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Abstract
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we (unsuccessfully) attempted to make connections between phase transitions in a continuum
model and its discretized versions. (Does the multiplicity of Gibbs measures in a continuum
model imply the multiplicity of Gibbs measures in its sufficiently fine discretized versions? ) See
R. Fernández, P. Groisman, S. Saglietti (Reviews in Mathematical Physics, 2016) for some
related results.
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Summary

Let K be a locally compact complete separable metric space (e.g., Rd). A particle configuration on
K consists of countably many particles on K with the condition that every bounded set contains no
more than a finite number of particles. We see a particle configuration ξ as a a Radon measure on
K: for every measurable B ⊆ K, ξ(B) is the number of particles in B. (We allow multiple particles
at a single point.)
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We are interested in random particle configurations, or equivalently, probability measures on
the space of particle configurations. If λ is a Radon measure on K (e.g., the Lebesgue measure if
K = Rd), a Poisson random configuration on K is a random particle configuration ξ such that

� for every bounded measurable subset B ⊆ K, the distribution of ξ(B) has a Poisson distribu-
tion with intensity λ(B), and

� for every disjoint bounded measurable subsets B1, B2, . . . , Bn ⊆ K, the random variables
ξ(Bi) are independent.

A hard-core gas model is specified by conditioning a Poisson measure on a set of valid configurations.

More generally, we may have a finite set S of symbols or types, and consider particle configu-
rations in which each particle is given a type from S. This will be identified by a tuple (ξs)s∈S ,
where each ξs is an untyped particle configuration.

1 The Underlying Space

Let K be a locally compact separable space having a complete metric ρ. For example, K could be
Rd or Zd.

Notation: for a ∈ K and ε > 0, we write Nε(a) for the open ball of radius ε around a. If B ⊆ K,
we write Nε(B) =

⋃
a∈B Nε(a) for the set of point that have distance less than ε from B.

1.1 Few facts about such a space K. By a bounded subset of K we mean a set that is included in
a compact subset of K.

i) K has a countable base of bounded neighbourhoods.

Argument.⌜ Let M ⊆ K be a countable dense set. Each a ∈ M has a compact neighbourhood Ea.
The intersections of the interior of Ea and the open balls N1/n(a) for a ∈ M and n = 1, 2, . . . form

a countable base consisting of bounded open sets.⌞

ii) K is σ-compact (i.e., a countable union of compact sets).

iii) For every compact C ⊆ K, there is an open D ⊇ C whose closure D is compact.

Argument.⌜ For each a ∈ C let Ea be a bounded open neighbourhood of a. Then {Ea}a∈C is
an open cover of C, and has a finite sub-cover {Ea}a∈I . The set

⋃
a∈I Ea is open and bounded

(because it is a finite union of bounded sets), and it includes C.⌞

1.2 Some classes of functions.

C(K) set of continuous functions f : K → R.

Cc(K) set of compactly supported continuous functions f : K → R. (The support of f , denoted
by supp(f) is the smallest closed set C with f(a) = 0 for every a /∈ C)

C◦(K) set of continuous functions f : K → R that vanish at infinity (i.e., {a : |f(a)| ≥ ε} is
compact for every ε > 0).

BC(K) set of bounded continuous functions f : K → R.
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The default topology on each of these is the topology of the uniform norm. We have

Cc(K) ⊆ Cc(K) = C◦(K) ⊆ BC(K) ⊆ C(K) . (1)

1.3 Separability of Cc(K). The set Cc(K) has a countable dense subset.

Argument.⌜ This is well-known to be true if K is compact: it follows from the Stone-Weierstrass theorem
(e.g., Theorem 44.5 of [16]) and the separability of K. If K is not compact, let U1 ⊆ U2 ⊆ · · · be bounded
open sets with K =

⋃
i≥1 Ui (see 1.1). For each i, choose a countable dense subset Di of continuous

functions whose support is included in Ui. Then,
⋃

i≥1 Di is a countable dense subset of Cc(K).⌞

Moreover, every dense F (K) ⊆ Cc(K) has a countable dense subset.

Argument.⌜ Since separable and metric, Cc(K) has a countable base B. From each B ∈ B, pick a ∈
B ∩ F (K).⌞

Let us say that a set F (K) ⊆ Cc(K) is properly dense if for each f ∈ Cc(K) and every ε > 0 there
is g ∈ F (K) such that ∥f − g∥ < ε and supp(g) ⊆ supp(f), and furthermore, the function g can
be chosen to be non-negative if f is non-negative. There exist a countable properly dense subset
of Cc(K).

Argument.⌜ Let B = {B0, B1, . . .} be a countable base of K such that Bi are compact (see 1.1). For each

finite I ⊆ N, let BI ≜
⋃

i∈I Bi and choose a countable dense subset FI of continuous functions supported

at BI . Set F̃ ≜
⋃

I⊆N
finite

FI . We claim that F ≜ {g, |g| : g ∈ F̃} is properly dense.

Let f ∈ Cc(K) and ε > 0. Let Aε ≜ {a ∈ K : |f(a)| ≥ ε/2}. Then, Aε is included in the interior of
supp(f). For every x ∈ Aε, there is k such that x ∈ Bk ⊆ supp(f). By compactness, there is a finite
index set I ⊆ N such that Aε ⊆ BI ⊆ supp(f). Let hε : K → [0, 1] be a continuous function with

hε(a) =

{
1 if a ∈ Aε,

0 if a /∈ BI .
(2)

(Such a function exists by Urysohn’s lemma.) Choose gε ∈ FI with ∥gε − fhε∥ < ε/2. Then, supp(gε) ⊆
supp(f) and ∥gε − f∥ < ε.

Furthermore, if f is non-negative, we also have supp(|gε|) = supp(gε) ⊆ supp(f) and ∥|gε| − f∥ ≤
∥gε − f∥ < ε.⌞

1.4 Approximating sets by functions. Every compact set (resp., bounded open set) is a pointwise
monotone limit of elements of Cc(K):

� For every compact set V ⊆ K, there is a decreasing sequence g1, g2, . . . ∈ Cc(K) such that
gn ↘ 1V pointwise.

Argument.⌜ Let A1, A2, . . . ⊆ K be a sequence of open sets with compact closure such that An ⊇
An+1 for every n, and

⋂
n An = V . (Simply, let A ⊇ V be a bounded open set (see 1.1), and set

An ≜ A ∩N1/n(V ), where N1/n(V ) is the set of points within distance less than 1/n from V .) By
Urysohn’s lemma, there are continuous functions gn : K → [0, 1] such that

gn(a) =

{
1 if a ∈ An+1,

0 if a /∈ An.
(3)

Then, gn ≥ gn+1 and gn(a) = 1V (a) for every a /∈ An \ V .⌞

� For every bounded open set U ⊆ K, there is an increasing sequence h1, h2, . . . ∈ Cc(K) such
that hn ↗ 1U pointwise.
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The first approximation above remains valid if we require the approximating functions to be
chosen from a properly dense subset (see 1.3). Let F (K) be a properly dense subset of Cc(K).
For every compact V ⊆ K, there is a decreasing sequence h1, h2, . . . ∈ F (K) such that hn ↘ 1V
pointwise.

Argument.⌜ As before, let A1, A2, . . . ⊆ K be a sequence of open sets with compact closure such that

An ⊇ An+1 for every n, and
⋂

n An = V . For each n, let gn : K → [0, 1 + 2−n] be a continuous function,
provided by Urysohn’s lemma, such that

gn(a) =

{
1 + 2−n if a ∈ An+1,

0 if a /∈ An
(4)

Choose hn ∈ F (K) such that hn ≥ 0, supp(hn) ⊆ supp(gn) and ∥gn − hn∥ < 2−n−2.⌞

1.5 The Borel σ-algebra on K. Let E ⊆ 2K be the class of Borel-measurable bounded subsets of
K. Then, E is a ring (i.e., ∅ ∈ E , and A,B ∈ E implies A ∪B,A \B ∈ E ). In particular,

Ê ≜ {A,K \A : A ∈ E } (5)

is an algebra (i.e., ∅ ∈ Ê , and A,B ∈ Ê implies K \A,A∪B,A∩B ∈ Ê ). Since K has a countable
base of bounded sets, the family E generates the Borel σ-algebra on K.

By Carathéodory’s extension theorem (e.g., Theorem 3.1.4 of [2]), every countably additive
function µ : E → [0,∞] with µ(∅) = 0 extends to a Borel measure. Furthermore, if µ is finite on E ,
the extension is unique.

If K = Rd, we could also work with the ring generated by half-open half-closed hypercubes
[a1, b1) × [a2, b2) × · · · × [ad, bd) for ai, bi ∈ R. The collection of such hypercubes forms a semi-
ring E◦ (i.e., ∅ ∈ E◦, and A,B ∈ E◦ implies A ∩ B ∈ E◦ and A \ B =

⋃n
i=1 Ci for some disjoint

C1, C2, . . . , Cn ∈ E◦) and generates the Borel σ-algebra on Rd. A similar extension property for
countably additive functions on E◦ holds.

1.6 Radon measures on K. A Radon measure on K is a Borel measure µ with µ(C) < ∞ for every
compact set C ⊆ K. Every Radon measure is uniquely determined by its values on bounded sets
(see 1.5).

We call a Borel measure µ on K regular if

µ(E) = inf{µ(U) : open U ⊇ E} (6)

= sup{µ(V ) : compact V ⊆ E} . (7)

Note the difference with the other common definition of regularity in which V (in the second
equality) is only required to be closed.

Every Radon measure on K is regular (e.g., Theorem 7.8 of [4]). This follows from Ulam’s
theorem (Theorem 7.1.4 of [2]), which states that every finite Borel measure on a complete separable
metric space is regular.

1.7 Particle configurations on K. A particle configuration on K is a Radon measure ξ such that
ξ(B) ∈ N for every bounded measurable B ⊆ K.

Let Q ⊆ K be a countable set such that for every compact C ⊆ K, the set Q ∩ C is finite. Let
n : Q → N \ {0}. Then, ξ ≜

∑
a∈Q n(a)δa is a particle configuration on K.
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Conversely, let ξ be a particle configuration on K. For each a ∈ K, define n(a) ≜ ξ({a}), and
set Q ≜ {a : n(a) > 0}. For every compact C ⊆ K, we have |Q ∩ C| ≤ ξ(C) < ∞. This also implies
that Q is countable, because K is a countable union of compact sets. We have ξ =

∑
a∈Q n(a)δa.

Argument.⌜ Let B ⊆ K be a bounded measurable set. Then, ξ(B) ≥
∑

a∈Q∩B ξ({a}) =
∑

a∈Q n(a)δa(B).

If ξ(B) >
∑

a∈Q∩B ξ({a}), by regularity of ξ, there is a compact set C0 ⊆ B \ Q such that ξ(C0) ≥ 1.

Let A1, A2, . . . , Am be an open cover of C0 with balls with diameter at most 2−1. Then, there must be i
such that ξ(Ai ∩ C0) ≥ 1. By regularity, there is a compact set C1 ⊆ Ai ∩ C0 with ξ(C1) ≥ 1. Similarly,
we can find a chain C0 ⊇ C1 ⊇ C2 ⊇ · · · of compact sets such that Cn has diameter at most 2−n and
ξ(Cn) ≥ 1. The intersection

⋂
n Cn contains a single point x with ξ({x}) ≥ 1, contradicting the fact that

C0 ∩Q = ∅.⌞

We call ξ =
∑

a∈Q n(a)δa the standard representation of ξ.

1.8 Radon measures as linear functionals. Every compactly supported continuous function f :
K → R is integrable with respect to any Radon measure on K. Note, however, that an element of
C◦(K) could be non-integrable with respect to a non-finite Radon measure.

Each Radon measure µ on K defines a positive linear functional f 7→ µ(f) =
∫
fdµ on Cc(K).

Moreover, µ is uniquely determined by this functional.

Argument.⌜ Let µ and µ′ be two Radon measures that agree on Cc(K). Since E (the ring of bounded
measurable subsets of K) generates the Borel σ-algebra, it is enough to verify that µ(B) = µ′(B) for each
B ∈ E .

Let B ∈ E . Let D ⊇ B be an open set such that D is compact (see 1.1). Let ε > 0. By the
regularity of µ and µ′, there is a compact set V ⊆ B and an open set U ⊇ B with U ⊆ D wuch that
µ(U \ V ), µ′(U \ V ) < ε/2. By Urysohn’s lemma, there is a continuous function fε : K → [0, 1] with

fε(a) =

{
1 if a ∈ V ,

0 if a /∈ U .
(8)

Since U is compact, fε ∈ Cc(K). We have

µ(B)− ε/2 < µ(V ) ≤ µ(fε) ≤ µ(U) < µ(B) + ε/2 , (9)

µ′(B)− ε/2 < µ′(V ) ≤ µ′(fε) ≤ µ′(U) < µ′(B) + ε/2 , (10)

which imply |µ(B)− µ′(B)| < ε. Since ε > 0 was chosen arbitrarily, we find that µ(B) = µ′(B).⌞

Conversely, according to the Riesz representation theorem (e.g., Theorem 7.2 of [4]) every positive
linear function J : Cc(K) → R identifies a Radon measure µ on K with µ(f) = J(f) for every
f ∈ Cc(K).

2 Space of Radon Measures

Let M[K] denote the set of Radon measures on K. When K is clear from the context, we may also
use a shorter name M instead of M[K]. The vague topology on M[K] is the weakest topology that

makes all the observations µ 7→ µ(f) for f ∈ Cc(K) continuous. In particular, µi
v−→ µ (µi converges

vaguely to µ) if and only if µi(f) → µ(f) for every f ∈ Cc(K).
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2.1 A base for the vague topology. By definition, the sets

U(µ, f, ε) = {ν : |µ(f)− ν(f)|} < ε} (11)

for µ ∈ M[K], f ∈ Cc(K) and ε > 0 form a sub-base (i.e., generating set) for the vague topology
on M[K]. Therefore, the family of finite intersections

U(µ, f1, f2, . . . , fn, ε) =
n⋂

i=1

U(µ, fi, ε) (12)

for µ ∈ M[K], fi ∈ Cc(K) and ε > 0 is a base for the vague topology.

2.2 Set measurements.

� If V ⊆ K is compact, the mapping µ 7→ µ(V ) is upper semi-continuous (i.e., for every R > 0,
the set {µ : µ(V ) < R} is open).

Argument.⌜ There is a decreasing sequence g1, g2, . . . ∈ Cc(K) such that gn ↘ 1V pointwise (see 1.4).
By monotone continuity, for each µ ∈ M[K], we have µ(gn) ↘ µ(V ). We have

{µ : µ(V ) < R} =
⋃
n

{µ : µ(gn) < R} . (13)

⌞

� If U ⊆ K is open and bounded, the mapping µ 7→ µ(U) is lower semi-continuous (i.e., for
every R > 0, the set {µ : µ(U) > R} is open).

� If B ⊆ K is bounded and measurable, the mapping µ 7→ µ(B) is continuous at each point
ν ∈ M[K] with ν(∂B) = 0.

Argument.⌜ For every ε > 0, the set

A ≜ {µ : µ(B) < ν(B) + ε} ∩ {µ : µ(B̊) > ν(B)− ε} (14)

is open and contains ν. Furthermore, for every µ ∈ A, it holds |µ(B)− ν(B)| < ε.⌞

A measurable set B ⊆ K is called a continuity set of a Radon measure ν if ν(∂B) = 0. If A and B
are continuity sets of a Radon measure ν, so are A ∩B, A ∪B and K \A.

2.3 Criteria for vague convergence. Let µ, µ1, µ2, . . . be Radon measures on K. The following
conditions are equivalent (e.g., Theorem A 7.2 of [8]):

i) µn
v−→ µ (µn vaguely converges to µ),

ii) µn(B) → µ(B) for every bounded measurable B ⊆ K with µ(∂B) = 0,

iii) lim supµn(V ) ≤ µ(V ) and lim inf µn(U) ≥ µ(U) for every compact V ⊆ K and every bounded
open U ⊆ K.
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2.4 M[K] is separable. The elements of M[K] having compact support are dense.

Argument.⌜ Let U(µ, f1, f2, . . . , fn, ε) be a neighbourhood. Set A =
⋃n

i=1 supp(fi) and µ̂( · ) ≜ µ( · ∩A).⌞

For a compact set C ⊆ K, let M[K |C] denote the set of Radon measures whose supports are
included in C. If R ≥ 0, let M≤R[K |C] be the set of µ ∈ M[K |C] with µ(C) ≤ R. The space
M≤R[K |C] is compact. We have M[K |C] =

⋃∞
n=0 M≤n[K |C]. Therefore, M[K |C] is locally

compact and σ-compact.

Let C1 ⊆ C2 ⊆ · · · be a sequence of compact sets with
⋃∞

i=1 Ci = K. Then, for every R ≥ 0
and i ≥ 1, the set M≤R[K |Ci] has a countable dense set, because it is a compact metrizable space.
Furthermore,

⋃∞
i=1

⋃∞
n=0 M≤n[K |C] is dense in M[K]. Therefore, M[K] has a countable dense set.

A particular countable dense set can be constructed as follows. Let D ⊆ K be a countable
dense set. Then, the positive rational linear combinations of Dirac measures δa for a ∈ D are dense
in M[K].

Argument.⌜ This is well-known to be true when restricted to M≤R[K |C], where R ≥ 0 and C ⊆ K
compact.⌞

2.5 Countable generation of vague topology. We want to show that there is a countable set
F (K) ⊆ Cc(K) such that the vague topology is generated by the mappings µ 7→ µ(g), for g ∈ F (K).
We show that a countable properly dense subset F (K) ⊆ Cc(K) would do (see 1.3).

Let F (K) be a properly dense subset of Cc(K). Let T denote the weakest topology on M[K]
that makes all the projections µ 7→ µ(g) continuous for all g ∈ F (K).

For every compact set V ⊆ K and every R > 0, the set {µ : µ(V ) < R} is open with respect
to T .

Argument.⌜ This is similar to the vague topology (see 2.2). Let h1, h2, . . . be a decreasing sequence in
F (K) such that hn ↘ 1V (see 1.4). By monotone continuity, for each µ ∈ M[K], we have µ(hn) ↘ µ(V ).
We have

{µ : µ(V ) < R} =
⋃
n

{µ(hn) < R} . (15)

⌞

The topology T coincides with the vague topology. Namely, for every f ∈ Cc(K), the mapping
µ 7→ µ(f) is continuous with respect to T .

Argument.⌜ Let µ0 ∈ M[K] and ε > 0. We find a T -open set U ⊆ M[K] with µ0 ∈ U such that
|µ(f)− µ0(f)| < ε for every µ ∈ U .

Let V ≜ supp(f). Choose R > 0 with µ0(V ) < R, and gε ∈ F (K) with supp(gε) ⊆ V and ∥gε − f∥ <
ε/(3R). Set

U ≜ {µ : |µ(gε)− µ0(gε)| < ε/3} ∩ {µ : µ(V ) < R} (16)

This is open with respect to T . By construction, µ0 ∈ U . For µ ∈ U we have

|µ(f)− µ0(f)| < |µ(f)− µ(gε)|+ |µ(gε)− µ0(gε)|+ |µ0(gε)− µ0(f)| (17)

< ∥f − gε∥R+ ε/3 + ∥f − gε∥R (18)

< ε . (19)

⌞
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2.6 The vague topology on M[K] is metric. (e.g., Section A 7.7 of [8]) Let g1, g2, . . . be a properly
dense sequence in Cc(K) (see 1.3). The vague topology is the weakest topology that makes all the
mappings µ 7→ µ(gk), for k = 1, 2, . . ., continuous (see 2.5).

ρM(µ, ν) ≜
∞∑
k=1

2−k
(
1− e−|µ(gk)−ν(gk)|

)
(20)

is a metric on M[K] that generates the vague topology.

2.7 Criterion for vague compactness. Let R : Cc(K) → R≥0 be given. The set

QR ≜ {µ ∈ M[K] : |µ(f)| ≤ R(f) for all f ∈ Cc(K)} (21)

is compact.

Proof. Let µ1, µ2, . . . be a sequence in QR. We want to show that it has a converging subsequence.

Pick a countable properly dense set F (K) of Cc(K) (see 1.3). Let g1, g2, . . . be an enumeration
of the elements of F (K). Since {µn(g1)}n is bounded by R(g1), there is a subsequence {n(1, i)}i of
{n}n such that the limit µ̃(g1) ≜ limi→∞ µn(1,i)(g1) exists and is bounded by R(g1). Inductively, for
each k > 1, since {µn(gk)}n is bounded by R(gk), there is a subsequence {n(k, i)}i of {n(k− 1, i)}i
such that the limit µ̃(gk) ≜ limi→∞ µn(k,i)(gk) exists and is bounded by R(gk).

Then, for each k, the diagonal subsequence {n(i, i)}i is eventually a subsequence of {n(k, i)}i.
Therefore, µ̃(g) = limi→∞ µn(i,i)(g) ≤ R(g) for each g ∈ F (K). We claim that for f ∈ Cc(K), the

limit µ̃(f) ≜ limi→∞ µn(i,i)(f) exists and is bounded by R(f).

Argument.⌜ Let ε > 0 and V ≜ supp(f). Pick h ∈ F (K) with h ≥ 1V (existence follows e.g. using 1.4).
Then, µ(V ) ≤ µ(h) ≤ R(h) for all µ ∈ QR. Pick gε ∈ F (K) with ∥f − gε∥ < ε/R(h) and supp(gε) ⊆ V .
Then, for all µ ∈ QR we have |µ(f)− µ(gε)| ≤ ∥f − gε∥µ(V ) < ε.

Therefore, {µn(i,i)(f)}i is ε-close to the convergent sequence {µn(i,i)(gε)}i. Since this is true for every
ε > 0, we obtain that {µn(i,i)(f)}i is Cauchy, hence convergent.

The limit µ̃(f) ≜ limi→∞ µn(i,i)(f) is clearly bounded by R(f).⌞

The mapping µ̃ : Cc(K) → R is positive linear. Therefore, by Riesz’s theorem, it defines a Radon
measure (see 1.8). 2

If F (K) is a properly dense subset of Cc(K) (see 1.3), for every R : F (K) → R≥0, the set

Q′
R ≜ {µ ∈ M[K] : |µ(f)| ≤ R(f) for all f ∈ F (K)} (22)

is also compact.

Argument.⌜ We find R′ : Cc(K) → R≥0 such that Q′
R = QR′ .

For each g ∈ F (K), set R′(g) ≜ R(g). Let f ∈ Cc(K) and V ≜ supp(f). Pick h ∈ F (K) with h ≥ 1V
(existence follows e.g. using 1.4). Then, µ(V ) ≤ µ(h) ≤ R(h) for all µ ∈ QR.

Pick an arbitrary ε > 0. Choose g ∈ F (K) with supp(g) ⊆ V such that ∥g − f∥ < ε. Then,
|µ(f)− µ(g)| ≤ ∥f − g∥µ(V ) ≤ εR(h). Set R(f) ≜ R(g) + εR(h).⌞

Let D ⊆ M[K]. Then D has compact closure if and only if for every bounded B ⊆ K (or for
every compact B ⊆ K) it holds sup{µ(B) : µ ∈ D} < ∞ (e.g., Theorem A 7.5 in [8]).
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Argument.⌜ First, suppose that {µ(B) : µ ∈ D} is not bounded. We can assume that B is compact, for

otherwise B has the same property. Choose µ1, µ2, . . . ∈ D such that µn(B) ↗ ∞. If n1 < n2 < · · · is
any subsequence, we have µni (B) ↗ ∞. Therefore, {µn}n has no converging subsequence (see 2.3), and
hence the closure of D is not compact.

Next suppose that for every compact B ⊆ K, we have R0(B) ≜ sup{µ(B) : µ ∈ D} < ∞. Then for
every f ∈ Cc(K), if we let R(f) ≜ ∥f∥R0 (supp(f)), we have µ(f) ≤ ∥f∥µ (supp(f)) ≤ R(f). Therefore,
D ⊆ QR. Since QR is compact, we conclude that the closure of D is also compact.⌞

2.8 The vague topology on M[K] has a complete metric. Let ρM be the metric defined in 2.6.
Let µ1, µ2, . . . be a sequence in Cc(K) that is Cauchy with respect to ρM. Then, for each k, the
sequence µ1(gk), µ2(gk), . . . is Cauchy, hence bounded. Set R(gk) ≜ supn |µn(gk)|. Then, {µn}n lies
in the set

Q′
R ≜ {µ : |µ(gk)| ≤ R(gk) for k = 1, 2, . . .} (23)

which is compact (see 2.7).

3 Space of Particle Configurations

Let N [K] denote the set of particle configurations on K (see 1.7). When K is clear from the context,
we may also use a shorter name N instead of N [K].

Notation: if ξ is a particle configuration and C ⊆ K a measurable set, let us write ξC ≜ ξ(·∩C).
This is seen as the restriction of the configuration ξ to C, or the projection of ξ on C.

3.1 N [K] is vaguely closed in M[K]. (Proposition 2.2 in [7] or Proposition A 7.4 in [8])

3.2 Relative vague topology. Two remarks:

� If V ⊆ K is compact and n ∈ N, the set

{ξ : ξ(V ) ≤ n} = {ξ : ξ(V ) < n+ 1} (24)

is relatively open in N [K].

� If U ⊆ K is open and bounded, and n ∈ N, the set

{ξ : ξ(U) ≥ n} = {ξ : ξ(U) > n+ 1} (25)

is relatively open in N [K].

The relative vague topology on N [K] has an intuitive description (see Appendix B of [6]):
roughly, two particle configurations ξ and ξ′ are close to each other if there is a large compact set
C ⊆ K and a small ε > 0 such that the particles of ξ and the particles of ξ′ that are in C can
be paired in such a way that the paired particles have distance less than ε from each other. (The
particles close to the boundary of C are allowed to be paired with those that are outside.) This is
similar to Section 11.6 of [2].

If ξ, ξ′ ∈ N [K], let us write ξ ≤ ξ′ if ξ(B) ≤ ξ′(B) for every bounded set B ⊆ K. Equivalently,
if ξ =

∑
a∈Q n(a)δa and ξ′ =

∑
a∈Q′ n′(a)δa are the standard representations of ξ and ξ′ (see 1.7),
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then ξ ≤ ξ′ if and only if Q ⊆ Q′ and n(a) ≤ n′(a) for every a ∈ Q. Yet another description is
that ξ ≤ ξ′ if and only if there exists ξ′′ ∈ N [K] such that ξ′ = ξ + ξ′′. Clearly, the relation ≤ is a
partial order on N [K].

If ξ, ξ′ ∈ N [K] and ε > 0, let us write ξ ≤ε ξ′ if there exists ξ̃ ∈ N [K × K] with marginals
ξ̃1 = ξ̃(· ×K) and ξ̃2 = ξ̃(K× ·) such that

a) ξ̃1 = ξ and ξ̃2 ≤ ξ′, and

b) ξ̃ =
∑

(a,b)∈Q̃ ñ(a, b)δ(a,b) (the standard representation, see 1.7) where ρ(a, b) < ε. (Recall: ρ is

the metric on K.)

In words, ξ ≤ε ξ′ means that there is a matching between particles in ξ and particles in ξ′ that
covers all the particles in ξ, and such that the matched particles have distance less than ε. Let us
call a matching of particles in ξ and ξ′ an ε-matching if every two matched particles have distance
less than ε.

Let ξ =
∑

a∈Q n(a)δa be the standard representation of ξ (see 1.7). It follows from Hall’s
marriage theorem (e.g., Section 5 of [11]) that ξ ≤ε ξ

′ if and only if ξ(I) ≤ ξ′ (Nε(I)) for every finite
I ⊆ Q (recall: Nε(I) is the set of points with distance less than ε from I). The latter condition, in
turn, is satisfied if and only if ξ(B) ≤ ξ′ (Nε(B)) for every compact set B ⊆ K.

Let ξ be a particle configuration, C ⊆ K a compact set, and ε > 0, and assume that Nε(C) is
bounded. (The last condition is automatically satisfied if K = Rd.) Define the cylinder set

[ξ]C,ε ≜ {ξ′ : ξC ≤ε ξ
′ and ξ′C ≤ε ξ} . (26)

Note that, if there is an ε-matching of ξ and ξ′ that covers the particles of ξC , and an ε-matching
of ξ and ξ′ that covers the particles of ξ′C , then there is also an ε-matching of ξ and ξ′ that covers
the particles of both ξC and ξ′C . Therefore, the cylinder [ξ]C,ε is simply the set of configurations ξ′

for which there exists an ε-matching of ξ and ξ′ that covers the particles of both ξC and ξ′C .

Each cylinder set is open in the (relative) vague topology.

Argument.⌜ We have

[ξ]C,ε = [ξ]+C,ε ∩ [ξ]−C,ε , (27)

where

[ξ]+C,ε =
{
ξ′ : ξC ≤ε ξ′

}
, (28)

[ξ]−C,ε =
{
ξ′ : ξ′C ≤ε ξ

}
. (29)

Let ξ =
∑

a∈Q n(a)δa be the standard representation of ξ (see 1.7). By Hall’s theorem (see above), the

set [ξ]+C,ε can be written as

[ξ]+C,ε =
{
ξ′ : for all I ⊆ Q ∩ C, ξ′ (Nε(I)) ≥ ξ(I)

}
(30)

=
⋂

I⊆Q∩C
finite

{
ξ′ : ξ′ (Nε(I)) ≥ ξ(I)

}
. (31)

Since Nε(I) is open, and Q ∩ C is finite, we find that [ξ]+C,ε is open.

For two particle configurations η and η′, let us write η ≈ε η′ if η ≤ε η′ and η′ ≤ε η. If η ≈ε η′, there
is a perfect ε-matching between the particles of η and η′ (i.e., an ε-matching that covers the particles of
η and η′).
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The set [ξ]−C,ε can be written as

[ξ]−C,ε =
{
ξ′ : there exists ξ̂ ≤ ξNε(C) such that ξ̂ ≈ε ξ′C

}
. (32)

The inclusion ⊇ is clear. For ⊆, simply take an ε-matching of ξ and ξ′ that covers ξ′C and remove all the

unmatched particles in ξ to obtain ξ̂.
The latter, in turn, can be written as

[ξ]−C,ε =

{
ξ′ :

there exists ξ̂ ≤ ξNε(C) and 0 < δ < ε such that

ξ′
(
Nδ(C)

)
≤ ξ̂(K) and ξ̂ ≤ε ξ′Nδ(C)

}
. (33)

To see the inclusion ⊆, let ξ′ ∈ [ξ]−C,ε. Choose δ > 0 small enough so that ξ′
(
Nδ(C) \ C

)
= 0. (Note

that any particle in ξ′K\C has positive distance from C, and ξ′ is locally finite.) Pick an ε-matching of ξ′

and ξ that covers ξ′C . Let ξ̂ be the configuration consisting of the matched particles of ξ.

To see the inverse inclusion ⊇, take an ε-matching of ξ̂ and ξ′
Nδ(C)

that covers ξ̂ and such that

ξ′
(
Nδ(C)

)
≤ ξ̂(K). This is a perfect matching. Removing the particles in ξ̂ that are matched with

ξ′
Nδ(C)\C

, we obtain a configuration ξ̂′ ≤ ξ̂ ≤ ξNε(C) that has a perfect ε-matching with ξ′C .

Finally, exploiting Hall’s theorem again, we can rewrite the last expression for [ξ]−C,ε as

[ξ]−C,ε =
⋃

ξ̂≤ξNε(C)

⋃
0<δ<ε

 {
ξ′ : ξ′

(
Nδ(C)

)
≤ ξ̂(K)

}
∩{

ξ′ : ∀ I ⊆ Q̂ , ξ′ (Nε(I) ∩Nδ(C)) ≥ ξ̂(I)
}  , (34)

where Q̂ is the support of ξ̂. Note that Q̂ is finite. Since Nδ(C) is compact and Nε(I) ∩ Nδ(C) is open,
we obtain that [ξ]−C,ε is open.⌞

The cylinder sets form a base for the (relative) vague topology on N [K].

Argument.⌜ Let ξ be a particle configuration. Let f1, f2, . . . , fn ∈ Cc(K), and ε > 0. We need to show
that the open neighbourhood U(ξ, f1, f2, . . . , fn, ε) ∋ ξ (see 2.1) contains a cylinder around ξ.

Let C be a compact neighbourhood of
⋃n

i=1 supp(fi) and pick α > 0 such that C ⊇ Nα
(⋃n

i=1 supp(fi)
)
.

Let m ≜ ξ(C).
Since fi are compactly supported, they are uniformly continuous. Pick 0 < δ < α such that for every

a, b ∈ K with ρ(a, b) < δ, and each i, it holds |fi(a)− fi(b)| < ε/m. We claim that

[ξ]C,δ ⊆ U(ξ, f1, f2, . . . , fn, ε) =

n⋂
i=1

U(ξ, fi, ε) . (35)

Let ξ′ ∈ [ξ]C,δ . Then, there is a δ-matching of ξ and ξ′ that covers the particles in supp(fi). For each
pair a ∼ b of matched particles we have |fi(a)− fi(b)| < ε/m. There are in total, at most m pairs a ∼ b
with either a ∈ supp(fi) or b ∈ supp(fi). Therefore, |ξ(fi)− ξ′(fi)| < m× ε/m = ε.⌞

If [ξ]C,ε and [ξ]C′,ε′ are cylinders, and C ⊆ C ′ and ε ≥ ε′, then [ξ]C,ε ⊇ [ξ]C′,ε′ . The vague
topology on N [K], in fact, has a countable base of cylinders.

3.3 Sharp cylinders. Let K = Rd.

Let ξ be a particle configuration, C a compact set, and ε > 0. Let ξ =
∑

a∈Q n(a)δa be the
standard representation of ξ (see 1.7). Let us say that the cylinder [ξ]C,ε is sharp, if

i) inf{ρ(a, b) : a, b ∈ Q ∩ C, a ̸= b} > 2ε (i.e., there exists α1 > 2ε such that every two particles
that are not on the same position have distance at least α1 from each other), and

ii) inf{ρ(a, ∂C) : a ∈ Q} > ε (i.e., there exists α2 > ε such that each a ∈ Q has distance at least
α2 from the boundary of C).
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Every cylinder [ξ]C,ε around ξ contains a a sharp cylinder [ξ]C′,ε′ around ξ.

Argument.⌜ Let D ⊇ C be a compact neighbourhood of C. Then, Q ∩ (D \ C) is finite. Therefore, C and

Q ∩ (D \ C) have positive distance δ from each other. Set C′ ≜ Nδ/2(C). Then, each particle of ξ has
distance at least δ/2 from ∂C′.

Next, let γ ≜ inf{ρ(a, b) : a, b ∈ Q ∩ C′, a ̸= b}. Since ξ has only finitely many particles in C′, γ is
strictly positive.

Set ε′ ≜ min{δ/3, γ/3, ε}.⌞

Therefore, sharp cylinders form a base for the vague topology on N [K]. Moreover, there is a
countable base that consists of sharp cylinders.

3.4 Continuous functions on N [K].

4 Probability Measures on Particle Configurations

4.1 Borel σ-algebra on M[K]. The following σ-algebras on M[K] coincide (Lemmas 1.4 and 4.1
in [8]).

F1 the σ-algebra generated by µ 7→ µ(B) for B ∈ E .
(Recall: E denotes the family of bounded measurable subsets of K.)

F2 the σ-algebra generated by µ 7→ µ(f) for f ∈ Cc(K).

F3 the Borel σ-algebra for the vague topology.

Proof.

(F2 ⊆ F3) Continuous functions are Borel-measurable.

(F3 ⊆ F2) Since the vague topology is second countable (it is separable and metric; see 2.4 and 2.6),
every open set is a countable union of finite intersections of sets of the form U(µ, f, ε) ≜
{ν : |ν(f)− µ(f)| < ε} for f ∈ Cc(K). Therefore, any vaguely open set is in F2.

(F2 ⊆ F1) If f is a simple function (i.e, it has the form f =
∑n

i=1 αi1Bi for Bi ∈ E and αi ≥ 0),
then µ 7→ µ(f) is F1-measurable. If f ≥ 0, then f is a monotone limit of simple
functions, and by the monotone continuity of the measures, we have that µ 7→ µ(f) is
a pointwise limit of measurable functions, hence measurable. For arbitrary f ∈ Cc(K),
let f+(a) ≜ max{f(a), 0} and f− ≜ max{−f(a), 0}.

(F1 ⊆ F2) If B is compact, there is a decreasing sequence f1, f2, . . . ∈ Cc(K) such that fi ↘ 1B
(see 1.4). By monotone continuity of the measures, µ(fi) ↘ µ(B), for each µ ∈ M[K].
Hence, µ 7→ µ(B) is a pointwise limit of F2-measurable functions.

Now, if C ⊆ K is a fixed compact set, the family

B̃ ≜ {B ⊆ K measurable : µ 7→ µ(B ∩ C) is F2-measurable} (36)

is a σ-algebra, containing the closed sets, and therefore, coincides with the Borel σ-
algebra on K.
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To see the latter claim, first note that B̃ is closed under monotone limits. (That is,
if A1 ⊆ A2 ⊆ · · · are in B̃, so is

⋃
i Ai, and if A′

1 ⊇ A′
2 ⊇ · · · are in B̃, so is

⋂
i A

′
i.)

We show that B̃ contains an algebra that contains all the closed sets. If so, by the
monotone class lemma (e.g., Theorem 4.4.2 of [2] or Lemma 2.35 of [4]), B̃ contains
the Borel σ-algebra.

Let

A ≜ {U ∩ V : U ⊆ K open, V ⊆ K closed} . (37)

Then, A is a semi-algebra (i.e., ∅ ∈ A , and E,F ∈ A implies E ∩ F ∈ A and
K \ E =

⋃n
i=1 Hi for some disjoint H1, H2, . . . ,Hn ∈ A ) containing the closed sets.

Moreover, A is included in B̃. (U ∩ V can be written as V \ (V \ U). Therefore,
µ(U ∩ V ∩ C) = µ(V ∩ C) − µ ((V \ U) ∩ C).) The algebra generated by A has the
required property. 2

We will denote the Borel σ-algebra onM[K] by F . The σ-algebra F is separable (i.e., generated
by a countable family).

Argument.⌜ The vague topology is separable and metric (see 2.4 and 2.6), hence has a countable base.⌞

Consequently, there is a countable algebra A that generates F .

Argument.⌜ The algebra generated by a countable generating family is itself countable.⌞

By the monotone class lemma (Theorem 4.4.2 of [2] or Lemma 2.35 of [4]), every two probability
measures that agree on A are equal.

4.2 Restricted σ-algebras on M[K]. For a measurable Λ ⊆ K, we write F [Λ] for the σ-algebra
on M[K] generated by the mappings µ 7→ µ(B) for bounded measurable B ⊆ Λ. This is the sub-
σ-algebra of events occurring in Λ: it consists of all events U ∈ F such that for each µ ∈ M[K],
whether µ ∈ U depends only on the projection µΛ.

If µ ∈ M[K], the projection µΛ can also be seen as an element of M[Λ], the space of particle
configurations on Λ. The Borel σ-algebra on M[Λ] induces a σ-algebra on M[K] via the mapping
µ 7→ µΛ. This σ-algebra coincides with F [Λ].

Argument.⌜ If B ⊆ Λ and I ⊆ R are measurable, then

{µ : µΛ(B) ∈ I} = {µ : µ(B) ∈ I} . (38)

⌞

Let Λ,∆ ⊆ K be measurable, and Λ∩∆ = ∅. The collection of events of the form E1∩E2 ⊆ M[K],
where E1 ∈ F [Λ], E2 ∈ F [∆], and Λ∩∆ = ∅, constitute a semi-algebra that generates the σ-algebra
F [Λ ∩∆].

Argument.⌜ Let us denote the collection of such sets by S . The fact that S is a semi-algebra (i.e., ∅ ∈ S ,
and A,B ∈ S implies A ∩ B ∈ S and M[K] \ A =

⋃n
i=1 Ci for some disjoint C1, C2, . . . , Cn ∈ S ) and is

included in F [Λ ∩∆] is easy to verify. It remains to verify that S generates F [Λ ∩∆].
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For every bounded measurable set C ⊆ Λ ∪∆ and every interval (a, b) ⊆ R we have

{µ : µ(C) ∈ (a, b)}

=
⋃

x,y,ε∈Q ,ε>0
x+y∈(a+2ε,b−2ε)

(
{µ : µ(C ∩ Λ) ∈ (x− ε, x+ ε)} ∩ {µ : µ(C ∩∆) ∈ (y − ε, y + ε)}

)
, (39)

which is measurable w.r.t. the σ-algebra generated by S .⌞

In other words, M[Λ∪∆] with σ-algebra F [Λ∪∆] is measure-theoretically isomorphic to M[Λ]×
M[∆] with the product σ-algebra F [Λ] ⊗ F [∆] via the mapping µΛ∪∆ 7→ (µΛ, µ∆) (Lemma 6.1
of [14]). In particular, for every measurable Λ ⊆ K, M[Λ]×M[K \ Λ] is isomorphic to M[K].

The intersection T ≜
⋂

Λ∈E F [K \ Λ] is the tail σ-algebra.

4.3 Almost surely continuous projections. The projections ξ 7→ µΛ (for measurable Λ ⊆ K)
are not continuous. In particular, although N [Λ] × N [K \ Λ] and N [K] are measure-theoretically
isomorphic (see 4.2), they are not homeomorphic (taking limit, particles approaching the boundary
of Λ may fall in or off Λ). This will cause some trouble when working with specifications and Gibbs
measures.

However, the projection ξ 7→ ξΛ is continuous at any configuration η that has no particle on the
boundary of Λ (i.e., η(∂Λ) = 0).

Argument.⌜ Let [ηΛ]C,ε be a cylinder around ηΛ in N [Λ].

Let η =
∑

a∈Q n(a)δa be the standard representation of η (see 1.7). Let δ0 ≜ inf{ρ(a, ∂(Λ∩C)) : a ∈ Q}
be the minimum distance of the particle of η from the boundary of Λ ∩ C.

Choose δ < min{ε, δ0}. Then, the δ-ball around each particle a ∈ Q is either completely inside Λ ∩ C
or completely outside Λ ∩ C. Therefore, the projection ξ 7→ ξΛ maps the cylinder [η]C,δ into [ηΛ]C,ε.⌞

Let π be a probability measure on N [K], and let Λ ⊆ K be such that π{ξ : ξ(∂Λ) ̸= 0} = 0.
Then, the projection ξ 7→ ξΛ is π-almost surely continuous. For example, if λ is a Radon measure
on K = Rd that is absolutely continuous w.r.t. the Lebesgue measure, and if Λ ⊆ K is such that ∂Λ
has Lebesgue measure 0, then the projection ξ 7→ ξΛ is almost surely continuous w.r.t. the Poisson
measure πλ.

4.4 How to specify a probability measure on M[K]. By Ulam’s theorem (Theorem 7.1.4 of [2]),
every probability measure π on the complete separable metric space M[K] is regular; that is,

π(E) = sup{π(C) : compact C ⊆ E} (40)

for every measurable E ⊆ M[K]. In particular, π is uniquely determined by the probabilities it
associates to compact events. If E ⊆ M[K] is a measurable set and δ > 0, there exist compact
sets Cδ,Dδ ⊆ M[K] with Cδ ⊆ E and Dδ ∩ E = ∅ such that π(Cδ ∪ Dδ) > 1 − δ. Since Cδ and
Dδ are disjoint, they have a positive distance from each other, and by Urysohn’s lemma, there is
a continuous function Φδ : M[K] → [0, 1] such that Φδ(ξ) = 1 for each ξ ∈ Cδ, and Φδ(ξ) = 0 for
every ξ ∈ Dδ. Clearly, π(Φδ) → π(E) as δ → 0. Therefore, π is also uniquely determined by the
expected value it assigns to bounded continuous functions.

The distribution of a random element µ of M[K] can also be specified by either of the following
data (Theorem 3.1 of [8]):

� The finite-dimensional joint distributions of µ(B) for B ∈ E .
(Recall: E denotes the family of bounded subsets of K.)
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� The distribution of µ(f) for each f ∈ Cc(K).

For each B ∈ E and each measurable I ⊆ R, define the event

EB,I ≜ {µ ∈ M[K] : µ(B) ∈ I} . (41)

Then, the family S of the sets of the form

EB1,I1 ∩ EB2,I2 ∩ · · · ∩ EBn,In (42)

is a semi-algebra that generates the Borel σ-algebra onM[K] (see 4.1). Therefore, by Carathéodory’s
extension theorem (e.g., Theorem 3.1.4 of [2] or Theorem 1.14 of [4]), any Borel probability measure
on M[K] is uniquely determined by the probabilities it assigns to the elements of S . Moreover,
every countably additive function π : E → [0,∞) with π(∅) = 0 and π(M[K]) = 1 extends to a
(unique) Borel probability measure.

For each f ∈ Cc(K) and each measurable I ⊆ R, define the event

Ef,I ≜ {µ ∈ M[K] : µ(f) ∈ I} . (43)

Then, the family S ′ of the sets of the form

Ef1,I1 ∩ Ef2,I2 ∩ · · · ∩ Efn,In (44)

is a semi-algebra that generates the Borel σ-algebra onM[K] (see 4.1). Therefore, by Carathéodory’s
extension theorem, any Borel probability measure on M[K] is uniquely determined by the proba-
bilities it assigns the elements of S ′. Moreover, every countably additive function π : E → [0,∞)
with π(∅) = 0 and π(M[K]) = 1 extends to a (unique) Borel probability measure.

In fact, the probabilities π(Ef,I) alone are sufficient to uniquely determine the probability mea-
sure π.

Argument.⌜ (see [8], Theorem A 5.1) Let f1, f2, . . . , fn : K → R be compactly supported continuous
functions. Then, there is a number 0 < L < ∞ such that ∥fi∥ < L for each i. Every probability measure
π on M[K] induces a probability measure λ on [−L,L]n via

λ(I1 × I2 × · · · × In) ≜ π
(
Ef1,I1 ∩ Ef2,I2 ∩ · · · ∩ Efn,In

)
(45)

= π {µ : (µ(f1), µ(f2), . . . , µ(fn)) ∈ I1 × I2 × · · · × In} (46)

for every measurable I1, I2, . . . , In ⊆ [−L,L]. This is the joint distribution, with respect to π, of the
integrals of f1, f2, . . . , fn. By the regularity of probability measures on [−L,L]n and using Urysohn’s
lemma, the measure λ is uniquely determined by the integral λ(g) of continuous functions g : [−L,L]n → R.
Every such continuous function g can be uniformly approximated by linear combinations of functions of
the form (x1, x2, . . . , xn) 7→ e−

∑n
i=1 αixi for αi ∈ R (using the Stone-Weierstrass theorem). It follows

that the measure λ is uniquely determined by the integral of the functions of the form g(x1, x2, . . . , xn) ≜
e−

∑n
i=1 αixi .

Let g(x1, x2, . . . , xn) ≜ e−
∑n

i=1 αixi . If µ is a Radon measure on K, we have

g (µ(f1), µ(f2), . . . , µ(fn)) = e−
∑n

i=1 αiµ(fi) (47)

= e−µ(
∑n

i=1 αifi) . (48)

Let f ≜
∑n

i=1 αifi. The integral π
(
µ 7→ e−µ(f)

)
is uniquely determined by the probabilities π(Ef,I) where

I ⊆ R is measurable. Therefore, the probability measure λ, and hence the probabilities π
(
Ef1,I1 ∩ Ef2,I2 ∩ · · · ∩ Efn,In

)
,

are uniquely determined by the probabilities π(Ef,I) for f in the linear span of f1, f2, . . . , fn and measur-
able I ⊆ R.⌞
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4.5 How to specify a probability measure on N [K]. For every bounded measurable set B ⊆ K
and each non-negative integer k, define the event

EB,k ≜ {µ ∈ M[K] : µ(B) = k} . (49)

Every probability measure π on N [K] is uniquely identified by the probabilities it associates to the
events of the form

EA1,k1
∩ EA2,k2

∩ · · · ∩ EAm,km
(50)

where A1, A2, . . . , Am ∈ E are disjoint, and k1, k2, . . . , km are non-negative integers.

Argument.⌜ Recall that π is uniquely determined by the probabilities it associates to the events

EB1,I1 ∩ EB2,I2 ∩ · · · ∩ EBn,In (51)

for bounded measurable (not necessarily disjoint) Bi and measurable Ii ⊆ R (see 4.4). The intersection
of
⋂n

i=1 EBi,Ii and N [K] can be written as a countable union of sets of the form
⋂m

j=1 EAj ,kj
, where Aj

are disjoint.
Namely, let A1, A2, . . . , Am ⊆

⋃n
i=1 Bi be all the non-empty intersections

B̂1 ∩ B̂2 ∩ · · · ∩ B̂n , (52)

where for each i, either B̂i = Bi or B̂i = K \Bi. Set

J ≜

(k1, k2, . . . , km) ∈ Nm :

m⋂
j=1

EAj ,kj
⊆

n⋂
i=1

EBi,Ii

 . (53)

Then,

N [K] ∩
n⋂

i=1

EBi,Ii =
⋃

(k1,k2,...,km)∈J

m⋂
j=1

EAj ,kj
, (54)

where the terms of the union on the righthand side are disjoint.⌞

4.6 Probability measures on M[K] are regular. The space M[K] is separable and has a complete
metric (see Section 2). Therefore, by Ulam’s theorem (e.g., Theorem 7.1.4 of [2]), every Borel
probability measure on M[K] is regular.

5 Space of Probability Measures on Particle Configurations

Let P[M[K]] denote the set of Borel probability measures on M[K]. The weak topology on P[M[K]]
is the weakest topology that makes all the mappings π 7→ π(Φ), for bounded continuous functions

Φ ∈ BC(M[K]), continuous. In particular, πn
w−→ π (πn converges weakly to π) if and only

if πn(Φ) → π(Φ) for every Φ ∈ BC(M[K]). If µn and µ are random Radon measures with

distributions πn and π, respectively, we say that µn converges in distribution to µ if πn
w−→ π.

5.1 Set measurements. The following remain valid if M[K] is replaced with any metric space.

� For every open set U ⊆ M[K], the mapping π 7→ π(U) is lower semi-continuous (i.e., for every
α > 0, the set {π : π(U) > α)} is open).

� For every closed set V ⊆ M[K], the mapping π 7→ π(V) is upper semi-continuous (i.e., for
every α > 0, the set {π : π(V) < α)} is open).

� For every measurable set B ⊆ M[K], the mapping π 7→ π(B) is continuous at each point
ν ∈ P[M[K]] with ν(∂B) = 0.
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5.2 Criteria for weak convergence. Let π1, π2, . . . be Borel probability measures on M[K]. The
following conditions are equivalent (e.g., Theorem II.6.1 of [13] or Theorem 2.1 of [1]).

i) πt
w−→ π (πt weakly converges to π),

ii) πt(Φ) → π(Φ) for every bounded uniformly continuous function Φ : M[K] → R,

iii) lim inf πt(U) ≥ π(U) for every open set U ⊆ M[K],

iv) lim supπt(V) ≤ π(V) for every closed set V ⊆ M[K],

v) πt(B) → π(B) for every measurable set B ⊆ M[K] with π(∂B) = 0.

vi) πt(Φ) → π(Φ) for every bounded measurable function Φ : M[K] → R that is π-almost surely
continuous.

Argument.⌜ The standard theorem contains the implications (i)⇒(ii)⇒(iii)⇔(iv)⇒(v)⇒(i).

Condition (vi) clearly implies the weak convergence πt
w−−→ π. The proof of the implication (v)⇒(vi) is

between the lines of the proof of (v)⇒(i) as, for example, in [1].
Namely, assume that condition (v) holds. Let Φ : M[K] → R is a bounded measurable set and E ⊆ M[K]

the set of points at which Φ is continuous. Suppose that π(E) = 1. We show that πt(Φ) → π(Φ). Since Φ
is bounded, without loss of generality, and using the linearity of integration, we can assume that Φ takes
its values from the interval [0, 1]

Using Fubini-Tonelli’s theorem, for every probability measure ν on M[K], we can write the expected

value of Φ as ν(Φ) =
∫ 1
0 ν{ξ : Φ(ξ) > y}dy. Let y ∈ [0, 1]. Every point at which Φ is continuous is in the

interior of {ξ : Φ(ξ) > y}. Therefore, ∂{ξ : Φ(ξ) > y} ⊆ M[K] \ E, which implies π(∂{ξ : Φ(ξ) > y) ≤
π(M[K] \ E) = 0. Hence, πt{ξ : Φ(ξ) > y} → π{ξ : Φ(ξ) > y}. By the dominated convergence theorem,

πt(Φ) =

∫ 1

0
πt{ξ : Φ(ξ) > y}dy →

∫ 1

0
π{ξ : Φ(ξ) > y}dy = π(Φ) . (55)

⌞

The above are valid on any metric space. In the particular case of M[K], there are other
more useful equivalent conditions. For every f ∈ Cc(K), let us denote the mapping µ 7→ µ(f)
by Φf : M[K] → R. Similarly, for B1, B2, . . . , Bn ∈ E , we write ΦB1,B2,...,Bn : M[K] → Rn for
the mapping µ 7→ (µ(B1), µ(B2), . . . , µ(Bn)). If µ is a random Radon measure with probability
distribution π, Φfπ ≜ π◦Φ−1

f denotes the probability distribution of µ(f). The probability measure
ΦB1,B2,...,Bn

π on Rn is defined similarly.

Let π1, π2, . . . be Borel probability measures on M[K]. Either of the following conditions is
equivalent to the weak convergence of πt to π (Theorem 4.2 of [8]).

vii) Φfπt
w−→ Φfπ for every f ∈ Cc(K),

viii) ΦB1,B2,...,Bn
πt

w−→ ΦB1,B2,...,Bn
π for every n ∈ N and B1, B2, . . . , Bn ∈ E with

π{µ : µ(∂B1) ̸= 0} = π{µ : µ(∂B2) ̸= 0} = · · · = π{µ : µ(∂Bn) ̸= 0} = 0 . (56)

On the space N [K] of particle configurations, the latter condition has a simpler version.
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ix)

πt{ξ : ξ(A1) = k1, ξ(A2) = k2, . . . , ξ(Am) = km}
→ π{ξ : ξ(A1) = k1, ξ(A2) = k2, . . . , ξ(Am) = km} (57)

for every m ∈ N and disjoint A1, A2, . . . , Am ∈ E with

π{ξ : ξ(∂A1) ̸= 0} = π{ξ : ξ(∂A2) ̸= 0} = · · · = π{ξ : ξ(∂Am) ̸= 0} = 0 , (58)

and every k1, k2, . . . , km ∈ N.

Argument.⌜ The above condition is included in Condition (viii). It is therefore enough to verify that
Condition (viii) holds whenever the above condition is satisfied.

For probability measures on N [K], the measures ΦB1,B2,...,Bnπt and ΦB1,B2,...,Bnπ are supported

at Nn. Therefore, ΦB1,B2,...,Bnπt
w−−→ ΦB1,B2,...,Bnπ if and only if

πt

(
n⋂

i=1

EBi,Ii

)
→ πt

(
n⋂

i=1

EBi,Ii

)
(59)

for every finite I1, I2, . . . , In ⊆ N (see e.g., Theorem 2.2 of [1]; for the definition of EBi,Ii , see 4.4).
Let B1, B2, . . . , Bn ∈ E , and let I1, I2, . . . , In ⊆ N be finite. As in 4.5, let A1, A2, . . . , Am ⊆

⋃n
i=1 Bi

be all the non-empty intersections

B̂1 ∩ B̂2 ∩ · · · ∩ B̂n , (60)

where for each i, either B̂i = Bi or B̂i = K \Bi. Set

J ≜

(k1, k2, . . . , km) ∈ Nm :
m⋂

j=1

EAj ,kj
⊆

n⋂
i=1

EBi,Ii

 . (61)

Then,

n⋂
i=1

EBi,Ii =
⋃

(k1,k2,...,km)∈J

m⋂
j=1

EAj ,kj
, (62)

where the terms of union are disjoint. Note also that J is a finite set.

Suppose that πt

(⋂m
j=1 EAj ,kj

)
→ π

(⋂m
j=1 EAj ,kj

)
for each (k1, k2, . . . , km) ∈ Nn. Then also

πt

(
n⋂

i=1

EBi,Ii

)
=

∑
(k1,k2,...,km)∈J

πt

 m⋂
j=1

EAj ,kj


→

∑
(k1,k2,...,km)∈J

π

 m⋂
j=1

EAj ,kj

 = π

(
n⋂

i=1

EBi,Ii

)
. (63)

The claim follows from the fact that if B1, B2, . . . , Bn are continuity sets of a configuration ξ, so are
A1, A2, . . . , Am. (Recall from 2.2 that the family of continuity sets of ξ is an algebra.) Therefore,

{ξ : ξ(∂Aj) ̸= 0} ⊆
n⋃

i=1

{ξ : ξ(∂Bi) ̸= 0} (64)

for each j, and π{ξ : ξ(∂Aj) ̸= 0} ≤
∑n

i=1 π{ξ : ξ(∂Bi) ̸= 0}.⌞

5.3 The weak topology on P[M[K]] is separable and has a complete metric.
(Theorems II.6.2 and II.6.5 in [13])
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5.4 Criteria for weak compactness. The space M[K] is a complete separable metric space. Let
Q ⊆ P[M[K]] be a family of probability measures on M[K]. Then, Prohorov’s theorem (Theo-
rem II.6.7 of [13] or Theorem 11.5.4 of [2]) states that the weak closure Q is weakly compact if and
only if for every ε > 0, there exists a compact set Kε ⊆ M[K] such that π(Kε) ≥ 1−ε for all π ∈ Q.
Such a family is said to be (uniformly) tight.

The above condition is valid for any complete separable metric space instead of N [K]. There is
also a condition specific to N [K] (Lemma 4.5 of [8]): a sequence π1, π2, . . . of probability measures
on N [K] has a weakly convergent subsequence if and only if

lim
t→∞

lim sup
n→∞

πn{ξ : ξ(B) > t} = 0 (65)

for every bounded measurable B ⊆ K.

5.5 P[N [K]] is weakly closed in P[M[K]].

6 Poisson Measures

Let λ be Radon measure on K. A Poisson measure with intensity measure (or mean measure) λ is a
Borel probability measure πλ on the space of particle configurations N [K] such that

I. for every A ∈ E , and every k ∈ N, we have

πλ {ξ : ξ(A) = k} = e−λ(A)λ(A)k

k!
, (66)

where 00 is interpreted as 1.
(Recall: E denotes the family of bounded measurable subsets of K.)

II. for every disjoint A1, A2, . . . , An ∈ E , and every k1, k2, . . . , kn ∈ N, it holds

πλ {ξ : ξ(A1) = k1, ξ(A2) = k2, . . . , ξ(An) = kn} =

n∏
i=1

πλ {ξ : ξ(Ai) = ki} . (67)

A Poisson random configuration (a.k.a. a Poisson point process) on K is a random configuration
ξ : Ω → N [K] defined on a probability space (Ω,A ,Pr) whose distribution is a Poisson measure
(i.e., the measure ξPr defined by (ξPr)(A) ≜ Pr{ω : ξ(ω) ∈ A} is a Poisson measure).

In fact, condition II alone is essentially sufficient for the measure to be Poisson. Prékopa’s
theorem (Theorem 4 of [7]) states that any atom-less measure on N [K] that has no multiple points
and satisfies condition II is Poisson.

6.1 The superposition theorem. Let ξ1, ξ2, . . . be independent Poisson random configurations with

intensity measures λ1, λ2, . . .. If λ ≜
∑∞

n=1 λn is a Radon measure, then ξ ≜
∑∞

n=1 ξn is a Poisson
random configuration with intensity measure λ (e.g., Section 2.2 of [9]).

Proof. We first verify that ξ ≜
∑∞

n=1 ξn is almost surely a particle configuration.
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Argument.⌜ Let B ⊆ K be a bounded measurable set. Then, ξ(B) =
∑∞

n=1 ξn(B) is almost surely finite.
Namely, by the monotone continuity of expectation, we have E[ξ(B)] = limn→∞

∑n
i=1 E[ξi(B)] = λ(B).

Hence, ξ(B) cannot take the value ∞ on a set that has a positive probability.
Since K is σ-compact, there is a chain Λ1 ⊆ Λ2 ⊆ . . . ⊆ K of bounded open sets with

⋃∞
l=1 Λl = K

(see 1.1). With probability 1, all the values ξ(Λ1), ξ(Λ2), . . . are finite. Every bounded set is included in
Λl for some l. It follows that ξ is almost surely Radon. Since N [K] is closed in M[K] (see 3.1), ξ is almost
surely a particle configuration.⌞

Next, we recall that the sum of finitely many independent Poisson random variables is also
a Poisson random variable. Namely, if x1,x2, . . . ,xn are independent Poisson random variables,
respectively with intensities γ1, γ2, . . . , γn, then x ≜

∑n
i=1 xi is a Poisson random variable with

intensity γ ≜
∑n

i=1 γi.

Argument.⌜

Pr{x = l} =
∑

a1,a2,...,an≥0
a1+a2+···+an=l

n∏
i=1

e−γi
γ
ai
i

ai!
(68)

=
e−(γ1+γ2+···+γn)

l!

∑
a1,a2,...,an≥0

a1+a2+···+an=l

( l

a1, a2, . . . , an

)
γa1
1 γa2

2 · · · γan
n (69)

=
e−γ

l!
(γ1 + γ2 + · · ·+ γn)

l (70)

= e−γ γl

l!
. (71)

⌞

In particular, for every bounded measurable B ⊆ K and each n > 0,
∑n

i=1 ξi(B) is Poisson with
intensity

∑n
i=1 λi(B).

The pointwise monotone limit of Poisson random variables is also a Poisson random variable:
if x1 ≤ x2 ≤ · · · is a chain of Poisson random variables with intensities γ1 ≤ γ2 ≤ · · · , and if
γn ↗ γ < ∞, then the pointwise limit x ≜ limn→∞ xn is Poisson with intensity γ.

Argument.⌜ For every l ∈ N, the events {xn ≤ l} form a decreasing chain with {x ≤ l} =
⋂

n{xn ≤ l}. The

claim follows from the monotone continuity of probability measures and the continuity of
∑l

i=0 e
−γ γi

i!

in γ.⌞

It follows that for every bounded measurable B ⊆ K, ξ(B) =
∑∞

i=1 ξi(B) is Poisson with intensity
λ(B) =

∑∞
i=1 λi(B).

The sum of independent random variables are independent: if x1,x2, . . . ,xm,y1,y2, . . . ,ym

are independent random variables in N, so are x1 + y1,x2 + y2, . . . ,xm + ym. In particular, if
B1, B2, . . . , Bm ⊆ K are disjoint bounded measurable sets and n > 0, the variables

∑n
i=1 ξi(B1),∑n

i=1 ξi(B2), . . . ,
∑n

i=1 ξi(Bm) are independent.

Finally, the monotone limit of independent random variables are independent: for every n ∈
N, let x

(n)
1 ,x

(n)
2 , . . . ,x

(n)
m be independent random variables in N, and suppose that for each k =

1, 2, . . . ,m, x
(n)
k ↗ xk as n → ∞. Then, x1,x2, . . . ,xm are independent.

Argument.⌜ The events {x(n)
1 ≤ l1, x

(n)
2 ≤ l2, . . . , x

(n)
m ≤ lm}, for n = 1, 2, . . ., form a decreasing chain

with

{x1 ≤ l1, x2 ≤ l2, . . . , xm ≤ ln} =
⋂
i

{x(n)
1 ≤ l1, x

(n)
2 ≤ l2, . . . , x

(n)
m ≤ lm} . (72)
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By the monotone continuity of the probability measures, we have

Pr{x1 ≤ l1, x2 ≤ l2, . . . , xm ≤ lm} = lim
n→∞

Pr{x(n)
1 ≤ l1, x

(n)
2 ≤ l2, . . . , x

(n)
m ≤ lm} (73)

= lim
n→∞

m∏
k=1

Pr{x(n)
k ≤ lk} (74)

=

m∏
k=1

Pr{xk ≤ lk} . (75)

⌞

Hence, ifB1, B2, . . . , Bm ⊆ K are disjoint bounded measurable sets, the variables ξ(B1), ξ(B2), . . . , ξ(Bm)
are independent. 2

6.2 Construction of Poisson measures. A probability measure on N [K] is uniquely determined
by its values on the sets of the form

{ξ : ξ(A1) = k1, ξ(A2) = k2, . . . , ξ(An) = kn} (76)

where A1, A2, . . . , An ∈ E are disjoint (see 4.5). Therefore, the Poisson measure with intensity
measure λ, if exists, is unique.

For the existence, we may use an indirect construction as e.g. in Section 2.5 of [9].

Since K is σ-compact, there are disjoint bounded measurable sets K1,K2, . . . ⊆ K such that⋃∞
k=1 Kn = K. Since λ is Radon, λ(Kn) < ∞ for each n.

On a suitable probability space (Ω,A ,Pr), let us construct independent random variables

Nn : Ω → N (n = 1, 2, . . .) (77)

ain : Ω → K (n = 1, 2, . . ., i = 1, 2, . . .) (78)

such that, for each n, the following conditions hold.

� The variable Nn has Poisson distribution with intensity λ(Kn). (We define a Poisson distri-
bution with intensity 0 as the distribution concentrated at 0.)

� If λ(Kn) > 0, for each i, the variable ain has probability distribution λn ≜ λ(·∩Kn)
λ(Kn)

. Otherwise,

the distribution of ain could be arbitrary.

We claim that ξ ≜
∑∞

n=1

∑Nn

i=1 δai
n

is a random configuration whose distribution is a Poisson
measure with intensity measure λ.

Proof. We first need to verify that the mapping

ω = (Nn, a
i
n)n,i 7→ ξω =

∞∑
n=1

Nn∑
i=1

δai
n

(79)

from the product space (N×KN)N to N [K] is measurable.
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Argument.⌜ It is enough to verify that for every B ∈ E (the family of bounded measurable subsets of K)
and every measurable I ⊆ R, the set {ω : ξω(B) ∈ I} is measurable (see 4.1).

We have

{ω : ξω(B) ∈ I} =
⋃

r∈I∩N

⋃
r1,r2,...∈N∑

n rn=r

∞⋂
n=1

{ω : ξω(B ∩Kn) = rn} (80)

and

{ω : ξω(B ∩Kn) = rn} =
⋃

m≥rn

{
ω : Nn = m and

(
among a1n, a

2
n, . . . , a

m
n ,

exactly rn are in B ∩Kn

)}
, (81)

which are measurable.⌞

Next, we observe that ξn ≜
∑Nn

i=1 δai
n
is a Poisson random configuration with intensity measure

λ(· ∩Kn).

Argument.⌜ Let A1, A2, . . . , Am ∈ E be disjoint and k1, k2, . . . , km ∈ N. Then, for each r ∈ N,

Pr {ξn(A1) = k1, ξn(A2) = k2, . . . , ξn(Am) = km |Nn = r}
= Pr {ξn(A0) = k0, ξn(A1) = k1, . . . , ξn(Am) = km |Nn = r} (82)

=
( r

k0, k1, . . . , km

)
λn(A0)

k0λn(A1)
k1 · · ·λn(Am)km , (83)

where A0 ≜ Kn \
⋃m

i=1 Ai and k0 ≜ r −
∑m

i=1 ki. Hence,

Pr {ξn(A1) = k1, ξn(A2) = k2, . . . , ξn(Am) = km}

=

∞∑
r=0

e−λ(Kn) λ(Kn)r

r!

r!

k0! k1! · · · km!
λn(A0)

k0λn(A1)
k1 · · ·λn(Am)km (84)

=
m∏
i=1

e−λ(Ai)
λ(Ai)

ki

ki!

∞∑
k0=0

e−λ(A0)
λ(A0)k0

k0!
(85)

=

m∏
i=1

e−λ(Ai)
λ(Ai)

ki

ki!
. (86)

⌞

The countable sum ξ =
∑∞

n=1 ξn of Poisson random configurations ξn with intensity measures
λ(· ∩Kn) is a Poisson random measure with intensity measure λ =

∑∞
n=1 λ(· ∩Kn) (see 6.1). 2

6.3 Poisson measures are positively correlated. As before (see 3.2), for two configurations ξ, ξ′ ∈
N [K] we write ξ ≤ ξ′ if ξ(B) ≤ ξ′(B) for every bounded measurable set B ⊆ K (i.e., every particle
of ξ is also present in ξ′). This is a partial order on N [K]. An event E is increasing, if it is upward
closed, that is, ξ′ ∈ E whenever there exists ξ ≤ ξ′ such that ξ ∈ E . A probability measure π on
N [K] is positively correlated if π(A ∩ B) ≥ π(A)π(B) for every two increasing event A and B.

Positive correlation is closed under weak limits. Therefore, for a Radon measure λ on K =
Rd that is absolutely continuous with respect to the Lebesgue measure, we can use the positive
correlation of the Bernoulli measures to argue that the Poisson measure πλ is positively correlated.

Is there a better, direct proof that πλ is positively correlated? What if λ is not absolutely
continuous w.r.t. the Lebesgue measure? How about when K is not Rd?
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7 Specifications and Gibbs Measures

To simplify the notations, we shall write N for N [K].

7.1 Multi-species Particle Configurations In this section, we consider the particle configurations
in which particles are from a finite set of distinguishable types (or species, or colours). If S is a
finite set of symbols, a particle configuration whose each particle is marked with an element of S
(its type or colour) is represented by a tuple ξ = (ξs)s∈S , where each ξs is an untyped configuration

(i.e., an element of N ).1

The space of S-typed particle configurations is thus denoted by N S . We endow the space N S

with the product topology (N having the vague topology). Recall that F denotes the Borel σ-
algebra on N , and for each measurable Λ ⊆ K, F [Λ] ⊆ F denotes the sub-σ-algebra of events
occurring in Λ. We write FS for the product σ-algebra on N S , if N is given the σ-algebra F . This
is the same as the Borel σ-algebra on N S , because N is metric and separable (see 2.4 and 2.6). Sim-
ilarly, FS [Λ] denotes the product σ-algebra on N S , if N is given the σ-algebra F [Λ]. Equivalently,
FS [Λ] ⊆ FS is the sub-σ-algebra of events occurring in Λ.

7.2 Specifications. As before, we denote by E the family of bounded measurable subsets of K. Let
S be a finite set of symbols. A specification on N S is a family P = [PΛ]Λ∈E of proper probability
kernels PΛ from (N S ,FS [K \ Λ]) to (N S ,FS) that satisfy the consistency condition P∆PΛ = P∆

for all Λ,∆ ∈ E with Λ ⊆ ∆. That is, PΛ : N S × FS → [0, 1] (for Λ ∈ E ) are such that

i) for each configuration ω ∈ NS , PΛ(ω, ·) is a probability measure on (N S ,FS),

ii) for each event E ∈ FS , PΛ(·, E) is FS [K \ Λ]-measurable,

iii) for each E ∈ FS and A ∈ FS [K \Λ] we have PΛ(·, E ∩A) = PΛ(·, E)1A(·) (i.e., PΛ is proper),

iv) for every ω ∈ NS and E ∈ FS ,

P∆PΛ(ω, E) ≜ P∆(ω, PΛ(·, E)) (87)

≜
∫

P∆(ω,dξ)PΛ(ξ, E) = P∆(ω, E) , (88)

whenever Λ ⊆ ∆ (i.e., P is consistent).

Note that since N S is (as a measurable space) isomorphic to N S [Λ]×N S [K \Λ] (see 4.2 and 7.1),
the properness condition can be expressed as follows:

iii) for each ω ∈ NS , Eoff ∈ FS [K \ Λ] and Ein ∈ FS [Λ], we have

PΛ(ω, Eoff ∩ Ein) = δω(Eoff) · PΛ(ω, Ein) , (89)

1Another approach would be to consider the S-typed particle configurations as (untyped) particle configurations
on S × K. This would lead to essentially the same space of particle configurations, but a different concept of
specification.
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where δω denotes the Dirac measure concentrated at ω). In particular, PΛ(ω, ·) is uniquely deter-
mined by its restriction to FS [Λ].

If P is a specification on N S , a Borel probability measure π is said to be specified by P (or π is
a Gibbs measure with specification P ) if for every Λ ∈ E and every A ∈ FS , it holds

π
(
A
∣∣FS [K \ Λ]

)
= PΛ(·,A) (90)

π-almost surely, that is, PΛ is a regular version of π conditioned to the σ-algebra of events occurring
outside Λ. The set of measures specified by P is denoted by G(P ). As in the lattice setting
(Remark 1.24 of [5]), we have π ∈ G(P ) if and only if πPΛ = π for all Λ ∈ E , which holds if and
only if πPΛ = π for all Λ in a cofinal subfamily of E . A family E0 ⊆ E is cofinal, if each Λ ∈ E
is contained in some ∆ ∈ E0. For example, the family of bounded open subsets of K is cofinal, of
if Λ1 ⊆ Λ2 ⊆ · · · are bounded open sets with

⋃
n Λn = K, then {Λn : n = 1, 2, . . .} is cofinal. As

usual, we write πPΛ for the measure defined by πPΛ(A) ≜ π (PΛ(·,A)).

7.3 Examples.

A. Let ω ∈ N S . If for each Λ ∈ E we define a kernel P
ω
Λ by P

ω
Λ (ω′, ·) ≜ δωΛω′

K\Λ
, we get a trivial

specification Pω with G(Pω) = {δω}.

B. For each s ∈ S, let λs be a Radon measure on K, and write λ = (λs)s∈S . Let πλ denotes the

product, over s ∈ S, of Poisson measures πλs

on N . (For short, we will call πλ the Poisson
measure on N S with intensity λ.) For each configuration ω ∈ N S , let δω denotes the Dirac
measure concentrated at ω.

For every bounded measurable Λ ⊆ K, we can define a proper probability kernel P
λ
Λ by

P
λ
Λ(ω, Eoff ∩ Ein) ≜ δω(Eoff) · πλ(Ein) , (91)

for every configuration ω ∈ NS , and every two events Eoff ∈ FS [K \ Λ] and Ein ∈ FS [Λ].

Argument.⌜ Recall, from 4.2, that the family

S ≜
{
Eoff ∩ Ein : Eoff ∈ FS [K \ Λ] and Ein ∈ FS [Λ]

}
(92)

is a semi-algebra generating FS . To see that P
λ
Λ (ω, ·) extends to a unique probability measure,

we should verify that it is countably additive on S . This goes like the construction of the product
measure. Let E∩E ′ =

⋃∞
i=1 Ei∩E ′

i be a disjoint union of elements of S . Since Λ and K\Λ are disjoint,

for every two configurations ξ, ξ′ ∈ NS , we have 1E(ξ)1E′ (ξ′) =
∑∞

i=1 1Ei
(ξ)1E′

i
(ξ′). Integrating first

ξ w.r.t. δω , and then ξ′ w.r.t. πλ we obtain that P
λ
Λ (ω, E ∩ E ′) =

∑∞
i=1 P

λ
Λ (ω, Ei ∩ E ′

i).

For every Eoff ∩ Ein ∈ S , the function P
λ
Λ (·, Eoff ∩ Ein) = πλ(Ein) · 1Eoff

(·) is clearly FS [K \ Λ]-
measurable. Let A be the algebra generated by S . Then, every event in A is a finite disjoint

union of elements of S . Hence, for every E ∈ A , P
λ
Λ (·, E) is a finite sum of FS [K \ Λ]-measurable

functions, which itself is FS [K\Λ]-measurable. Next, let B be the family of sets E for which P
λ
Λ (·, E)

is FS [K \ Λ]-measurable. This is a monotone class containing the algebra A. Hence it contains the
σ-algebra FS .

Therefore, P
λ
Λ is a probability kernel from (NS ,FS [K \ Λ]) to (NS ,FS). Furthermore, by con-

struction, this probability kernel is proper (see 7.2).⌞

The probability kernels P
λ
Λ form a specification Pλ, which we refer to as the Poisson specification

with intensity measure λ.
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Argument.⌜ We need to verify that Pλ is consistent.
Let Λ ⊆ ∆ and s ∈ S. LetB1, B2, . . . , Bn ⊆ ∆ be disjoint (bounded) measurable sets, k1, k2, . . . , kn ∈

N. Then, the event
{
ξ : ξs(Bi) = ki for i = 1, 2, . . . , n

}
can be written as the disjoint union⋃

l1,l2,...,ln∈N
∀i: li≤ki

{
ξ : ξs(Bi \ Λ) = li for 1 ≤ i ≤ n

}
∩
{
ξ : ξs(Bi ∩ Λ) = ki − li for 1 ≤ i ≤ n

}
. (93)

Therefore,

P
λ
∆P

λ
Λ

(
ω,
{
ξ : ξs(Bi) = ki for each i

})
=

∫
P∆(ω, dη)PΛ

(
η,
{
ξ : ξs(Bi ∩ Λ) = ki − ηs(Bi \ Λ) for each i

})
(94)

=
∑

l1,l2,...,ln∈N
∀i: li≤ki

P
λ
∆

(
ω,
{
η : ηs(Bi \ Λ) = li for each i

})
×πλ

({
ξ : ξs(Bi ∩ Λ) = ki − li for each i

}) (95)

=
∑

l1,l2,...,ln∈N
∀i: li≤ki

πλs{
ηs : ηs(Bi \ Λ) = li for each i

}
×πλs{

ξs : ξs(Bi ∩ Λ) = ki − li for each i
} (96)

= πλs{
ξs : ξs(Bi) = ki for i = 1, 2, . . . , n

}
(97)

= P
λ
∆

(
ω,
{
ξ : ξs(Bi) = ki for each i

})
. (98)

(The fourth equality is because with respect to the Poisson measure πλs
, the events occurring on

Λ and ∆ \ Λ are independent.) It follows that the s’th marginals of the measures P
λ
∆P

λ
Λ (ω, ·) and

P
λ
∆(ω, ·) agree on the σ-algebra F [∆] (see 4.4). By the properness of P

λ
∆, the s’th marginals of

the measures P
λ
∆P

λ
Λ (ω, ·) and P

λ
∆(ω, ·) agree also on FS [K \ ∆]. Therefore, the s’th marginals of

P
λ
∆P

λ
Λ (ω, ·) and P

λ
∆(ω, ·) agree on F . Finally, the agreement of P

λ
∆P

λ
Λ (ω, ·) and P

λ
∆(ω, ·) follows from

the fact that both are product measures and their corresponding marginals agree.⌞

The Poisson measure πλ is the unique Gibbs measure of Pλ (see Remark 1.25 of [5]).

C. We say that P = [PΛ]Λ∈E is a Markovian specification if there exists M ∈ E (the neighbourhood
of P ) such that for every Λ ∈ E , and each event A ∈ F [Λ], PΛ(·,A) is F [M(Λ)\Λ]-measurable.
(Recall: M(Λ) ≜ {a+ b : a ∈ Λ, b ∈ M}.)
Equivalently, P is Markovian if there exists W ∈ E such that for every Λ,∆ ∈ E with W (Λ) ∩
W (∆) = ∅ it holds

PΛ∪∆(ω,A ∩ B) = PΛ(ω,A) · P∆(ω,B) (99)

for every configuration ω and all events A ∈ F [Λ] and B ∈ F [∆].

D. As in the lattice setup, we would like to have a property like the Feller property or quasi-locality
that implies the equivalence of Gibbs measures in the sense of Dobrushin-Lanford-Ruelle and
Gibbs measures as thermodynamic limits of the Boltzmann distribution.

Unfortunately, in the continuum setting (e.g., when K = Rd), the Feller property (or quasi-
locality) seems to be too much to ask. For a typical specification P = [PΛ]Λ∈E , none of the
kernels PΛ is Feller, simply because for a bounded continuous function Φ : N S → R and a
configuration ω ∈ NS , PΛ(ω,Φ) is a function of the projection ωK\Λ, and the projection map
ω → ωK\Λ is not continuous; taking a limit, particles may fall in or off Λ and drastically affect
the distribution inside Λ.
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As a substitute, we introduce the almost Feller property. Let us say that a specification P =
[PΛ]Λ∈E is almost Feller if for every bounded measurable set Λ ⊆ K and each bounded continuous
Φ : N S → R, the function PΛΦ = PΛ(·,Φ) is continuous at any point ω ∈ N S for which
ω(∂Λ) = 0 (i.e., ω has no particle on the boundary of Λ).

Let π be a probability measure. For every bounded measurable set Λ ⊆ K, there is a bounded
open set ∆ ⊇ Λ such that a random configuration with distribution π has almost surely no
particle on the boundary of ∆; that is, π{ξ : ξs(∂∆) > 0 for some s ∈ S} = 0.

Argument.⌜ Let ξ be a random configuration with distribution π, and denote by |ξ| ≜
∑

s∈S ξs the
configuration obtained from ξ by forgetting the type of the particles.

Pick r > 0 such that Nr(Λ) (i.e., the r-neighbourhood around Λ) is bounded (see 1.1). The random
variable |ξ| (Nε(Λ)) is increasing in ε. So is its expected value E[|ξ| (Nε(Λ))]. An increasing function
on a real interval cannot be discontinuous on more than a countable number of points. Pick an
εc ∈ (0, r) at which the expected value E[|ξ| (Nε(Λ))] is continuous. By monotone continuity we have

E[|ξ| (Nεc (Λ))] = lim
ε↘εc

E[|ξ| (Nε(Λ))] = E[ lim
ε↘εc

|ξ| (Nε(Λ))] = E[|ξ| (Nεc (Λ))] . (100)

Choose ∆ ≜ Nεc (Λ).⌞

In particular, the collection of bounded measurable sets ∆ ⊆ K whose boundary contain π-
almost surely no particle is cofinal. Moreover, we can choose a cofinal sequence ∆1 ⊆ ∆2 ⊆ · · ·
such that π-almost surely no particle appears on the boundary of any of ∆k; that is, π{ξ :
ξs(∂∆k) > 0 for some s ∈ S and some k} = 0.

7.4 Construction of Gibbs measures. Let P be an almost Feller specification (see 7.3.D). Let µ
be an arbitrary probability measure on N S . Let Λ1 ⊆ Λ2 ⊆ · · · be a chain of bounded open sets

with
⋃

n Λn = K (see 1.1 for the existence). If the weak limit π ≜ limn→∞ µPΛn
exists, it is a Gibbs

measure for P .

Argument.⌜ Let ∆ ∈ E be such that π-almost surely no particle appears on the boundary of ∆. Let

Φ : NS → R be a bounded continuous function. By the almost Feller property, P∆Φ is π-almost surely
continuous. By the weak convergence, we have

π(P∆Φ) = lim
n→∞

(µPΛn )(P∆Φ) (101)

(see 5.2). Since {Λn}n is an open cover of the compact set ∆, there exists n0 ∈ N such that for every
n ≥ n0, Λn ⊇ Λn0 ⊇ ∆. Therefore, because of the consistency of P , for every n ≥ n0, we have
PΛnP∆ = PΛn . Hence,

π(P∆Φ) = lim
n→∞

µPΛnP∆Φ = lim
n→∞

µPΛnΦ = π(Φ) . (102)

Therefore, πP∆ = π. Since the collection of bounded measurable sets ∆ whose boundary π-almost surely
contain no particle is cofinal, we conclude π is a Gibbs measure for P .⌞

7.5 Extremal Gibbs measures are tail-trivial and vice versa. (Theorem 7.7 in [5])
Let P = [PΛ]Λ∈E be a specification on N S , and suppose that G(P ) is non-empty. The set G(P ) is
convex, because π 7→ πPΛ are affine. If P is almost Feller, then G(P ) is also closed.

Argument.⌜ The argument is similar to that of 7.4. Let π1, π2, . . . be a sequence of Gibbs measures for P ,
and suppose that πn converges weakly to a measure π.

Let ∆ ∈ E be such that π-almost surely no particle appears on the boundary of ∆. Then, for every
bounded continuous function Φ : NS → R, P∆Φ is π-almost surely continuous, which implies

πΦ = lim
n→∞

πnΦ = lim
n→∞

πnP∆Φ = πP∆Φ (103)

(see 5.2). Since the collection of bounded measurable sets ∆ whose boundary π-almost surely contain no
particle is cofinal, π must be a Gibbs measure for P .⌞
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An element π of G(P ) is said to be extremal if it cannot be written as a non-trivial convex combi-
nation of elements of G(P ).

Let π a Gibbs measure for P and E a tail event in N S with π(E) > 0. Then, π(· | E) is also a
Gibbs measure for P .

Argument.⌜ The proof is as in the lattice setup. Let Λ ∈ E . Since PΛ is a proper kernel from (NS ,FS [K\Λ])
and E ∈ T S ⊆ FS [K \ Λ], for every measurable A ⊆ NS we have

(π(· | E)PΛ) (A) = π (PΛ(·,A) | E) =
π (1EPΛ(·,A))

π(E)
(104)

=
π (PΛ(·,A ∩ E))

π(E)
=

(πPΛ) (A ∩ E)
π(E)

=
π(A ∩ E)

π(E)
= π(A | E) . (105)

Hence, π(· | E)PΛ = π(· | E).⌞

Therefore, if π is an extremal element of G(P ), it is tail-trivial (i.e., it assigns probabilities 0 or 1
to every tail event).

Conversely, if π is tail-trivial Gibbs measure for P , it is extremal in G(P ). More generally, if π
and ν are two elements of G(P ) that agree on the tail σ-algebra T S , then π = ν.

Argument.⌜ The proof is as in the lattice setup, using the backward martingale convergence theorem (e.g.,

Theorem 10.6.1 of [2]). Let A be an event in FS .
Let Λ1 ⊆ Λ2 ⊆ · · · be a chain of bounded open sets with

⋃
n Λn = K. We have

FS [K \ Λ1] ⊇ FS [K \ Λ2] ⊇ · · · (106)

and T S =
⋂

n FS [K \ Λn], because every ∆ ∈ E is included in Λn for some n. Therefore, the sequence{
π(A |FS [K \ Λn])

}
n
is a reverse martingale, and by the backward martingale convergence theorem

π(A |T S) = lim
n→∞

π(A |FS [K \ Λn]) (π-almost surely) (107)

= lim
n→∞

PΛn (·,A) (π-almost surely). (108)

Similarly,

ν(A |T S) = lim
n→∞

PΛn (·,A) (ν-almost surely). (109)

Let Q ⊆ NS be the set of configurations ω for which {PΛn (ω,A)}n converges as n → ∞, and define

Ψ : NS → R by

Ψ(ω) ≜

{
limn→∞ PΛn (ω,A) if ω ∈ Q,

0 otherwise.
(110)

We have

π(A) = π
(
π(A |T S)

)
= π(Ψ) , (111)

ν(A) = ν
(
ν(A |T S)

)
= ν(Ψ) . (112)

But Ψ is T S-measurable. Therefore, π(Ψ) = ν(Ψ) because π and ν agree on T S .⌞

Therefore, the extremal Gibbs measures for P are precisely those with respect to which the
“macroscopic” events (i.e., the tail events) are deterministic.

As a corollary, every two distinct extremal Gibbs measures π, ν ∈ G(P ) are mutually singular:
there exists a tail event A ∈ T S such that π(A) = 1 and ν(N S \ A) = 1.

Argument.⌜ Since π ̸= ν, there exists A ∈ T S such that π(A) > ν(A). Since π and ν are tail trivial, we
must have π(A) = 1 and ν(A) = 0.⌞
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7.6 Extremal Gibbs measures are mixing and vice versa. (See Proposition 7.9 in [5].)
A local event in N S is an event A ∈ F that occurs in a bounded measurable region Λ ⊆ K, that
is, A ∈ FS [Λ] (see 4.2). We say that a measure π on N S is mixing (or has short-range correlations)
if for every local event A,

lim
Λ↑K

sup
B∈FS [K\Λ]

|π(A ∩ B)− π(A)π(B)| = 0 , (113)

where the limit limΛ↑K is along the net of bounded measurable subsets of K with inclusion.

Let P = [PΛ]Λ∈E be a specification on N S , and suppose that G(P ) is non-empty. Then, every
extremal element of G(P ) is mixing.

Argument.⌜ Let π be an extremal element of G(P ) and A a local event. Let Λ1 ⊆ Λ2 ⊆ · · · be a chain of
bounded open sets with

⋃
n Λn = K. Using the backward martingale convergence theorem we have

π
(
A
∣∣FS [K \ Λn]

)
→ π(A |T S) (114)

π-almost surely (see 7.5). Since π(A |T S) is tail measurable, we know from 7.5 that it is π-almost surely
constant. This constant must be π(A), because π(A) = π

(
π(A |T S)

)
. Therefore,

π
(
A
∣∣FS [K \ Λn]

)
→ π(A) (115)

π-almost surely.
Let ε > 0. By Egorov’s theorem, there exists a measurable set E ⊆ NS with π(E) > 1−ε/2, over which

the above convergence is uniform. Choose nε such that for every n ≥ nε, we have∣∣∣π(A)− π
(
A
∣∣FS [K \ Λn]

)
(ω)
∣∣∣ ≤ ε/2 (116)

for all ω ∈ E. Therefore, for every event B ∈ FS [K \ Λn], we obtain, by integrating on B w.r.t. π, that

|π(A)π(B)− π(A ∩ B)| =
∣∣∣∣∫

B
π(A)dπ −

∫
B
π
(
A
∣∣FS [K \ Λn]

)
dπ

∣∣∣∣ (117)

≤
∫
B∩E

∣∣∣π(A)− π
(
A
∣∣FS [K \ Λn]

)∣∣∣dπ + ε/2 (118)

≤ ε/2 + ε/2 = ε . (119)

For every bounded measurable ∆ ⊇ Λnε , the same bound holds for every B ∈ FS [K\∆], which concludes
the proof.⌞

Conversely, every mixing element of G(P ) is extremal.

Argument.⌜ We show that every mixing π ∈ G(P ) is tail trivial. The extremality of π then follows from 7.5.
Let B be a tail event. Then, for for every local event A, we have, by the mixing property, that

π(A ∩ B) = π(A)π(B). That is, A and B are independent under π. The collection of local events (i.e.,⋃
Λ∈E FS [Λ]) is an algebra that generates the σ-algebra F . It follows from the well-known approximation

lemma (approximating the elements of F by the elements of a generating algebra) that B is independent
of every element of F . In particular, B is independent of itself, that is, π(B ∩ B) = π(B)π(B). Hence,
either π(B) = 1 or π(B) = 0.⌞

7.7 Extremal decomposition. Let P = [PΛ]Λ∈E be an specification on N S . Every Gibbs measure
π ∈ G(P ) can be written as a unique convex mixture of extremal elements of G(P ). In other words,
G(P ) is a Choquet simplex. This follows from Dynkin’s theorem (Theorems 3.1 and 5.1 of [3]; see
also Section 7.3 of [5]).

[argument/explanation to be added.]

28



8 Single Species Hard-core Gas

In this section, we assume that K = Rd. In the hard-core gas model, each particle a is imagined
to occupy a volume W (a), and we have the constraint that the volume of distinct particles cannot
overlap. We call W (a) the van der Waals volume of a. By the exclusion volume of a, W̃ (a), we mean
the set of points whose van der Waals volumes intersects that of a.

8.1 The valid configurations. Let 0 ∈ W ⊆ K be a bounded measurable set. For a ∈ K, we write

W (a) ≜ {a+ x : x ∈ W} , (120)

W−1(a) ≜ {x : a ∈ W (x)} , (121)

W̃ (a) ≜ W−1(W (a)) = {x : W (a) ∩W (x) ̸= ∅} . (122)

The set of valid configurations is

XW ≜
{
ξ ∈ N [K] : ξ

(
W−1(a)

)
≤ 1 for every a ∈ K

}
, (123)

or equivalently,

XW ≜
{
ξ ∈ N [K] : ξ({a}) · ξ

(
W̃ (a)

)
≤ 1 for every a ∈ K

}
, (124)

If W is open, the set XW is vaguely closed.

Argument.⌜ If W is open, so is W−1. We have

XW =
⋂
a∈K

{
ξ : ξ

(
W−1(a)

)
≤ 1
}

, (125)

which is closed, because W−1(a) are open (see 2.2).⌞

In fact, if W is open, the set XW is also compact.

Argument.⌜ Since XW is closed, it is enough to show that for every bounded set B ⊆ K, the values ξ(B), for

ξ ∈ XW , are bounded (see 2.7). Since B is compact, there is a finite number of points a1, a2, . . . , an ∈ K
such that B ⊆

⋃n
i=1 W

−1(ai). Therefore, for every ξ ∈ XW , it holds ξ(B) ≤
∑n

i=1 ξ
(
W−1(a)

)
≤ n.⌞

For a configuration ξ ∈ N [K] and a measurable Λ ⊆ K, the projection ξΛ ≜ ξ(· ∩Λ) can be seen
either as an element of N [K] or as an element of N [Λ]. Conversely, every configuration ξ ∈ N [Λ]
may also be seen as a configuration in N [K] by defining ξ(C) ≜ ξ(C∩Λ) whenever C ̸⊆ Λ. If Λ and
∆ are disjoint measurable subsets of K and ξΛ ∈ N [Λ] and ξ∆ ∈ N [∆], we write ξΛξ∆ ≜ ξΛ + ξ∆
for the configuration that has the particles of both ξΛ and ξ∆.

For a bounded Λ ⊆ K, and a configuration ω ∈ N [K], the set of valid configurations on Λ with
boundary condition ω is defined as

X̃W [Λ |ω] ≜
{
ξΛ ∈ N [Λ] : (ξΛωK\Λ)

(
W−1(a)

)
≤ max{1, ωK\Λ

(
W−1(a)

)
} for every a ∈ W (Λ)

}
(126)

=
{
ξΛ ∈ N [Λ] : ξΛ({a}) · (ξΛωK\Λ)

(
W̃ (a)

)
≤ 1 for every a ∈ Λ

}
. (127)
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This is the set of configurations ξΛ on Λ such that the van der Waals volumes of the particles in ξΛ
do not overlap with each other, or with the van der Waals volumes of the particles in ωK\Λ. If ω is
itself a valid configuration (i.e., ω ∈ XW ), then we simply have

X̃W [Λ |ω] =
{
ξΛ ∈ N [Λ] : ξΛωK\Λ ∈ XW

}
, (128)

but in principle it might be helpful to have boundary conditions that are not valid.

It will be more convenient to work with the space

XW [Λ |ω] ≜
{
ξ ∈ N [K] : ξΛ ∈ X̃W [Λ |ω]

}
(129)

=
{
ξ ∈ N [K] : ξΛ({a}) · (ξΛωK\Λ)

(
W̃ (a)

)
≤ 1 for every a ∈ Λ

}
. (130)

of all configurations whose projections on Λ are valid and compatible with ω. This space is iso-
morphic (as a measurable space) to X̃W [Λ |ω] ×N [K \ Λ] (see 4.2). Note that XW [Λ |ω] is F [Λ]-
measurable.

Notation: when W is clear from the context, we may drop the subscript in XW [Λ |ω].

8.2 Continuity of compatibility. The mapping η 7→ 1XW [Λ |ω](η) is continuous at any configuration
η satisfying the following two conditions:

i) η has no particle on the boundary of Λ (i.e., η(∂Λ) = 0), and

ii) for every particle a of ωK\ΛηΛ and every particle b of ηΛ distinct from a, we have b /∈ ∂W̃ (a).

Argument.⌜ First, suppose that η ∈ XW [Λ |ω]. Then, there is a number δ > 0 such that

� for every two distinct particles a and b of ηΛ, W (a) and W (b) have distance at least 2δ,

� for every particle a of ωK\Λ, every particle b of ηΛ has distance at least δ from W̃ (a), and

� every particle of η has distance at least δ from ∂Λ.

Then, every η′ ∈ [η]Λ,δ is also in XW [Λ |ω].
Next, suppose that η /∈ XW [Λ |ω]. Then, there is a particles a of ωK\ΛηΛ and a particle b of ηΛ distinct

from a, such that b ∈ W̃ (a), but b /∈ ∂W̃ (a). Hence, there is a number δ > 0 such that

� N2δ(b) ⊆ W̃ (a), and

� Nδ(b) ⊆ Λ̊.

Every η′ ∈ [η]Λ,δ is also outside XW [Λ |ω].⌞

Similarly, the mapping ω 7→ 1XW [Λ |ω](η) is continuous at any configuration ω satisfying the follow-
ing two conditions:

i) ω has no particle on the boundary of Λ (i.e., ω(∂Λ) = 0), and

ii) for every particle b of ηΛ and every particle a of ωK\Λ, we have a /∈ ∂W̃ (b).

Argument.⌜ First, suppose that η ∈ XW [Λ |ω]. Then, there is a number δ > 0 such that

� for every particle b of ηΛ, every particle a of ωK\Λ has distance at least δ from W̃ (b), and

� every particle of ω has distance at least δ from ∂Λ.

Let C ≜ Nδ(W̃ (Λ)). Then, every ω′ ∈ [ω]C,δ , we also have η ∈ XW [Λ |ω′].
Next, suppose that η /∈ XW [Λ |ω]. If there are distinct particles b and b′ of ηΛ such that W (b)∩W (b′) ̸=

∅, then η /∈ XW [Λ |ω′] for every ω′ ∈ N . Otherwise, there is a particle b of ηΛ and a particle a of ωK\ΛηΛ,

such that a ∈ W̃ (b), but a /∈ ∂W̃ (b). Hence, there is a number δ > 0 such that Nδ(a) ⊆ W̃ (b) \Λ. Again,

let C ≜ Nδ(W̃ (Λ)). Then, for every ω′ ∈ [ω]C,δ , we also have η /∈ XW [Λ |ω′].⌞

30



8.3 The specification. Let λ be a Radon measure on K. Let Pλ = [Pλ
Λ ]Λ∈E denote the Poisson

specification with intensity measure λ (see 7.3.B). The specification of the single-species hard-core
gas with van der Waals volume W is defined by conditioning the Poisson specification to the set of
valid configurations. The measure λ plays the role of the fugacity. Typically, λ is uniform, that is,
a multiple of the Lebesgue measure.

Namely, for every bounded measurable set Λ ⊆ K and every configuration ω ∈ N , let

PW,λ
Λ (ω, ·) ≜ Pλ

Λ (ω, · | X [Λ |ω]) . (131)

where X [Λ |ω] is the set of configurations whose projection on Λ is valid and compatible with ω
(see 8.1). More explicitly, if πλ denotes the Poisson measure with intensity measure λ, we have

PW,λ
Λ (ω, Eoff ∩ Ein) ≜ δω(Eoff) · πλ

(
Ein

∣∣X [Λ |ω]
)
, (132)

for every two events Eoff ∈ F [K \ Λ] and Ein ∈ F [Λ]. The mapping PW,λ
Λ is a proper probability

kernel from F [K \ Λ] to F .

Argument.⌜ First note that X [Λ |ω] ∈ F [Λ]. Hence the above two definitions are equivalent.

For every configuration ω ∈ N , Pλ
Λ (ω, · | X [Λ |ω]) is clearly a probability measure. For every event

E ∈ F , the function

Pλ
Λ (·, E |X [Λ |ω]) =

Pλ
Λ (·, E ∩ X [Λ |ω])
Pλ
Λ (·,X [Λ |ω])

(133)

is FS [K \ Λ]-measurable. The properness of PW,λ
Λ is clear from the construction.⌞

The family PW,λ ≜ [PW,λ
Λ ]Λ∈E is a specification — the hard-core gas specification with van der Waals

volume W and fugacity measure λ.

Argument.⌜ Let Λ,∆ ⊆ K be bounded measurable sets with Λ ⊆ ∆. To prove the consistency, it is enough
to verify that

PW,λ
∆

(
ω, PW,λ

Λ (·, E1 ∩ E2)
)
= PW,λ

∆ (ω, E1 ∩ E2) , (134)

for every configuration ω ∈ N and every two events E1 ∈ F [∆ \Λ] and E2 ∈ F [Λ]. (Recall that such sets
E1 ∩ E2 form a semi-algebra generating F [∆]; see 4.2.)

By the definition of PW,λ
∆ , we have

PW,λ
∆

(
ω, PW,λ

Λ (·, E1 ∩ E2)
)
=

πλ
(
1X [∆ |ω](·) · P

W,λ
Λ (·, E1 ∩ E2)

)
πλ
(
X [∆ |ω]

) (135)

=
1

πλ
(
X [∆ |ω]

) ∫
X [∆ |ω]

PW,λ
Λ (ξ, E1 ∩ E2) πλ(dξ) . (136)

Recall that the space N [∆] is isomorphic to the product space N [∆\Λ]×N [Λ] (see 4.2). Since the Poisson
measure πλ induces a product measure on N [∆ \Λ]×N [Λ], we can use Fubini-Tonelli’s theorem to write∫

X [∆ |ω]
PW,λ
Λ (ξ, E1 ∩ E2) πλ(dξ) =

∫
X [∆\Λ |ωK\∆]

(∫
X [Λ | ξ]

PW,λ
Λ (ξ, E1 ∩ E2) πλ(dη)

)
πλ(dξ) (137)

=

∫
X [∆\Λ |ωK\∆]

PW,λ
Λ (ξ, E1 ∩ E2) ·

(∫
X [Λ | ξ]

πλ(dη)
)
πλ(dξ) (138)

=

∫
X [∆\Λ |ωK\∆]

PW,λ
Λ (ξ, E1 ∩ E2) · πλ(X [Λ | ξ]) πλ(dξ) . (139)
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By the definition of PW,λ
Λ and a second application of Fubini-Tonelli’s theorem, the last integral can be

written as ∫
X [∆\Λ |ωK\∆]

PW,λ
Λ (ξ, E1 ∩ E2) · πλ(X [Λ | ξ]) πλ(dξ)

=

∫
X [∆\Λ |ωK\∆]

1E1 (ξ) ·
πλ(X [Λ | ξ] ∩ E2)

πλ(X [Λ | ξ])
· πλ(X [Λ | ξ]) πλ(dξ) (140)

=

∫
X [∆\Λ |ωK\∆]

1E1
(ξ) · πλ(X [Λ | ξ] ∩ E2) πλ(dξ) (141)

=

∫
X [∆ |ω]

1E1
(ξ) · 1E2

(ξ) πλ(dξ) (142)

= πλ
(
X [∆ |ω] ∩ E1 ∩ E2

)
. (143)

Hence, we obtain that

PW,λ
∆

(
ω, PW,λ

Λ (·, E1 ∩ E2)
)
=

πλ
(
X [∆ |ω] ∩ E1 ∩ E2

)
πλ
(
X [∆ |ω]

) = PW,λ
∆ (ω, E1 ∩ E2) , (144)

concluding the proof.⌞

For every configuration ξ ∈ N and every measurable observable Φ : N → R, we have

(
PW,λ
Λ Φ

)
(ξ) = PW,λ

Λ (ξ,Φ) =
Pλ
Λ

(
ξ, 1X [Λ | ξ](·) Φ

)
πλ(X [Λ | ξ])

. (145)

Using Fubini-Tonelli’s theorem, the numerator can be rewritten as

Pλ
Λ

(
ξ, 1X [Λ | ξ](·) Φ

)
=

∫
1X [Λ | ξ](η) · Φ(ξK\ΛηΛ)π

λ(dη) . (146)

Argument.⌜ Recall that N [K] is isomorphic (as a measurable space) to N [Λ∁] × N [Λ] (see 4.2), and that

the Poisson measure πλ induces a product measure πλ
Λ∁

× πλ
Λ on N [Λ∁]×N [Λ].

Pλ
Λ

(
ξ, 1X [Λ | ξ](·)Φ

)
=

∫
1X [Λ | ξ](η) · Φ(η) (δξ

Λ∁
× πλ

Λ)(dη) (147)

=

∫∫
1X̃ [Λ | ξ](ηΛ) · Φ(η

Λ∁
ηΛ) δξ

Λ∁
(dη

Λ∁
)πλ

Λ(dηΛ) (148)

=

∫
1X̃ [Λ | ξ](ηΛ) · Φ(ξ

Λ∁
ηΛ) π

λ
Λ(dηΛ) (149)

=

∫∫
1X [Λ | ξ](ηΛ∁ηΛ) · Φ(ξ

Λ∁
ηΛ) π

λ
Λ∁

(dη
Λ∁

)πλ
Λ(dηΛ) (150)

=

∫
1X [Λ | ξ](η) · Φ(ξ

Λ∁
ηΛ) π

λ(dη) . (151)

⌞

Therefore, we can write

(
PW,λ
Λ Φ

)
(ξ) =

∫
1X [Λ | ξ](η) · Φ(ξK\ΛηΛ)π

λ(dη)∫
1X [Λ | ξ](η)π

λ(dη)

. (152)
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8.4 Markov property. The specification PW,λ is Markovian (see 7.3.C).

Argument.⌜ Let Λ,∆ ∈ E be such that W (Λ) ∩ W (∆) = ∅. Then, for every ω ∈ N , X [Λ ∩ ∆ |ω] =
X [Λ |ω] ∩ X [∆ |ω]. Therefore, for every EΛ ∈ F [Λ], E∆ ∈ F [∆] and Eoff ∈ F [K \ (Λ ∪∆)],

PW,λ
Λ∪∆(ω, Eoff ∩ EΛ ∩ E∆) = 1Eoff

(ω) ·
πλ
(
X [Λ ∩∆ |ω] ∩ EΛ ∩ E∆

)
πλ
(
X [Λ ∩∆ |ω]

) (153)

= 1Eoff
(ω) ·

πλ
(
X [Λ |ω] ∩ X [∆ |ω] ∩ EΛ ∩ E∆

)
πλ
(
X [Λ |ω] ∩ X [∆ |ω]

) (154)

= 1Eoff
(ω) ·

πλ
(
X [Λ |ω] ∩ EΛ

)
· πλ

(
X [∆ |ω] ∩ E∆

)
πλ
(
X [Λ |ω]

)
· πλ(X [∆ |ω]

) (155)

= PW,λ
Λ (ω, Eoff ∩ EΛ) · PW,λ

∆ (ω, Eoff ∩ E∆) . (156)

⌞

8.5 Almost Feller property. If the exclusion volume W̃ = W−1(W ) satisfies λ(∂W̃ (a)) = 0 for
every a ∈ K, then the specification PW,λ is also almost Feller (see 7.3.D).

Proof. Let Λ ∈ E and ω ∈ N be such that ω has no particle on the boundary of Λ. Let Φ : N → R
be a bounded continuous function. We have to show that PW,λ

Λ Φ is continuous at ω.

For every ξ ∈ N we have

(
PW,λ
Λ Φ

)
(ξ) = PW,λ

Λ (ξ,Φ) =
Pλ
Λ

(
ξ, 1X [Λ | ξ](·) Φ

)
πλ(X [Λ | ξ])

. (157)

Using Fubini-Tonelli’s theorem, the numerator can be written as

Pλ
Λ

(
ξ, 1X [Λ | ξ](·) Φ

)
=

∫
1X [Λ | ξ](η) · Φ(ξK\ΛηΛ)π

λ(dη) . (158)

Argument.⌜ Recall that N [K] is isomorphic (as a measurable space) to N [Λ∁] × N [Λ] (see 4.2), and that

the Poisson measure πλ induces a product measure πλ
Λ∁

× πλ
Λ on N [Λ∁]×N [Λ].

Pλ
Λ

(
ξ, 1X [Λ | ξ](·)Φ

)
=

∫
1X [Λ | ξ](η) · Φ(η) (δξ

Λ∁
× πλ

Λ)(dη) (159)

=

∫∫
1X̃ [Λ | ξ](ηΛ) · Φ(η

Λ∁
ηΛ) δξ

Λ∁
(dη

Λ∁
)πλ

Λ(dηΛ) (160)

=

∫
1X̃ [Λ | ξ](ηΛ) · Φ(ξ

Λ∁
ηΛ) π

λ
Λ(dηΛ) (161)

=

∫∫
1X [Λ | ξ](ηΛ∁ηΛ) · Φ(ξ

Λ∁
ηΛ) π

λ
Λ∁

(dη
Λ∁

)πλ
Λ(dηΛ) (162)

=

∫
1X [Λ | ξ](η) · Φ(ξ

Λ∁
ηΛ) π

λ(dη) . (163)

⌞

Therefore, we can write

(
PW,λ
Λ Φ

)
(ξ) =

∫
1X [Λ | ξ](η) · Φ(ξK\ΛηΛ)π

λ(dη)∫
1X [Λ | ξ](η)π

λ(dη)

. (164)
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Recall that the projection ξ 7→ ξΛ is continuous at ω, because ω has no particle on the boundary of
Λ (see 4.3). For every η ∈ N , the concatenation ξΛ 7→ ξΛηΛ is also clearly continuous. Therefore,
ξ 7→ Φ(ξK\ΛηΛ) is continuous at ω. Below, we shall verify that ξ 7→ 1X [Λ | ξ](η) is also continuous

at ω for πλ-almost every η. If so, it follows, using the dominated convergence theorem, that for
every sequence ξ1, ξ2, . . . converging to ω, it holds

(
PW,λ
Λ Φ

)
(ξn) →

(
PW,λ
Λ Φ

)
(ω) as n → ∞. That

is, PW,λ
Λ Φ is continuous at ω.

We now verify that for πλ-almost every η, the mapping ξ 7→ 1X [Λ | ξ](η) is continuous at ω. In
fact, ξ 7→ 1X [Λ | ξ](η) is continuous at ω if for every particle a of ωK\Λ, the configuration ηΛ has no

particle on the boundary of W̃ (a).

Argument.⌜ First, suppose that η ∈ X [Λ |ω]. Then, there is a number δ > 0 such that for every particle a of

ωK\Λ and every particle b of ηΛ, W̃ (a) and b have distance at least δ. Pick a compact set C ⊇ Nδ(W̃ (Λ)).
Then, for every configuration ξ ∈ [ω]C,δ , we have η ∈ X [Λ | ξ]. That is because for every particle a′ of

ξK\Λ with W̃ (a′) ∩ Λ ̸= ∅, there is a particle a of ωK\Λ that has has distance less than δ from a′, and

every particle of ηΛ has distance at least δ from W̃ (a).
Next, suppose that η /∈ X [Λ |ω]. Then, there is a particle a of ωK\Λ and every particle b of ηΛ such

that b is in the interior of W̃ (a). Therefore, there is a number δ > 0 such that for every point a′ that has
distance less than δ from a, we have b ∈ W̃ (a′). Picking again a compact set C ⊇ Nδ(W̃ (Λ)), for every
ξ ∈ [ω]C,δ we have η /∈ X [Λ | ξ].⌞

Under the hypothesis λ(∂W̃ (a)) = 0, the set of configurations η satisfying the above condition has
probability 1 w.r.t. the Poisson measure πλ.

Argument.⌜ We use the random variables used in the construction of the Poisson measure (see 6.2). Namely,
let

N : Ω → N (165)

ai : Ω → K (i = 1, 2, . . .) (166)

be independent random variables on a suitable probability space (Ω,A ,Pr), where N has Poisson distri-

bution with intensity λ(Λ) and each ai has distribution λ̃ ≜ λ(·∩Λ)
λ(Λ)

. (If λ(Λ) = 0, the distribution of ai

could be chosen arbitrarily.) The random configuration ηΛ ≜
∑N

i=1 δai has distribution πλ
Λ. Let c be a

particle of ωK\Λ. For every n ∈ N,

Pr{ηΛ(∂W̃ (a)) > 0 |N = n} ≤
n∑

i=1

Pr{ai ∈ ∂W̃ (c)} = 0 . (167)

It follows that with probability 1, ηΛ has no particle that is on the boundary of the exclusion volume of
a particle of ωK\Λ.⌞

2

8.6 Existence via compactness. Let W ⊆ K be a bounded open set with 0 ∈ W . Then, the set XW

of valid configurations of hard-core particles with van der Waals volume W is compact (see 8.1).
Let λ be a Radon measure on K. The hard-core specification PW,λ has at least one Gibbs measure.

Argument.⌜ The set of probability measures on N [K] that are supported at XW is compact. This follows,
for example, from Prohorov’s theorem (see 5.4).

Let ω be an arbitrary element of XW . Then, for every bounded Λ ⊆ K, PW,λ
Λ (ω, ·) is a probability

measure supported at XW . Let Λ1 ⊆ Λ2 ⊆ · · · be a chain of bounded open sets with
⋃

n Λn = K. Then,

the sequence {PW,λ
Λn

(ω, ·)}n has a convergent subsequence. Since PW,λ is an almost Feller specification

(see 8.3), the limit of such a subsequence is a Gibbs measure for P (see 7.4).⌞
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8.7 Existence via domination by Poisson. The existence of hard-core Gibbs measures for arbi-
trary (bounded measurable) van der Waals volume W ⊆ K also follows from the fact that the
hard-core distributions are dominated by the Poisson measures.

As before (see 3.2 and 6.3) let us orderN [K] by writing ξ ≤ ξ′ if every particle in ξ is present in ξ′.
This induces a partial ordering ⪯ on the space of probability measures P[N [K]] (the domination
ordering): π ⪯ π′ if π(E) ≤ π′(E) for every increasing event E ⊆ N [K]. A probability measure π is
positively correlated if and only if for every decreasing event E with π(E) > 0 it holds π(· | E) ⪯ π.

Let λ be a Radon measure on K that is absolutely continuous with respect to the Lebesgue
measure. Recall that the Poisson measure πλ is positively correlated (see 6.3).

Let W ⊆ K be a bounded measurable set with 0 ∈ W . Clearly, for every bounded measurable
Λ ⊆ K, the set XW [Λ |ω] of configurations that are valid (for the hard-core model) in Λ and compat-
ible with the boundary condition ω is decreasing. (Removing a particle from a valid configuration
does not make it invalid.) Therefore, πλ (· | XW [Λ |ω]) is dominated by πλ.

Let Pλ = [Pλ
Λ ]Λ∈E denote the Poisson specification (see 7.3), and PW,λ = [PW,λ

Λ ]Λ∈E the hard-
core specification (see 8.3). Then, for every configuration ω and every increasing event A ∈ F [Λ],

it holds PW,λ
Λ (ω,A) ≤ Pλ

Λ(ω,A).

Let ω be an arbitrary configuration. Let Λ1 ⊆ Λ2 ⊆ · · · be a chain of bounded open sets with⋃
n Λn = K. Since the sequence {Pλ

Λn
(ω, ·)}n is convergent (the limit is the Poisson measure πλ),

we have (see 5.4)

lim
t→∞

lim sup
n→∞

Pλ
Λn

(ω, {ξ : ξ(B) > t}) = 0 (168)

for every bounded measurable B ⊆ K. (This can also be seen by calculation.) Since {ξ : ξ(B) > t}
is an increasing event, and is in F [Λ] for all Λ ⊇ B, we have

PW,λ
Λ (ω, {ξ : ξ(B) > t}) ≤ Pλ

Λ(ω, {ξ : ξ(B) > t}) . (169)

for all Λ ⊇ B. Therefore, for every bounded measurable B ⊆ K, it also holds

lim
t→∞

lim sup
n→∞

PW,λ
Λn

(ω, {ξ : ξ(B) > t}) = 0 . (170)

This implies that the sequence {PW,λ
Λn

(ω, ·)}n has a convergent subsequence (see 5.4). The limit of

such subsequence is a Gibbs measure for PW,λ (see 7.4).

A Appendix

A.1 Stone-Weierstrass theorem on metric spaces. (Problem 44A of [16], or [12])
Let X be a metric space. Let BC(X ) denote the set of bounded continuous functions φ : X → R.
Let F ⊆ BC(X ) be a subalgebra (i.e., a linear subspace that is also closed under multiplication).
Then, F coincides with BC(X ) if and only if

i) F is closed (w.r.t. the topology of the uniform norm),

ii) F contains the constant functions, and

iii) F separates closed sets in X (i.e., for every two disjoint closed sets A,B ⊆ X , there is φ ∈ F
with φ(A) ∩ φ(B) = ∅).

35



References

[1] Patrick Billingsley. Convergence of Probability Measures. Wiley-Interscience, second edition, 1999.

[2] Richard M. Dudley. Real Analysis and Probability. Wadsworth & Brooks/Cole, 1989.

[3] E. B. Dynkin. Sufficient statistics and extreme points. The Annals of Probability, 6(5):705–730,
1978.

[4] Gerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley-Interscience,
2nd edition, 1999.

[5] Hans-Otto Georgii. Gibbs Measures and Phase Transitions. Walter de Gruyter, 1988.

[6] Robert B. Israel. Convexity in the theory of lattice gases. Princeton University Press, 1979.

[7] Peter Jagers. Aspects of random measures and point processes. In P. Ney and S. Port, editors,
Advances in probability and related topics, volume 3, pages 179–239. Marcel Dekker, 1974.

[8] Olav Kallenberg. Random Measures. Akademie-Verlag, 1976.

[9] J. F. C. Kingman. Poisson Processes. Clarendon Press, 1993.

[10] Torgny Lindvall. Lectures on the Coupling Method. Dover, 2002.

[11] J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University Press, 1992.

[12] L. D. Nel. Theorems of Stone-Weierstrass type for non-compact spaces. Mathematische Zeitschrift,
104(3):226–230, 1968.

[13] K. R. Parthasarathy. Probability Measures on Metric Spaces. Academic Press, 1967.

[14] Chris Preston. Random Fields. Springer-Verlag, 1976.

[15] J. Michael Steele. Le Cam’s inequality and Poisson approximations. The American Mathematical
Monthly, 101(1):48–54, 1994.

[16] Stephen Willard. General Topology. Dover, 2004.

36



B List of Symbols

K The space where particles live. A locally compact complete separable metric space.
From some point on it is assumed to be Rd.

E The family of bounded measurable subsets of K.

ξ Typical particle configuration on K.

ξ Typical random particle configuration on K.

N = N [K] The space of particle configurations on K.

N [Λ] The space of particle configurations supported at Λ.

µ Typical Radon measure on K.

M = M[K] The space of Radon measures on K.

F The Borel σ-algebra on M[K] or N [K].

F [Λ] The sub-σ-algebra of events occurring at Λ.

P[M[K]] The space of Borel probability measures on M[K].

P[N [K]] The space of Borel probability measures on N [K].

W (a) (if W ⊆ K bounded measurable) the W -neighbourhood of a: the set of points a+ b,
where b ∈ W .

W−1(a) (if W ⊆ K bounded measurable) the set of points b where a ∈ W (b).

W (A) (if W ⊆ K bounded measurable and A ⊆ K) the W -neighbourhood of A: the set of
points a+ b, where a ∈ A and b ∈ W .

C(X ) The set of continuous functions f : K → R.

Cc(X ) The set of compactly supported continuous functions f : K → R.

BC(X ) The set of bounded continuous functions f : K → R.

Nε(a) The ε-ball around a.

λ The intensity measure of the Poisson process or the fugacity measure of gas. A
Radon measure on K (e.g., a multiple of the Lebesgue measure if K = Rd).

πλ The Poisson measure with intensity λ on N [K].

Pλ The Poisson specification with intensity λ.

δω Dirac measure concentrated at ω.

S The set of particle species (e.g., the thin rod in d different directions).
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