Do low-complexity aperiodic SFTs exist?

Problem posed by: Jarkko Kari
University of Turku
Presented by: Siamak Taati
American University of Beirut

Expanding Dynamics — October 2020

A familiar question

A familiar question

A familiar question

A familiar question

periodic in the horizontal direction

Question: Do non-periodic consistent configurations exist?

A familiar question

A consistent configuration

periodic in the horizontal direction

Question: Do non-periodic consistent configurations exist?
Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

A familiar question

Four patterns

Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

- True in dimension $d=1$

A familiar question

Four patterns
 $\square \square \square \square \square$

Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

- True in dimension $d=1$
- Not true in dimensions $d \geq 3$
[Morse and Hedlund, 1938]
[Cassaigne, 1999]

A familiar question

Four patterns
 $\square \square \square \square \square$

Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

- True in dimension $d=1$
- Not true in dimensions $d \geq 3$
- Not true for arbitrary shapes
[Morse and Hedlund, 1938]
[Cassaigne, 1999]
[Cassaigne, 1999]

A familiar question

A consistent configuration

Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

- True in dimension $d=1$
- Not true in dimensions $d \geq 3$
- Not true for arbitrary shapes
[Morse and Hedlund, 1938]
[Cassaigne, 1999]
[Cassaigne, 1999]

A familiar question

A consistent configuration

Nivat's conjecture (1997)
Every infinite configuration consistent with $\leq m n$ patterns with m-by- n rectangular shape is periodic in at least one direction.

- True in dimension $d=1$
- Not true in dimensions $d \geq 3$
- Not true for arbitrary shapes
- ... but perhaps for convex shapes?
[Morse and Hedlund, 1938]
[Cassaigne, 1999]
[Cassaigne, 1999]
[Cassaigne, 1999]

A related question

A consistent configuration

A related question

Another consistent configuration

A related question

Another consistent configuration

periodic in the horizontal direction

A related question

Another consistent configuration

periodic in the horizontal direction

Jarkko's question
Does every consistent list of n patterns with the same n-cell shape admit a consistent periodic configuration?

A related question

Another consistent configuration

periodic in the horizontal direction

Jarkko's question
Does every consistent list of n patterns with the same n-cell shape admit a consistent periodic configuration?

- The shape is arbitrary!

A related question

Another consistent configuration

periodic in the horizontal direction

Jarkko's question
Does every consistent list of n patterns with the same n-cell shape admit a consistent periodic configuration?

- The shape is arbitrary!
- Any number of dimensions!

Broader scenario

$$
D=\frac{\text { a shape }}{=}
$$

a collection of patterns

Broader scenario

a shape
a collection of patterns
$D=\square_{\square} \in \mathbb{Z}^{d}$
(t)
$X_{\mathcal{P}}=\left\{\right.$ all \mathbb{Z}^{d}-configurations consistent with $\left.\mathcal{P}\right\}$ an SFT

Broader scenario

a shape

a collection of patterns

Broader scenario

a shape

a collection of patterns

Broader scenario

a shape

$$
D=\zeta_{\square} \in \mathbb{Z}^{d}
$$

a collection of patterns

Broader scenario

a shape

$$
D=\square_{\square} \in \mathbb{Z}^{d}
$$

a collection of patterns

Broader scenario

a shape

$$
D=\leftrightarrows \subseteq \mathbb{Z}^{d}
$$

a collection of patterns

Broader scenario

a shape

$$
D=\square_{\square} \in \mathbb{Z}^{d}
$$

a collection of patterns

In dimension $d=1$: All questions have simple answers.

- Q1, Q1.1.1, Q1.0 have simple algorithms. [e.g., via de Bruijn graph]
- The answer to Q1.1 is always positive.

Broader scenario

a shape

$$
D=\square_{\square} \in \mathbb{Z}^{d}
$$

a collection of patterns

In dimensions $d \geq 2$: All questions are algorithmically unsolvable.

- Q1, Q1.1, Q1.1.1 are algorithmically undecidable.
- There is no computable bound for Q1.0.

Restricted variants

$$
\begin{aligned}
& \text { a shape } \\
& \text { a collection of patterns } \\
& D=\leftrightarrows \Subset \mathbb{Z}^{d} \\
& \mathcal{P}=\left\{\begin{array}{r}
\square \\
\square
\end{array}, \ldots, \square\right\} \subseteq \Sigma^{D}
\end{aligned}
$$

Questions: What if $|\mathcal{P}| \leq|D|$?
[the low-complexity case]

Restricted variants

$$
D=\frac{\text { a shape }}{\square} \mathcal{Z}_{\square}^{d} \Subset \mathbb{Z}^{d} \quad \stackrel{\text { a collection of patterns }}{\square}, \square, \ldots, \square \square \square \square \Sigma^{D}
$$

Questions: What if $|\mathcal{P}| \leq|D|$?
[the low-complexity case]

Nivat's question $(d=2)$
Assuming $|\mathcal{P}| \leq|D|$ and D a rectangle (or convex), is every consistent configuration periodic?

Restricted variants

$$
D=\frac{\text { a shape }}{\square} \mathcal{P}_{\square} \in \mathbb{Z}^{d} \quad \begin{array}{r}
\square, \square, \ldots, \square \\
\square
\end{array} \subseteq \Sigma^{D}
$$

Questions: What if $|\mathcal{P}| \leq|D|$?
[the low-complexity case]

Nivat's question $(d=2)$
Assuming $|\mathcal{P}| \leq|D|$ and D a rectangle (or convex), is every consistent configuration periodic?

Jarkko's question $(d \geq 2)$
Assuming $|\mathcal{P}| \leq|D|$ and \mathcal{P} consistent,
is there a consistent periodic configuration?

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

Dichotomy in dimension $d=1$:
\rightarrow Morse-Hedlund: if $|\mathcal{P}| \leq|D|$, then every consistent configuration is periodic.
\rightarrow Sturmian configurations are non-periodic yet $|\mathcal{P}|=|D|+1$ for every interval D.
(Recall: answer to Q1.1 is always positive in dimension 1.)

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

In dimension $d=2$:
Nivat's conjecture if true would be optimal!
\rightarrow Cassaigne (1999): A non-periodic example with $|\mathcal{P}|=|D|+1$

Five patterns A non-periodic consistent configuration
 - !

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

In dimension $d=2$:
Jarkko's conjecture if true would be almost optimal!
\rightarrow Kari (2020): For every $\varepsilon>0$, question Q1 remains undecidable among instances where D is a rectangle and $|\mathcal{P}| \leq(1+\varepsilon)|D|$.
\rightarrow If the answer to Jarkko's question is "Yes", then Q1 will be decidable for instances with $|\mathcal{P}| \leq|D|$.
[Simply run the two semi-algorithms in paralle!!]

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

In dimension $d=2$:
Jarkko's conjecture if true would be almost optimal!
\rightarrow Kari (2020): For every $\varepsilon>0$, question Q1 remains undecidable among instances where D is a rectangle and $|\mathcal{P}| \leq(1+\varepsilon)|D|$.
\rightarrow If the answer to Jarkko's question is "Yes", then Q1 will be decidable for instances with $|\mathcal{P}| \leq|D|$.

Jarkko's question (variant)
Assuming $|\mathcal{P}| \leq|D|+k$ and \mathcal{P} consistent, is there a consistent periodic configuration?

Restricted variants

Questions: What is special about the threshold $|\mathcal{P}| \leq|D|$?

In dimension $d=2$:
Jarkko's conjecture if true would be almost optimal!
\rightarrow Kari (2020): For every $\varepsilon>0$, question Q1 remains undecidable among instances where D is a rectangle and $|\mathcal{P}| \leq(1+\varepsilon)|D|$.
\rightarrow If the answer to Jarkko's question is "Yes", then Q1 will be decidable for instances with $|\mathcal{P}| \leq|D|$.

Jarkko's question (variant)
Assuming $|\mathcal{P}| \leq|D|+k$ and \mathcal{P} consistent, is there a consistent periodic configuration?

Note: Every aperiodic SFT gives a bound on k, above which the answer is negative.
[e.g., negative if $k \geq 111$ based on Jeandel-Rao]

Low complexity terminology

For a configuration x :

$$
L_{D}(x):=\{\text { all } D \text {-shaped patterns occurring in } x\}
$$

Let us say x has low D-complexity if $\left|L_{D}(x)\right| \leq|D|$.
For a subshift X :
$L_{D}(X):=\{$ all D-shaped patterns occurring in $x \in X\}$
Let us say X has low D-complexity if $\left|L_{D}(X)\right| \leq|D|$.

Low complexity terminology

For a configuration x :

$$
L_{D}(x):=\{\text { all } D \text {-shaped patterns occurring in } x\}
$$

Let us say x has low D-complexity if $\left|L_{D}(x)\right| \leq|D|$.
For a subshift X :
$L_{D}(X):=\{$ all D-shaped patterns occurring in $x \in X\}$
Let us say X has low D-complexity if $\left|L_{D}(X)\right| \leq|D|$.
Nivat's conjecture ($d=2$)
Every configuration which has low complexity w.r.t. a rectangle is periodic.

Low complexity terminology

For a configuration x :

$$
L_{D}(x):=\{\text { all } D \text {-shaped patterns occurring in } x\}
$$

Let us say x has low D-complexity if $\left|L_{D}(x)\right| \leq|D|$.
For a subshift X :

$$
L_{D}(X):=\{\text { all } D \text {-shaped patterns occurring in } x \in X\}
$$

Let us say X has low D-complexity if $\left|L_{D}(X)\right| \leq|D|$.
Nivat's conjecture ($d=2$)
Every configuration which has low complexity w.r.t. a rectangle is periodic.

Jarkko's question $(d \geq 2)$
Does there exist an aperiodic SFT that has low complexity w.r.t. some shape?

What is known?

What is known?

Nivat's conjecture ($d=2$)

What is known?

Nivat's conjecture ($d=2$)
(N1) Cyr \& Kra (2015): If $|\mathcal{P}| \leq|D| / 2$ and D a rectangle, then every consistent configuration is periodic.

What is known?

Nivat's conjecture ($d=2$)
(N1) Cyr \& Kra (2015): If $|\mathcal{P}| \leq|D| / 2$ and D a rectangle, then every consistent configuration is periodic.
(N2) Kari \& Szabados (2015): If a configuration has low complexity w.r.t. infinitely many rectangles, then it is periodic.

What is known?

Nivat's conjecture ($d=2$)
(N1) Cyr \& Kra (2015): If $|\mathcal{P}| \leq|D| / 2$ and D a rectangle, then every consistent configuration is periodic.
(N2) Kari \& Szabados (2015): If a configuration has low complexity w.r.t. infinitely many rectangles, then it is periodic.
(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.
[Note: If D is not convex, then there are counter-examples.]

What is known?

Jarkko's question

What is known?

(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.

Jarkko's question
(K1) Corollary of (N3): If $|\mathcal{P}| \leq|D|, \mathcal{P}$ consistent, D convex and $d=2$, then there is a consistent periodic configuration.

What is known?

(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.

Jarkko's question
(K1) Corollary of (N3): If $|\mathcal{P}| \leq|D|, \mathcal{P}$ consistent, D convex and $d=2$, then there is a consistent periodic configuration.
Argument. If x is consistent with \mathcal{P}, then its orbit closure contains
a uniformly recurrent configuration.

What is known?

(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.

Jarkko's question
(K1) Corollary of (N3): If $|\mathcal{P}| \leq|D|, \mathcal{P}$ consistent, D convex and $d=2$, then there is a consistent periodic configuration.
Argument. If x is consistent with \mathcal{P}, then its orbit closure contains
a uniformly recurrent configuration.
$\rightarrow \ln d=2$: The case of non-convex shapes remains open.

What is known?

(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.

Jarkko's question

(K1) Corollary of (N3): If $|\mathcal{P}| \leq|D|, \mathcal{P}$ consistent, D convex and $d=2$, then there is a consistent periodic configuration.
Argument. If x is consistent with \mathcal{P}, then its orbit closure contains
a uniformly recurrent configuration.
$\rightarrow \ln d=2$: The case of non-convex shapes remains open.
$\rightarrow \ln d>2$: Both variants of the question remain open (even for convex D).

What is known?

(N3) Kari \& Moutot (2019): If $|\mathcal{P}| \leq|D|$ and D convex, then every consistent uniformly recurrent configuration is periodic.

Jarkko's question
(K1) Corollary of (N3): If $|\mathcal{P}| \leq|D|, \mathcal{P}$ consistent, D convex and $d=2$, then there is a consistent periodic configuration.
Argument. If x is consistent with \mathcal{P}, then its orbit closure contains
a uniformly recurrent configuration. \square
$\rightarrow \ln d=2$: The case of non-convex shapes remains open.
$\rightarrow \ln d>2$: Both variants of the question remain open (even for convex D).
(K2) Connection with tilings with polyominoes...

Tiling with polyominoes

A set of polyominoes

$$
\mathcal{T}=\{\leftrightarrows, \square\}
$$

(allowed to be disconnected)

Tiling with polyominoes

A set of polyominoes

$$
\mathcal{T}=\{\leftrightarrows, \square\}
$$

(allowed to be disconnected)

periodic in the horizontal direction

Tiling with polyominoes

A set of polyominoes

$$
\mathcal{T}=\{\leftrightarrows, \square\}
$$

(allowed to be disconnected)

periodic in the horizontal direction

Polyominoes can be encoded by allowed patterns and vice versa.
In particular, questions Q1, Q1.1, Q1.1.1, Q1.0 have equivalent forms in terms of tilings with polyominoes.

These questions are (by equivalence) undecidable/uncomputable.

Tiling with polyominoes

A set of polyominoes

$$
\mathcal{T}=\{\leftrightarrows, \square\}
$$

(allowed to be disconnected)

periodic in the horizontal direction

Polyominoes can be encoded by allowed patterns and vice versa.
In particular, questions Q1, Q1.1, Q1.1.1, Q1.0 have equivalent forms in terms of tilings with polyominoes.

These questions are (by equivalence) undecidable/uncomputable.
Question: What about restricted variants?

Tiling with a single polyomino

$$
\begin{aligned}
& \text { A polyomino } \\
& F=\zeta \Subset \mathbb{Z}^{d}
\end{aligned}
$$

Tiling with a single polyomino

$$
\begin{aligned}
& \frac{\text { A polyomino }}{F=\square \Subset \mathbb{Z}^{d}}
\end{aligned}
$$

Periodic polyomino tiling conjecture If a polyomino $F \Subset \mathbb{Z}^{d}$ can tile \mathbb{Z}^{d}, then it can also tile \mathbb{Z}^{d} periodically.
[i.e., periodic in at least one direction]

Tiling with a single polyomino
Atume

$$
F=\zeta \Subset \mathbb{Z}^{d}
$$

A polyomino

A consistent configuration

There is a correspondence: one polyomino $F \longleftrightarrow$ low complexity w.r.t. $D:=-F$

Tiling with a single polyomino
entitu

$$
F=\zeta \Subset \mathbb{Z}^{d}
$$

A polyomino

A consistent configuration

Hence, the periodic polyomino tiling question is a special case of Jarkko's question.

Tiling with a single polyomino

A polyomino
 $$
F=\square \Subset \mathbb{Z}^{d}
$$

Four patterns
 - 1.4

What is known?

Tiling with a single polyomino

$$
\begin{aligned}
& \text { A polyomino } \\
& F=\square \Subset \mathbb{Z}^{d}
\end{aligned}
$$

Four patterns
 - 1.4

What is known?
(P1) Szegedy (1998); Kari \& Szabados (2015): If $|F|$ is prime, then every tiling is periodic.

Tiling with a single polyomino

$$
\begin{aligned}
& \text { A polyomino } \\
& F=\square \Subset \mathbb{Z}^{d}
\end{aligned}
$$

Four patterns

- $4+4$

What is known?
(P1) Szegedy (1998); Kari \& Szabados (2015): If $|F|$ is prime, then every tiling is periodic.
(P2) Bhattacharya (2016): $\ln d=2$, if a tiling exists, then a periodic tiling exists.

Tiling with a single polyomino

$$
\begin{aligned}
& \text { A polyomino } \\
& F=\square \Subset \mathbb{Z}^{d}
\end{aligned}
$$

Four patterns

- $4+4$

What is known?
(P1) Szegedy (1998); Kari \& Szabados (2015): If $|F|$ is prime, then every tiling is periodic.
(P2) Bhattacharya (2016): In $d=2$, if a tiling exists, then a periodic tiling exists.
(P3) Greenfeld \& Tao (2020): ...

Tiling with a single polyomino

$$
\begin{aligned}
& \text { A polyomino } \\
& F=\square \Subset \mathbb{Z}^{d}
\end{aligned}
$$

Four patterns

- -1 -

What is known?
(P1) Szegedy (1998); Kari \& Szabados (2015): If $|F|$ is prime, then every tiling is periodic.
(P2) Bhattacharya (2016): $\ln d=2$, if a tiling exists, then a periodic tiling exists.
(P3) Greenfeld \& Tao (2020): ...

