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Statistical mechanics of (quasi)crystals

[see Radin, IJMPB, 1987]

Crystalisation problem

Why do most material take crystalline order at sufficiently low
temperature?

I Find a reasonable model of a crystal! Inherently
a continuum problemI Explain the prevalence of crystals!

Quasicrystal problem

Explain the stability of quasicrystals at positive temperature!

I Find a reasonable (abstract) model of a quasicrystal!

Remains non-trivial
even on the lattice



What are quasicrystals?

A Ho-Mg-Zn quasicrystal Diffraction pattern

from Wikipedia By Materialscientist [CC BY-SA 3.0]
via Wikimedia Commons

Five-fold rotational symmetry is inconsistent with translational
symmetry!

Long-range orientational order but
no translational order



Quasicrystal problem (v1)

Problem
Construct a finite-range lattice-gas model
with a “quasicrystal phase” at positive temperature.

Question: What is a “quasicrystal phase”?

Answer 1: “Long-range order” but no “translational order”

Q1.1: What is “long-range order”?
[non-uniqueness of Gibbs measures]

Q1.2: What is “translational order”?
[existence of non-extremal ergodic Gibbs measures]

Answer 2: I don’t know a perfect definition but . . .
we may not need a perfect definition in order
to construct an example!

Q2.1: What are some desired properties?
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Aperiodic Wang tiles

Wang tiles are combinatorial relatives of geometric tiles.

Example (Kari-Culik tiles)

An aperiodic set of Wang tiles

I can tile the entire lattice, but [rotation not allowed]

I none of the valid tilings are periodic.



Aperiodic Wang tiles

Wang tiles are combinatorial relatives of geometric tiles.

Example (Kari-Culik tiles)

Adapted from C. Rocchini [CC BY-SA 3.0]
via Wikimedia Commons

An aperiodic set of Wang tiles

I can tile the entire lattice, but [rotation not allowed]

I none of the valid tilings are periodic.



Quasicrystals at zero temperature
[Radin, JMP, 1985; PL, 1986]

Take your favorite aperiodic set of Wang tiles.
Assign interaction energy +1 to each tiling error.

energy = 3

I Every ground configuration is non-periodic.
[Possibly with infinite lines of defect]

I The ground states are supported at ground configurations.
[ground state ≡ zero-temperature accumulation of Gibbs measures]
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Quasicrystal problem (v2)

Problem
Construct an aperiodic tile set and a suitable finite-range
interaction such that all (or some) non-periodic tilings are “stable
at positive temperature”.

Question: What does “stability at positive temperature” mean?

Answer: A ground configuration is stable if at any sufficiently low
temperature, there is a Gibbs measure that is a
“perturbation” of that configuration.

[Stability against thermal fluctuations]

Q: What is a “perturbation”?
A1: Close in weak topology [not sufficient]

A2: Close in weak topology uniformly for all translations
A3: Agree everywhere except on occasional

finite (random) islands of fault. [Sea-island picture]
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Quasicrystal problem (v2)

Problem
Construct an aperiodic tile set and a suitable finite-range
interaction such that all (or some) non-periodic tilings are “stable
at positive temperature”.

Our result
A four-dimensional finite-range lattice-gas model with 17 symbols
(1 blank + 16 different types of particles) such that

I the non-blank symbols form an aperiodic tile set along two
dimensions, and

I configurations that form valid tilings along two dimensions
and are constant along the other two are strongly stable at
positive temperature.
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Our result
A four-dimensional finite-range lattice-gas model with 17 symbols
(1 blank + 16 different types of particles) such that

I the non-blank symbols form an aperiodic tile set along two
dimensions, and

I configurations that form valid tilings along two dimensions
and are constant along the other two are strongly stable at
positive temperature.

Remarks

I The interaction window is included in a 2× 2× 2× 2 box.

I Being periodic along two dimensions is not really a limitation.
[Combine two independent copies, one rotated.]

I There are other “non-quasicrystalline” Gibbs measures.
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Our result
A four-dimensional finite-range lattice-gas model with 17 symbols
(1 blank + 16 different types of particles) such that

I the non-blank symbols form an aperiodic tile set along two
dimensions, and

I configurations that form valid tilings along two dimensions
and are constant along the other two are strongly stable at
positive temperature.

Corollary 1

At sufficiently low temperature, the model has non-periodic Gibbs
measures supported on perturbations of a “cloned” tiling
configuration. [sea-island picture]



Quasicrystal problem (v2)

Our result
A four-dimensional finite-range lattice-gas model with 17 symbols
(1 blank + 16 different types of particles) such that

I the non-blank symbols form an aperiodic tile set along two
dimensions, and

I configurations that form valid tilings along two dimensions
and are constant along the other two are strongly stable at
positive temperature.

Corollary 2

At sufficiently low temperature, the model has a
translation-invariant Gibbs measure with sea-island picture with
respect to the orbit closure of a “cloned” tiling configuration.



Quasicrystal problem

Some related results

I van Enter, Miȩkisz and Zahradnik (1998):
A three-dimensional model with infinite-range but
exponentially decaying interactions that has a “quasi-crystal”
ground configuration stable at positive temperature.

[Thue-Morse sequence along one dimension, constant along the other two]

I Durand, Romashchenko and Shen (2012):
A two-dimensional aperiodic set of Wang tiles that is stable
against small Bernoulli noise. [How about thermal noise?]

I Gács (2001):
A two-dimensional model with a continuum of distinct
extremal Gibbs measures.

I Chazottes and Hochman (2010): [also van Enter and Ruszel, 2007]

A three-dimensional finite-range model with no shift-invariant
weakly stable ground state.



The construction

We simply put together three classic results about cellular
automata (CA) and tilings.

The ingredients

I. Every d-dimensional CA can be simulated by a
(d+ 2)-dimensional CA in a fashion that is robust against
Bernoulli noise. [Gács and Reif (1988) based on Toom (1980)]

II. There are aperiodic tile sets that are deterministic in one
direction. [Ammann (1980’s), Kari (1992), . . . ]

III. The space-time diagrams of positive-rate probabilistic CA are
Gibbs measures for an associated finite-range interaction.

[Domany and Kinzel (1984), Goldstein, Kuik, Lebowitz and Maes (1989)]



I. Robust simulation of CA

Cellular automata (CA)

CA are discrete-time dynamical systems on lattice configurations.

x

T

Tx

Space: d-dimensional configurations x : Zd → S of symbols
from a finite set S.

Dynamics: The symbol at each site is updated according to a
fixed local rule.

[Equivalently, T is continuous and commutes with translations.]
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I. Robust simulation of CA

Probabilistic cellular automata (PCA)

PCA are discrete-time Markov processes on lattice configurations.

X(t)

step

X(t+ 1)

Space: d-dimensional configurations x : Zd → S of symbols
from a finite set S.

Transition: Symbols at different sites are updated independently
according to a fixed local probabilistic rule.
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I. Robust simulation of CA

Noisy cellular automata (CA+noise)

A particular type of PCA.
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T(X(t))

X(t+ 1)

T

noise

At each step,

a) first, apply the deterministic CA,

b) then, add noise independently at each site.
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I. Robust simulation of CA

Toom’s NEC CA
Two-dimensional deterministic CA with asymmetric majority rule.

time = 0

Symbol set: {�,�}

Local rule: North-East-Center majority
[ (Tx)i,j , majority(xi,j, xi+1,j, xi,j+1) ]
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Two-dimensional deterministic CA with asymmetric majority rule.
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Cleaning finite islands

A finite island of black in a sea of white is quickly cleaned
and vice versa! [A triangle of faults shrink.]
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I. Robust simulation of CA

Toom’s NEC CA
Two-dimensional deterministic CA with asymmetric majority rule.

time = 0time = 1time = 2time = 3time = 4time = 5time = 6

time = 7

Cleaning finite islands

A finite island of black in a sea of white is quickly cleaned
and vice versa! [A triangle of faults shrink.]



I. Robust simulation of CA

Toom’s NEC CA
Two-dimensional deterministic CA with asymmetric majority rule.

Theorem (Toom, 1980)

The trajectories of all-� and all-� are stable against small
Bernoulli noise. [The corresponding PCA has two distinct invariant measures.]



I. Robust simulation of CA

Stacking simulation [Gács and Reif (1988)]

Noise-resistant simulation of a d-dimensional CA with a
(d+ 2)-dimensional CA.

To simulate a CA T ,

I Replicate each symbol into a two-dimensional plane.
[add two more dimensions]

I At each time step:

1. Apply Toom’s majority rule on each replicated plane.
[Error correction!]

2. Apply T on each d-dimensional space orthogonal to the
replicated planes.

Theorem (Toom, 1980; Gács and Reif, 1988)

Every trajectory of the simulating CA corresponding to an initial
configuration that is constant on each replicated plane is stable
against independent noise.



II. Deterministic aperiodic Wang tiles

Ammann’s golden tiles [Ammann (1980’s)]

Ammann’s tile set A2 are geometric tiles with decorations.

I Rotations and reflections are allowed.

I The line decorations of adjacent tiles must match.



II. Deterministic aperiodic Wang tiles

Ammann’s golden tiles [Ammann (1980’s)]

Ammann’s tile set A2 are geometric tiles with decorations.

I The two tiles can be combined to simulate larger copies of
themselves, with equivalent matching conditions.
=⇒ existence of “self-similar” tilings



II. Deterministic aperiodic Wang tiles

Ammann’s golden tiles [Ammann (1980’s)]

Ammann’s tile set A2 are geometric tiles with decorations.

I Moreover, every valid tiling can be decomposed into such
super-tiles in a unique fashion.



II. Deterministic aperiodic Wang tiles

Ammann’s golden tiles [Ammann (1980’s)]

Ammann’s tile set A2 are geometric tiles with decorations.

Theorem (Ammann, Grünbaum, Shephard, 1992)

Ammann’s tile set is aperiodic.



II. Deterministic aperiodic Wang tiles

Ammann’s golden tiles [Ammann (1980’s)]

I The blue lines form a lattice!
Furthermore, there are only 16 different blue parallelograms.
These parallelogram can be symmetrized to obtain Wang tiles.



II. Deterministic aperiodic Wang tiles

Ammann’s Wang tiles

Determinism property

The two colors on the top determine the tile uniquely!
[So do the two on the bottom.]
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II. Deterministic aperiodic Wang tiles

Determinism property

There are other aperiodic sets of Wang tiles with similar
determinism property.

I Kari (1992): a variant of Robinson’s aperiodic set.
[The tiling problem remains undecidable (ibid.).]

I Kari and Papasoglu (1999): an aperiodic set that is
deterministic in four directions.

[Lukkarila (2009): The tiling problem remains undecidable.]

I Guillon and Zinoviadis (2016): an aperiodic set that is
deterministic in all but two opposite (real) directions.

For us, any aperiodic set with determinism in one direction will do.



II. Deterministic aperiodic Wang tiles

CA from deterministic tiles
There is a natural way to construct a CA out of a deterministic tile
set: [Kari (1992)]

if a matching tile
exists.

if no matching tile
exists.

blank leads to
blank.

I Introduce a new blank symbol.

I By determinism, the matching tile (if it exists) is unique.

I Whenever no tile matches the color constraint, produce blank.
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There is a natural way to construct a CA out of a deterministic tile
set: [Kari (1992)]

time
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II. Deterministic aperiodic Wang tiles

CA from deterministic tiles
There is a natural way to construct a CA out of a deterministic tile
set: [Kari (1992)]

time

I The blank symbol spreads.

I The bi-infinite trajectories with no occurrence of the blank
symbol are precisely the valid tilings.



III. Space-time diagram of PCA

time

Observation (Domany and Kinzel, 1984)

The distribution of any bi-infinite trajectory of any PCA is a Gibbs
measure for an associated finite-range interaction.

[The zero-dimensional case is better known!]

The converse is also true for translation-invariant Gibbs measures.
[Goldstein, Kuik, Lebowitz and Maes (1989)]



The construction

We simply put together these three ingredients.

The ingredients

I. Every d-dimensional CA can be simulated by a
(d+ 2)-dimensional CA in a fashion that is robust against
Bernoulli noise. [Gács and Reif (1988) based on Toom (1980)]

II. There are aperiodic tile sets that are deterministic in one
direction. [Ammann (1980’s), Kari (1992), . . . ]

III. The space-time diagrams of positive-rate probabilistic CA are
Gibbs measures for an associated finite-range interaction.

[Domany and Kinzel (1984), Goldstein, Kuik, Lebowitz and Maes (1989)]



A quasicrystal at positive temperature

The construction

i) Take Ammann’s aperiodic Wang tiles.
[. . . or any deterministic aperiodic set]

ii) Extend it to a 1d CA by introducing a blank symbol.

iii) Use Toom-Gács-Reif stacking to simulate this CA with a 3d
CA that is resistant against noise.

iv) Add small symmetric noise to get a positive-rate PCA.

v) Consider the corresponding interaction in 4d.

Theorem
The 4d clone of every valid tiling with Ammann’s tiles is a ground
configuration that is strongly stable at positive temperature.



A quasicrystal at positive temperature

Theorem
The 4d clone of every valid tiling with Ammann’s tiles is a ground
configuration that is strongly stable at positive temperature.

Remarks

I Lowering the temperature corresponds to lowering the
intensity of the noise. [ε̃(β) = 16(ε/16)β

(1−ε)β+16(ε/16)β
]

I There are other Gibbs measures corresponding to immature
tilings. [e.g., the all-blank configuration is also stable.]

I There might be other Gibbs measures that do not correspond
to simulations of the 1d CA.

[I don’t know all the invariant measures of Toom’s CA + noise]

[Do all Gibbs measures correspond to space-time trajectories?]



Open problems

Q1: Is there a shift-invariant Gibbs measure with only non-periodic
Gibbs measures in its extremal decomposition?

[Is Ammann’s tile set α-aperiodic for some α > 0?]

Q2: What is the advantage over independent Ising stacking?
[Here there is a simple order parameter . . . ]

Q3: Can we get rid of the non-quasicrystalline phases?
[Crystalization by decreasing the temperature]

Q4: Use Gács’s (very sophisticated) construction (1986, 2001) to
construct two-dimensional quasicrystals.

[Doesn’t his model already contain quasicrystal phases?]

Q5: Show the (strong) stability of the aperiodic set of Durand,
Romashchenko and Shen (2012) against thermal noise.

Q6: Is “low-temperature phase multiplicity” algorithmically
(un)decidable?

. . .

What to discuss next?
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