
Metastability of the hard-core process

on bipartite graphs

Frank den Hollander1 Francesca Nardi2 Siamak Taati1

1Mathematical Institute, Leiden University

2Department of Mathematics, Eindhoven University of Technology

METASTABILITY Workshop
Eurandom, April 2016



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

+

failed birth

−

death

−

failed death

+

birth

Configurations

I Each site can carry at most one particle.

I Constraint: particles cannot site next to each other.
[Particles cannot overlap!]

Dynamics

I Birth attempt at site k (Poisson clock with rate λk)

I Death attempt at site k (Poisson clock with rate 1)

I All clocks are independent.



Hard-core gas process

Reversible stationary distribution [Boltzmann distribution]

π(x) =
1

Z

∏
k occupied

in x

λk

for each valid configuration x.
(Z is the appropriate normalizing constant.)
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Hard-core gas process

local minimum bottleneck in
in the energy landscape the phase space

energy

phase space

Metastability
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but inefficiently packed configuration. [large exit time]

I Once a more efficient configuration is reached,
it takes much longer to return. [small stationary probability]



Hard-core gas on graphs

Motivation

I classic example from statistical mechanics [on the lattice]

−→ phase transition (solid-gas) with symmetry breaking

I wireless communication networks

−→ the graph represents the possibilities of interference
−→ metastability undermines the network performance

I includes the Widom-Rowlinson model

Related work

I Zocca, Borst, van Leeuwaarden and Nardi (2013–2015)

I Alessandro Zocca’s PhD thesis (2015)

I Galvin and Tetali (2006), Randall (2008),
— and Antonio Blanca (2012)
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−→ Both u and v are “locally stable”.

−→ v is “more efficient” than u.

I Metastable behaviour starting from u

Question
How long does the transition from u to v take?
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As an electric network

u ∅ v

1V



Review: reversible Markov chain vs. electric network

Fundamental connection I
For every state x,

Px(TA < TB) = voltage(x)

if a 1V battery is connected between A and B.

Fundamental connection II
For every state x,

GTB (a, x) =

effective resistance︷ ︸︸ ︷
R(a↔ B)π(x)Px(Ta < TB)

where GTB (a, x) := Ea[# of visits to x before TB].

Corollary

Ea TB = R(a↔ B)
∑
x

π(x)Px(Ta < TB)
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Eu Tv ≈ Eu TZ
= R(u↔ Z)
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x

π(x)Px(Tu < TZ)

= π(u)R(u↔ Z)
∑
x

π(x)

π(u)
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≈ π(u)R(u↔ Z)
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Expected transition time

U

V

Proposition (Discrete time)

Eu Tv =
1

|U |
λ|U |−1[1 + o(1)] as λ→∞.

γ := (|U |+ |V |)(1 + λ) is the rate of Poisson clock
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Expected transition time

U
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Proposition (Continuous time)

Eu Tv =
γ

|U |
λ|U |−1[1 + o(1)] as λ→∞.

γ := (|U |+ |V |)(1 + λ) is the rate of Poisson clock
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= λ1+α+o(1)

on V
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Intuitive observations

I Two fully packed configurations u and v [but possibly many more]

−→ Both u and v are “locally stable”.

−→ v is the “most efficient” packing.
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Hard-core process on a bipartite graph

Examples of bipartite graphs

U

V

graphs arising from
two-species

Widom-Rowlinson model



Metastability in Markov processes

Some references

I Kramers (1940)
I large deviations / path-wise approach

. Freidlin and Wentzell (1960–1970)

. Cassandro, Galves, Olivieri and Vares (1984–)

. . . .

I potential-theoretic approach

. Bovier, Eckhoff, Gayrard and Klein (2001–)

. . . .

Three books

I Freidlin and Wentzell:
Random Perturbations of Dynamical Systems (1984)

I Olivieri and Vares: Large Deviations and Metastability (2005)

I Bovier and den Hollander:
Metastability — A Potential-Theoretic Approach (2015)



Main results: I

Theorem (Critical droplets)

For the hard-core dynamics on an even torus Zm × Zn,
when going from u to v, with large probability, the chain passes
through exactly one transition Q→ Q∗, where Q and Q∗ are
obtained from the solutions of an isoperimetric problem.

A configuration in Q
[similar for hypercube]

[similar for Widom-Rowlinson]



Main results: I

Theorem (Critical droplets)

For the hard-core dynamics on an even torus Zm × Zn,
when going from u to v, with large probability, the chain passes
through exactly one transition Q→ Q∗, where Q and Q∗ are
obtained from the solutions of an isoperimetric problem.

A configuration in Q∗

[similar for hypercube]

[similar for Widom-Rowlinson]



Main results: II

Theorem (Expected transition time)

For the hard-core dynamics on an even torus Zm × Zn we have

Eu Tv =
γ

2mn l∗
λl

∗(l∗+1)+1

λ̄l∗(l∗−1)
[1 + o(1)]

as λ→∞, where l∗ := d 1αe is the size of the critical droplet and
γ := |U | (1 + λ) + |V | (1 + λ̄) is the rate of the Poisson clock.

[similar for hypercube]

[similar for Widom-Rowlinson]

Proof steps.

Show that (in discrete time)

Eu Tv = π(u)R(u↔ v) [1 + o(1)] as λ→∞.

Estimate the effective resistance.



Main results: III

Theorem (Asymptotic exponential law)

For the hard-core dynamics on “many” bipartite graphs we have
[e.g., torus, hypercube, . . . ]

Pu
(

Tv
Eu Tv

> t

)
→ e−t

uniformly in t ∈ R+ as λ→∞.

Intuition.
Many many trials (attempts to form a critical droplet) with tiny
probability of success

=⇒ success time approximately exponential



Effective resistance: rough estimate

Critical resistance [a.k.a. communication height]

For every two states a, b ∈X , set

Ψ(a, b) := inf
ω:a b

sup
e∈ω

r(e)

Remark

I a, b 7→ R(a↔ b) is a metric on X .

I a, b 7→ Ψ(a, b) is an ultra-metric on X .

Proposition (Equivalence)

There exists a constant k ≥ 1 such that [independent of λ]

1

k
Ψ(a, b) ≤ R(a↔ b) ≤ kΨ(a, b)

for all a, b ∈X .



Effective resistance: sharp estimate

Critical gate

A B

Q Q∗

� Ψ(A,B)

≺ Ψ(A,B) ≺ Ψ(A,B)

A pair (Q,Q∗) is a critical gate between A and B if

1. r(x, y) � Ψ(A,B) for every x ∈ Q and y ∈ Q∗ with x ∼ y,

2. Ψ(A, x) ≺ Ψ(A,B) for every x ∈ Q,

3. Ψ(y,B) ≺ Ψ(A,B) for every y ∈ Q∗, and

4. every optimal path from A to B passes through a transition
Q→ Q∗.



Effective resistance: sharp estimate

Critical gate

A B

Q Q∗

� Ψ(A,B)

≺ Ψ(A,B) ≺ Ψ(A,B)

Proposition

Let (Q,Q∗) be a critical pair between A and B. Then,

C(A↔ B) = c(Q,Q∗) [1 + o(1)] as λ→∞,

where c(Q,Q∗) :=
∑
x∈Q

∑
y∈Q∗

x∼y

c(x, y).



Effective resistance: sharp estimate

Critical gate

A B

Q Q∗

� Ψ(A,B)

≺ Ψ(A,B) ≺ Ψ(A,B)

C(A↔ B) = c(Q,Q∗) [1 + o(1)]

Proof.

Upper bound: simple Nash-Williams inequality

Lower bound: generalized Nash-Williams inequality
[a.k.a. Berman-Konsowa variational principle]



Thank you for your attention!


