j.

A necessary and sufficient condition for the existence of a perfect matching
in a bipartite graph is given by the so-called marriage theorem due to Philip Hall
(see e.g. [33]). The marriage theorem states that a (possibly infinite, but locally
ﬁnitel‘_Tb bipartite graph G = (U, V, E) has a matching that covers U, if and only if,
for every finite set A C U, the number of vertices in V that are adjacent to A is at
least |A|. The latter is called the Hall’s marriage condition.

It is not difficult to see that whenever 7 is conserved by F', the graph G[n, x]
associated to every configuration x satisfies the Hall’s marriage condition. As a
result we obtain the following.

Proposition 5 (Pivato [28]). An energyn: S — Z*° is conserved by the CA F, if
and only if, for every configuration x, the graph G[n, x| has a perfect matching.

Notice that a perfect matching in G[n, x] provides a mapping i, j — @, j(x) €
770 that satisfies the continuity equations (Equations @) and ), and which is
zero whenever i ¢ j+N. It remains open whether such a mapping can be generated
by a local rule, as in Equation (6)).

S Energy of Interaction

So far we have discussed energy functions that assign a value to each single cell,
independent of its context. In a more general setting, we could associate energies
to each particular pattern that a number of cells close to each other would make.
We have already seen an example of a conservation law with such an energy in
Section [I] Another example is the conservation of energy in the Ising model (see
e.g. [22,34, 31, 19]).

A graph is locally finite if every vertex has a finite degree.
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Figure 6: The two stages of updating a random spatially periodic configuration in
the two-dimensional deterministic Ising model.

The Ising mode]E] tries to capture the behavior of ferromagnetic materials in
an abstract setting. Each cell on the board represents a spin, directing upward
(state T) or downward (state |). A pair of adjacent spins has an energy attached to
it. Aligned pairs have energy —1, while anti-aligned ones have energy 1. In other
words, every pattern p : {a,b} — {1, |} in which a,b € Z? are adjacent cells has
energy

u(p) = —¢(plal) - ¢ (plb]) , (7N

where ¢(T) = 1 and ¢(]) = —1.

In the deterministic Ising model, the CA is updated in two stages. Imagine
that the cells are painted black and white, as on the chess board. At the first stage,
all the black cells are updated in the following way: A spin on a black cell is
flipped (from T to |, or from | to T), if and only if the change does not make any
difference in the total value of energy in the neighborhood of the cell. This is the
case, when the number of upward spins adjacent to the cell is the same as the the
number of downward spins. At the second stage, the white cells are updated in a
similar fashion (Figure @) It is clear that the energy u is conserved by this CAE]
Figure [7|shows a few snapshots from a simulation of the Ising CA.

A higher-range energy is obtained by assigning values to a finite number of
different patterns. We leave it to an interested reader to work out the precise
formalism. Conservation of such an energy can be defined in a similar fashion.
Variations of Propositions and (3| can be obtained likewise. In particular, in

SNamed after the physicist Ernst Ising (1900-1998).

8Strictly speaking, according to our definition, the above model is not a cellular automaton,
as the local updating rule depends on the position of the cell (i.e., whether it is black or white).
However, there are various ways to make a CA out of it. For example, we could choose the 2 x 2
blocks of the board as the cells of the CA. Or we could weave two independent configurations of
the board together and run the model on both simultaneously. See [32] for more details.
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Figure 7: Simulation of the Ising model on a spatially periodic configuration.
Black represents T. White represents |. (a) The initial configuration. (b) The
configuration at time ¢ = 10. (c¢) The configuration at time ¢ = 60.

every CA the conserved energies of a certain range form a linear space which can
be identified effectively. Consult [[19} 20]] for the details.

Naturally, we would like to have all conservation laws (of arbitrary range) that
are valid within a CA. Is there an effective method to find all conservation laws
for a given CA? One can of course enumerate the conservation laws of a CA one
by one, by solving the above-mentioned linear equations associated to wider and
wider ranges, but we may hope for a better, more compact way of presenting them
all at once. More specifically, how can we determine whether a given CA has any
conservation law at all?

It turns out that no effective way could exist to say whether a given CA has
or has not any (non-trivial) conservation law. In two- and higher-dimensional
CA, an easy argument can be obtained from the undecidability of finite tiling
problem [20]. In one-dimensional CA the undecidability of this question has its
root in the existence of very long transients (see [12]]).

As a final example, let us present a non-trivial one-dimensional CA with a va-
riety of conservation laws of arbitrary range. This is a simple symmetric two-state
CA which exhibits characteristics similar to those of solitons, and was discov-
ered by Bobenko and others [3]. Solitons are solitary packets of wave, that travel
steadily with constant speed. Upon collision they pass through each other un-
changed, with only a shift on their phase.

To maintain its symmetry, the CA is visualized on a diagonally oriented
checkerboard (Figure [§). To update its configuration, the CA uses not only the
current state of the cells, but also their state one step before The local rule is

7 Again, according to our convention, this is not precisely a cellular automaton, but can be



Figure 8: Solitons pass through each other with only a phase shift.

given by

% ¢ % ®)
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and is interpreted this way: The left and the right corners of each square are
the states of two adjacent cells in the current configuration. The upper and the
lower corners depict the states of the cell in between, one step before, and one
step after. The left, the right, and the upper states are used to obtain the lower
state. Two soliton-like species exist in this CA: one traveling to the right, and
one traveling to the left (Figure [§). The sequence of signals traveling to the left
and to the right are eventually intact, even though upon meeting each other, they
experience momentary perturbation. Therefore, any particular finite pattern of
signals traveling to the left (or to the right) gives rises to a conservation law —
that the total number of such patterns is conserved. The exact formulation of the
underlying energy might be rather technical, but the logic is simple.

6 Open Problems for Curious Souls

Does the pebble redistribution game (see Section [d)) always have a winning strat-
egy in two and higher dimensions? In other words, can the conservation of every
Z*%-valued energy in a two- or higher-dimensional CA be described by a Z=°-
valued flow?

The answer is most likely positive. Nonetheless, even if that is the case, there
will be an infinite number of such pebble flows. Is there a (possibly more re-

easily turned into one [32].



stricted) concept of “flow” which is the most natural, in the sense that, it is unique
and intuitively plausible? One criterion for naturalness is that for a reversible CA
(i.e., one in which the time evolution can be traced backward by another CA), the
flows in the backward direction of time should be obtained from the flows in the
forward direction, only by reversing the direction of the arrows.

Inspiring from the physicists, one approach would be to look for a kind of
“variational principle” which distinguishes a single natural flow. A variational
principle is a way of explaining the particular behavior of a system, by asserting
that the system seems to minimize a certain function (cf. [30]]). A nice example is
the Fermat’s principleﬂ in optics, which explains the phenomena of reflection and
refraction, by postulating that, when traveling from one point to another, light al-
ways “chooses” the path that takes the least time. For the one-dimensional pebble
redistribution, such a principle indeed exists, and states that the pebbles, in total,
should stay as close to their initial positions as possible. Such a pebble flow is
always unique. It is the one that preserves the order of pebbles [26].

Given the importance of the reversible cellular automata (cf. [31, 32]), it is
worth trying to understand the possible mechanisms of energy conservation in
this particular class of CA. Among the examples in this article, the Ising CA and
the soliton CA are reversible. It is not known whether every reversible CA has a
non-trivial conservation law or not. If that is not the case, we may wonder whether
there is an effective way to determine the existence of a non-trivial conservation
law for this subclass CA (see [[12]).
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