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Abstract— We analyze the basic building block of gene regu-
lation networks using a simple stochastic model. We consider a
network consisting only of two interacting genes: an activator
(or repressor) gene that produces proteins of type S and a
target gene that is activated (or repressed, respectively) by
proteins of type S. We identify the role of distance between
the two interacting genes by calculating the relative density
of those activator proteins that until time t have succeeded in
reaching the vicinity of the target gene via an unbiased three-
dimensional Brownian motion. The latter quantity seen as a
function of time has a sigmoidal shape (like a simple delay
line) that is sharper and taller when the two genes are closer
to each other. This suggests an evolutionary pressure towards
making the interacting genes closer to each other to make their
interactions more efficient and more reliable.

I. INTRODUCTION
When modeling gene interactions, threshold phenomena

observed in biology [1] constitute one of the bases of the
formal semantics. Combined with the additional in vivo
phenomenon of macromolecule degradation, the interaction
curves get a sigmoidal shape (e.g. Hill functions) [2].

Modeling frameworks for gene regulatory networks study
trajectories in the concentration space. The majority of those
frameworks are based on ordinary differential equations [3],
[4] but the sigmoidal shape of elementary interactions also
allows one to discretize the state space [5], [6] in such a way
that temporal logic techniques can even be applied [7].

These theoretical approaches based on concentrations dis-
regard the spatial structure of cells. Nevertheless, the relative
location of interacting genes is a currently “hot” subject
in biology. Interacting genes seem to be preferentially co-
located (e.g. role of transcription factors [8]).

Our goal is to formally establish the connection between
the sigmoidal behavior of the interactions and the distance
between the interacting genes, possibly at the price of some
simplifying hypotheses.

We consider the following system:
– A source gene σ is at (three-dimensional Euclidean)

distance D from its target gene τ . Genes σ and τ do not
move during the process.

– New proteins of type S are produced with a constant rate
in the vicinity of gene σ.

– The proteins diffuse in the three-dimensional (3D) space,
according to non-interacting, independent Brownian mo-
tions.

– Each protein may degrade with a constant rate.
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The mechanism by which a protein locates and binds to
its target gene is a subject of long debates, as biological
observations had suggested that the 3D diffusion alone is
not fast enough to lead the process (see [9], [10]). However,
according to Halford [11], it is not until the protein reaches a
certain range of the target gene (∼50–100 bp) that strategies
other than the 3D diffusion come into action.

We therefore identify the significance of the distance D
by calculating the ratio of those S proteins that until time t
have succeeded in reaching this certain range from the target
gene τ (which we call the interaction range of τ ). Namely,
if we denote by n(t) the total number of S proteins at
time t, and by n1(t) the number of those S proteins that
have reached the interaction range of τ , we calculate the
expectation of the ratio n1(t)/n(t) to see its dependence
on D.

According to our calculations, this value, seen as a func-
tion of time, has a sigmoidal curve, which is sharper and
taller when the distance S is smaller. This may explain the
observation by the biologists that the set of genes that interact
to perform a given biological function are geometrically
close in the cell, even if not so in the linear sequence of
nucleotides.

In the current paper we only present the results along with
the ideas of the proofs. Details can be found in [17].

II. THE MODEL

We encapsulate the transcription and translation stages
into a single step in which new proteins are produced in
the vicinity of the genes. We see the genes σ (source)
and τ (target) as points in the 3-dimensional space that
are at distance D from each other. Starting from time 0,
new S proteins are produced at σ according to a Poisson
process with rate λ > 0 (see e.g. [12]). This amounts to the
assumption that the number of proteins produced in disjoint
intervals are independent and the probability that a new
protein is produced during an infinitesimal time δt is λδt.

Starting from its birth, each S protein follows a 3-
dimensional Brownian motion (Wiener process) with diffu-
sion rate β > 0: the displacement of the protein from time
s > 0 to time t > s has a normal distribution with mean 0
and variance β(t−s) (see e.g. [13] or [14]). Moreover, each
protein may degrade (become annihilated) according to an
exponential decay process with rate ε > 0: the probability
that a protein degrades during an infinitesimal time δt is εδt.

We assume that the motion of the different S proteins do
not interact and are independent of each other and the protein
generation process. Similarly, the degradation of the proteins



are independent of each other and the other elements of the
model.

We are interested in the ratio of the (survived) S-proteins
that have reached the “range of interaction” R of the target τ
before time t > 0. For simplicity, we consider the range of
interaction R simply as a sphere with radius r > 0 centered
at τ .

III. THE DIFFUSION MECHANISM

In this section, we describe the probability distribution p(t)
of the time it takes for an S protein produced at σ to reach
the range of interaction of τ .

For a point x ∈ Rd and a compact set R ⊆ Rd (not
including x) in the d-dimensional Euclidean space, denote
Hd(x,R, t) the probability that a standard d-dimensional
Brownian motion (i.e., with diffusion rate 1) starting at x
and time 0 hits the region R before time t. Hence, in our
model p(t) = H3(σ,Br(τ), βt), where Br(τ) is the closed
ball with radius r around τ , and the distance between σ and
τ is D > r.

When R = Br(y) is a closed ball with radius r whose
center y is at distance D > r from x, Yin and Wu have
calculated Hd(x,R, t) in any number of dimensions d [15]
as an integral involving the Bessel functions. Surprisingly,
one can easily see from their formula that the value of
Hd(x,R, t) in dimensions 1 and 3 differ only by a factor
of r/D; that is,

H3(x,Br(y), t) =
r

D
H1(x′, Br(y′), t) (1)

for x, y ∈ R3 and x′, y′ ∈ R with |y − x| = |y′ − x′| = D.
In dimension 1, there is a well-known simpler formula

H1(x′, Br(y′), t) = 1− erf

(
D − r√

2t

)
(2)

for the probability distribution of the first time a standard
Brownian motion hits an obstacle at distance D−r > 0 (see
e.g. [16], page 84). Here, erf(a) refers to the error function:

erf(a) ,
2√
π

∫ a

0

e−z
2

dz .

Combining (1) and (2), we obtain a simple expression

H3(x,Br(y), t) =
r

D

(
1− erf

(
D − r√

2t

))
for the probability that a standard 3-dimensional Brownian
motion hits a closed ball with radius r > 0 and distance
D > r before time t.

Proposition 1:

p(t) =
r

D

(
1− erf

(
D − r√

2βt

))
.

2
The curve of p(t) is shown in Fig. 1. The steady state

value of the curve is r/D (i.e., grows if D is decreased) and
the time scale of the curve is proportional to 2β/(D − r)2
(i.e., it varies faster if D is decreased).
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Fig. 1. (a) The probability that an S protein produced at time 0 reaches
the range R before time t. (b) The diagram in (a) focused around (0, 0).

IV. THE SUCCESSFUL PROTEINS

Let n(t) denote the total number of (survived) S proteins
at time t > 0, and let n1(t) be the number of those (survived)
S proteins that have reached the range of interaction R
before time t. These are random variables. Our aim in
this section is to calculate the expected value of the ratio
n1(t)/n(t) and pinpoint its dependence on the distance D
between the two genes.

The main tools used in this section are two basic properties
of the Poisson processes, namely Campbell’s theorem and
the so-called Coloring theorem (see [12]). A Poisson process
on R+ with mean measure µ can be identified with a random
countable set ξ ⊆ R+ such that

i) the number of elements of ξ in an interval I ⊆ R+ has
a Poisson distribution with rate µ(I), and

ii) the number of elements of ξ in disjoint intervals are
independent.1

Let f : R+ → C be an arbitrary function and I ⊆ R+

a bounded measurable set. Then, Campbell’s theorem states
that the expected value of the sum over ξ ∩ I of f is the
same as the integral of f over I with respect to µ.

Next, suppose that to each point s ∈ ξ we associate a
random color c(θ) from a set Γ. The color of each point
may depend on its position, but it is essential that the color of
different points are chosen independently of each other and
of the process itself. Then the Coloring theorem states that
the set of points of different colors are independent Poisson
processes.

Going back to our model, denote the set of times θ ∈ R+

in which a new S protein is produced by ξ. For brevity, for

1In our model the mean measure µ is simply λ times the Lebesgue
measure.



each t ≥ 0 let ξt , ξ ∩ [0, t].
Proposition 2:

E [n(t)] =
λ

ε

(
1− e−εt

)
,

E [n1(t)] =

∫ t

0

p(θ)e−εθλdθ .

2
To compress the upcoming formulas, let H(t) , E [n(t)]
and G(t) , E [n1(t)]. Fig. 2 depicts the curve of G(t). The
steady state value of G(t) is λ

ε
r
D e
−2
√
ε/(2β)(D−r).

0
t

E [n1(t)]

Fig. 2. The expected value of the number of S proteins that succeed in
reaching the range R before time t.

Recall that whether an S protein still exists and has
reached the target before time t > 0 is independent of
the other proteins. For t > 0, define the random coloring
ct : ξt → {0, 1,−} as follows: set ct(θ) , − if the protein
produced at θ has degraded before time t; set ct(θ) , 0
if the protein produced at time θ has neither degraded nor
reached the target until time t; set ct(θ) , 1 otherwise.
Clearly, n1(t) =

∣∣c−1t (1)
∣∣ and n(t) =

∣∣c−1t (0)
∣∣ +

∣∣c−1t (1)
∣∣.

It follows from the Coloring theorem that the points colored
with colors 0, 1 and − form independent Poisson processes.
In particular, the random variables n1(t) and n(t) − n1(t)
are independent Poisson random variables whose expected
values are given in Proposition 2.

Proposition 3:

Var [n(t)] = H(t) ,

Var [n1(t)] = G(t) .

2
If x and y are two independent Poisson random variables

with rates λx and λy, then it is straightforward to verify that

E

[
x

x + y

∣∣∣∣x + y > 0

]
=

λx
λx + λy

.

Proposition 4:

E

[
n1(t)

n(t)

∣∣∣∣n(t) > 0

]
=
G(t)

H(t)
,

2
See Fig. 3 for the diagram of E [n1(t)/n(t) |n(t) > 0].

The steady state value of this curve is r
D e
−2
√
ε/(2β)(D−r),

which is a rapidly decreasing function of D. Moreover, as D
increased, the curve is spread in time, making its dynamics
slower.
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Fig. 3. The expected value of the ratio of S proteins that succeed in
reaching the range R before time t for different values of D. The functions
are scaled so that they have the same steady states values. Decreasing D
makes the curve squeeze to the left.

V. CONCLUSIONS

One of our main contributions in this article has been to
establish that the simple geometric effect of the distance
between two interacting genes is sufficient to induce a
sigmoidal behavior of their relative concentration levels.
This result is independent of biochemical properties such
as the affinities between the corresponding macromolecules.
It is only based on the probability that proteins have to
meet the set of their interacting genes. Our probabilistic
approach provides an alternative to more classical approaches
to model gene interactions (such as differential equations)
and it has the advantage to precisely identify the impact
of the distance between genes on the strength of their
interactions. The formulas that we established prove that the
interaction between two genes is far more efficient when they
are close to each other: it may explain why biologists have
observed that the set of genes that interact to perform a given
biological function are geometrically neighbors in the cell,
even if they are not so in the linear sequence of nucleotides;
their positions in the cell have probably been preferentially
chosen by the natural selection. Another advantage of our
probabilistic and geometrical approach is to take into account
such microscopic behaviors.
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