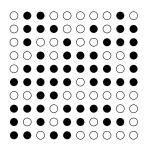
Restricted density classification in one dimension

Siamak Taati Leiden University, The Netherlands

AUTOMATA 2015 — Turku, June 2015



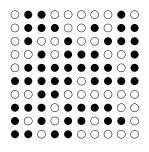
Given: an array of symbols

Task: Determine which symbol is in majority.

Requirements

► A cellular automaton algorithm

- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size



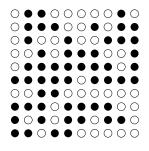
Given: an array of symbols

Task: Determine which symbol is in majority.

Requirements

► A cellular automaton algorithm

- [say, with periodic boundary]
 [using no extra symbols!]
- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size



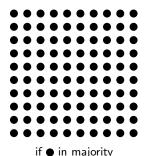
Given: an array of symbols

Task: Determine which symbol is in majority.

Requirements

► A cellular automaton algorithm

- [say, with periodic boundary]
 [using no extra symbols!]
- Output: must reach consensus on the majority symbol
- ► Scalability: must work for arrays of arbitrary size



Given: an array of symbols

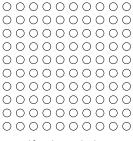
Task: Determine which symbol is in majority.

Poguiromento

Requirements

► A cellular automaton algorithm

- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size



Given: an array of symbols

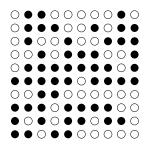
Task: Determine which symbol is in majority.

if \bigcirc in majority

Requirements

► A cellular automaton algorithm

- ▶ Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size



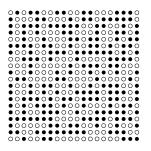
Given: an array of symbols

Task: Determine which symbol is in majority.

Requirements

▶ A cellular automaton algorithm

- ▶ Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size



Given: an array of symbols

Task: Determine which symbol

is in majority.

Requirements

► A cellular automaton algorithm

- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size

Requirements

- A cellular automaton algorithm
- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size

Unfortunately ... (Land and Belew, 1995)

No perfect solution exists!

Natural relaxation

classify correctly with "high probability"

Requirements

- A cellular automaton algorithm
- Output: must reach consensus on the majority symbol
- Scalability: must work for arrays of arbitrary size

Unfortunately ... (Land and Belew, 1995)

No perfect solution exists!

Natural relaxation

classify correctly with "high probability"

$$\cdots \bullet \circ \bullet \bullet \circ \circ \bullet \circ \circ \bullet \bullet \circ \circ \bullet \circ \bullet \bullet \circ \bullet \circ \circ \circ \times$$

Terminology

- ▶ A configuration of symbols: $x : \mathbb{Z} \to \{\bigcirc, \bullet\}$
- ▶ A cellular automaton (CA): $T : \{ \bigcirc, \bullet \}^{\mathbb{Z}} \to \{ \bigcirc, \bullet \}^{\mathbb{Z}}$
- T classifies x according to density if

$$T^t x \to \texttt{all-} \bullet \quad \text{if density}_{ullet}(x) > 1/2, \\ T^t x \to \texttt{all-} \circ \quad \text{if density}_{ullet}(x) < 1/2.$$

as
$$t \to \infty$$
. [convergence \equiv site-wise eventual agreement]

Terminology

- ▶ A configuration of symbols: $x : \mathbb{Z} \to \{\bigcirc, \bullet\}$
- ► A cellular automaton (CA): $\mathsf{T}: \{\bigcirc, \bullet\}^{\mathbb{Z}} \to \{\bigcirc, \bullet\}^{\mathbb{Z}}$
- ▶ T classifies x according to density if

$$\mathsf{T}^t x \to \mathtt{all} - lack \qquad \text{if density}_{ullet}(x) > 1/2, \\ \mathsf{T}^t x \to \mathtt{all} - \Diamond \qquad \text{if density}_{ullet}(x) < 1/2.$$

as
$$t \to \infty$$
. [convergence \equiv site-wise eventual agreement]

Terminology

- ▶ A configuration of symbols: $x : \mathbb{Z} \to \{\bigcirc, \bullet\}$
- ▶ A cellular automaton (CA): $\mathsf{T}: \{\bigcirc, \bullet\}^{\mathbb{Z}} \to \{\bigcirc, \bullet\}^{\mathbb{Z}}$
- T classifies x according to density if

$$\mathsf{T}^t x \to \mathtt{all} - lack \qquad \text{if density}_{ullet}(x) > 1/2, \\ \mathsf{T}^t x \to \mathtt{all} - \Diamond \qquad \text{if density}_{ullet}(x) < 1/2.$$

as
$$t \to \infty$$
. [convergence \equiv site-wise eventual agreement]

Terminology

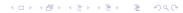
- ▶ A configuration of symbols: $x : \mathbb{Z} \to \{\bigcirc, \bullet\}$
- ▶ A cellular automaton (CA): $\mathsf{T}: \{\bigcirc, \bullet\}^{\mathbb{Z}} \to \{\bigcirc, \bullet\}^{\mathbb{Z}}$
- T classifies x according to density if

$$\begin{array}{ll} \mathsf{T}^t x \to \mathtt{all} - \bullet & \text{if density}_\bullet(x) > 1/2, \\ \mathsf{T}^t x \to \mathtt{all} - \circlearrowleft & \text{if density}_\bullet(x) < 1/2. \end{array}$$

as $t \to \infty$. [convergence \equiv site-wise eventual agreement]

Task (relaxed)

Classify random configurations with high probability. [Random=?]



Classification of random configurations

$$\cdots \bullet \circ \bullet \bullet \circ \circ \bullet \circ \circ \bullet \circ \circ \bullet \circ \bullet \circ \bullet \circ \circ \circ \circ X$$

More specifically . . .

Let X be a configuration chosen at random, $X_i = \begin{cases} \bullet & \text{with prob. p,} \\ \circ & \text{with prob. } 1-p. \end{cases}$

Then, $density_{\mathbf{a}}(X) = p$ almost surely. [by the law of large numbers]

Task (relaxed)

$$\begin{array}{ll} T^t X \to \mathtt{all} - \bullet & \text{if } \mathfrak{p} > 1/2, \\ T^t X \to \mathtt{all} - \circlearrowleft & \text{if } \mathfrak{p} < 1/2. \end{array}$$

with high probability.

Classification of random configurations

$$\cdots \bullet \circ \bullet \bullet \circ \circ \bullet \circ \circ \bullet \circ \circ \bullet \circ \bullet \circ \bullet \circ \circ \circ \circ X$$

More specifically ...

 $\label{eq:configuration} \text{Let } X \text{ be a configuration chosen at random,} \quad x_i = \begin{cases} \bullet & \text{with prob. p,} \\ \circ & \text{with prob. } 1-p. \end{cases}$

Then, density_•(X) = p almost surely.

[by the law of large numbers]

Task (relaxed)

$$T^tX \to all - \bullet$$
 if $p > 1/2$, $T^tX \to all - \circ$ if $p < 1/2$.

with high probability. probability 1.

Note!

The distribution of X is shift-invariant and ergodic, and $\{T^tX \to all - \bullet\}$ and $\{T^tX \to all - \circ\}$ are shift-invariant events.

Classification of coin-flip configurations

Task (almost-sure classification)

$$\begin{array}{ll} T^t X \to \mathtt{all} - \bullet & \text{if } \mathfrak{p} > 1/2, \\ T^t X \to \mathtt{all} - \circlearrowleft & \text{if } \mathfrak{p} < 1/2. \end{array}$$

with probability 1.

Question

Is there a CA that classifies coin-flip configurations almost surely?

[i.e., for any
$$0 \le p \le 1$$
]

In ≥ 2 dimensions (Bušić, Fatès, Mairesse, Marcovici, 2013)

Perfect solution: Toom's NEC rule!

In 1 dimension

- ▶ Not known! But there are candidates . . .
- ▶ Modest goal: when the bias is strong . . .

- Density classification as recovery from noise
- What if there is noise at every step?
 - ▶ Do all-○ and all-● remain stable?
 - → In 2d: Toom's NEC rule (Toom, 1974, 1980)
 - → In 1d: Same candidates ...
 - Gács's sophisticated construction (1986, 2001)
- Density classification as a percolation problem
 - Do contaminations survive (without escaping to infinity)? [Contaminations can only spread through neighbours.]
- ▶ Sharp phase transition in the behaviour when varying p

- Density classification as recovery from noise
- What if there is noise at every step?
 - ▶ Do all-○ and all-● remain stable?
 - → In 2d: Toom's NEC rule (Toom, 1974, 1980)
 - → In 1d: Same candidates ...
 - Gács's sophisticated construction (1986, 2001)
- Density classification as a percolation problem
 - Do contaminations survive (without escaping to infinity)? [Contaminations can only spread through neighbours.]
- ▶ Sharp phase transition in the behaviour when varying p

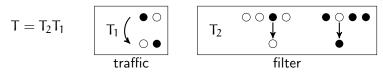
- Density classification as recovery from noise
- What if there is noise at every step?
 - ▶ Do all-○ and all-● remain stable?
 - → In 2d: Toom's NEC rule (Toom, 1974, 1980)
 - → In 1d: Same candidates ...
 - Gács's sophisticated construction (1986, 2001)
- Density classification as a percolation problem
 - Do contaminations survive (without escaping to infinity)? [Contaminations can only spread through neighbours.]
- ▶ Sharp phase transition in the behaviour when varying p

```
contamination
```

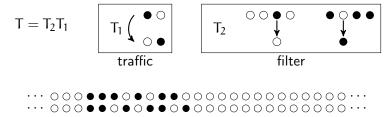
- Density classification as recovery from noise
- What if there is noise at every step?
 - ▶ Do all-○ and all-● remain stable?
 - → In 2d: Toom's NEC rule (Toom, 1974, 1980)
 - → In 1d: Same candidates ...
 - Gács's sophisticated construction (1986, 2001)
- Density classification as a percolation problem
 - Do contaminations survive (without escaping to infinity)? [Contaminations can only spread through neighbours.]
- ▶ Sharp phase transition in the behaviour when varying p

```
contamination
```

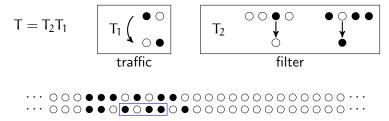
- Density classification as recovery from noise
- What if there is noise at every step?
 - ▶ Do all-○ and all-● remain stable?
 - → In 2d: Toom's NEC rule (Toom, 1974, 1980)
 - → In 1d: Same candidates ...
 - Gács's sophisticated construction (1986, 2001)
- Density classification as a percolation problem
 - Do contaminations survive (without escaping to infinity)?
 [Contaminations can only spread through neighbours.]
- ▶ Sharp phase transition in the behaviour when varying p



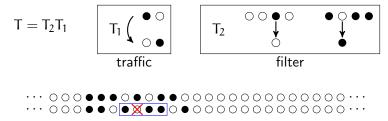
A finite island of ● in a sea of ○



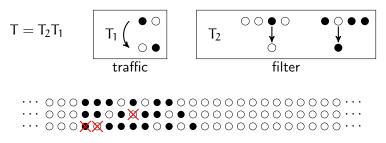
A finite island of ● in a sea of ○



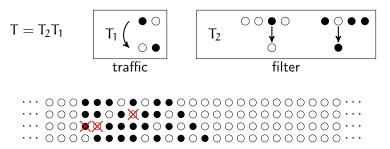
A finite island of ● in a sea of ○



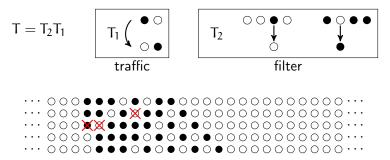
A finite island of ● in a sea of ○



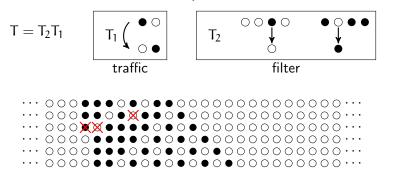
A finite island of ● in a sea of ○



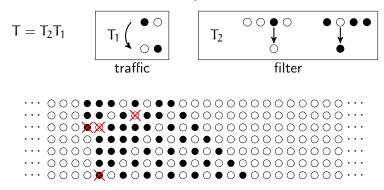
A finite island of ● in a sea of ○



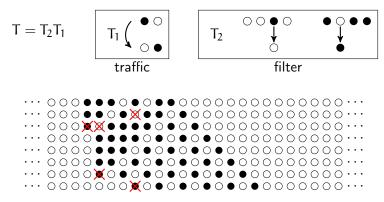
A finite island of ● in a sea of ○



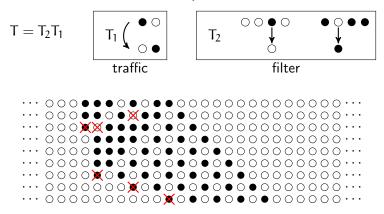
A finite island of ● in a sea of ○



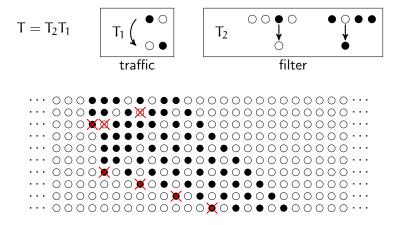
A finite island of \bullet in a sea of \bigcirc



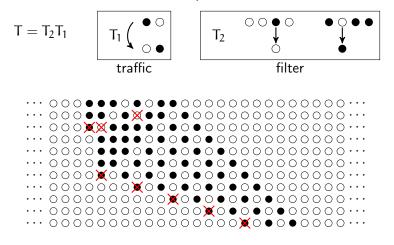
A finite island of ● in a sea of ○



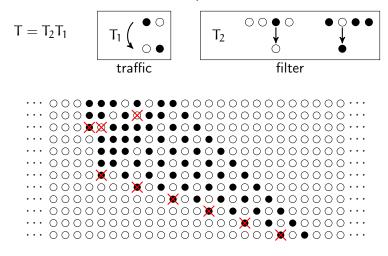
A finite island of ● in a sea of ○



A finite island of \bullet in a sea of \bigcirc

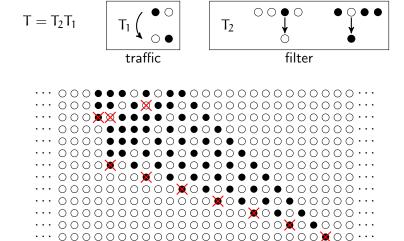


A finite island of ● in a sea of ○



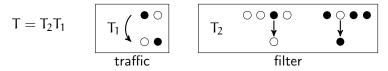
A finite island of ● in a sea of ○

Candidate I: modified traffic (Kari and Le Gloanec, 2012)



The island is washed out!

Candidate I: modified traffic (Kari and Le Gloanec, 2012)



Theorem (Kari and Le Gloannec, 2012)

Every finite island is eventually washed out! An island of length l is washed out within 2l steps.

Candidate II: GKL (Gács, Kurdyumov, Levin, 1978)

$$(Tx)_i \triangleq \begin{cases} \operatorname{maj}(x_{i-3}, x_{i-1}, x_i) & \text{if } x_i = \emptyset, \\ \operatorname{maj}(x_i, x_{i+1}, x_{i+3}) & \text{if } x_i = \bullet, \end{cases}$$

The island is washed out!

Candidate II: GKL (Gács, Kurdyumov, Levin, 1978)

$$(Tx)_i \triangleq \begin{cases} \operatorname{maj}(x_{i-3}, x_{i-1}, x_i) & \text{if } x_i = \bigcirc, \\ \operatorname{maj}(x_i, x_{i+1}, x_{i+3}) & \text{if } x_i = \bullet, \end{cases}$$

The island is washed out!

Candidate II: GKL (Gács, Kurdyumov, Levin, 1978)

$$(\mathsf{Tx})_{\mathfrak{i}} \triangleq \begin{cases} \mathrm{maj}(\mathsf{x}_{\mathfrak{i}-3},\mathsf{x}_{\mathfrak{i}-1},\mathsf{x}_{\mathfrak{i}}) & \text{if } \mathsf{x}_{\mathfrak{i}} = \circlearrowleft, \\ \mathrm{maj}(\mathsf{x}_{\mathfrak{i}},\mathsf{x}_{\mathfrak{i}+1},\mathsf{x}_{\mathfrak{i}+3}) & \text{if } \mathsf{x}_{\mathfrak{i}} = \bullet, \end{cases}$$

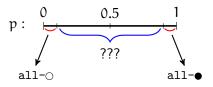
Theorem (de Sá and Maes, 1992)

Every finite island is eventually washed out! An island of length l is washed out within 2l steps.

Restricted classification

Theorem (T., 2014)

Let T be modified traffic or GKL. Then, T classified a biased coin flip configuration almost surely correctly provided the bias is strong.

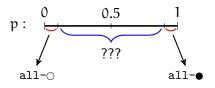


Recall:
$$p \triangleq \mathbb{P}(X_i = \bullet)$$

Restricted classification

Theorem (T., 2014)

Let T be modified traffic or GKL. Then, T classified a biased coin flip configuration almost surely correctly provided the bias is strong.



Recall:
$$p \triangleq \mathbb{P}(X_i = \bullet)$$

Remark I

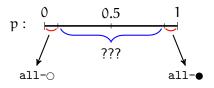
This shows a phase transition when p is varied.

However, it doesn't rule out other phases in between.

Restricted classification

Theorem (T., 2014)

Let T be modified traffic or GKL. Then, T classified a biased coin flip configuration almost surely correctly provided the bias is strong.

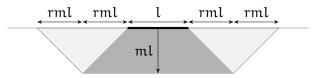


Recall:
$$p \triangleq \mathbb{P}(X_i = \bullet)$$

Remark II

By symmetry, we can focus on p close to 0.

Washing out finite islands (in linear time)



Washing out an island of length l in ml steps r: neighbourhood radius of the CA

Examples: – modified traffic and GKL with m = 2– (also Toom's NEC rule)

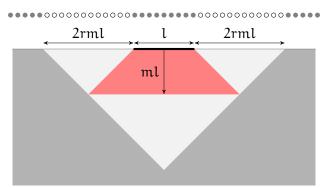
Claim

Suppose T washes out finite islands of \bullet in background of \bigcirc in linear time. Then,

 $\mathsf{T}^t X \to \mathtt{all} \text{--} \bigcirc$ almost surely

if X is a coin flip configuration with p close to 0.

Isolated islands



An isolated island has a sufficiently wide margin of \bigcirc

Observation

An isolated island disappears before sensing or affecting the rest of the configuration.

 \Rightarrow removing an isolated island from a configuration x does not affect whether $T^tx \to all - \bigcirc$ or not.

Isolated islands

An isolated island has a sufficiently wide margin of \bigcirc

Observation

An isolated island disappears before sensing or affecting the rest of the configuration.

 \Rightarrow removing an isolated island from a configuration x does not affect whether $T^tx \to all - \bigcirc$ or not.

Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question

Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question

Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question

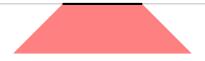
Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question



Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question

Is sparseness enough for $\mathsf{T}^t \to \mathtt{all}\text{--}\!\!\!?$

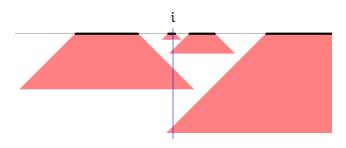
Cleaning isolated islands makes larger islands isolated!

Cleaning procedure [Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012] Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually cleans every •.

 \longrightarrow Decompose a sparse configuration x into a family of islands $\mathcal{I}(x)$.

Question



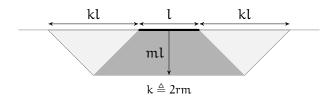
Site i may be changed infinitely often!

We call a sparse configuration x strongly sparse if every site is in the territory of at most finitely many islands in $\mathcal{I}(x)$.

[territory = island and its margin]

Observation

 $\mathsf{T}^t x \to \mathtt{all} - \!\!\! \bigcirc$ if x is strongly sparse.



Theorem (Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012)

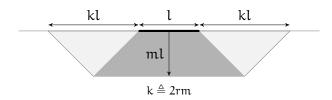
A biased coin flip configuration X is almost surely strongly sparse if the parameter p is sufficiently close to 0.

More precisely: it is enough that $p < (2k)^{-2}$

Examples

For modified traffic and GKL, m = 2 and r = 3, so k = 12.

 \Rightarrow X is classified almost surely correctly if p < 0.0017 or p > 0.9983.



Theorem (Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012)

A biased coin flip configuration X is almost surely strongly sparse if the parameter p is sufficiently close to 0.

More precisely: it is enough that $p < (2k)^{-2}$

Examples

For modified traffic and GKL, m = 2 and r = 3, so k = 12.

 \Rightarrow X is classified almost surely correctly if p < 0.0017 or p > 0.9983.

[Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012]

Choose an appropriate sequence $l_1 < l_2 < l_3 < \cdots \mbox{ of lengths.}$ [to be determined \ldots]

Cleaning procedure: Version II

- 1. Clean all isolated islands of length $\leq l_1$.
- 2. Clean all isolated islands of length $\leq l_2$.
- 3. ...

Note: The notion of sparseness does not change!

Question

What is the probability that site $\mathfrak u$ has state \bullet after $\mathfrak n$ cleaning steps?

[Gács, 1986, 2001, Durand, Romashchenko, Shen, 2012]

Choose an appropriate sequence $l_1 < l_2 < l_3 < \cdots \mbox{ of lengths.}$ [to be determined \ldots]

Cleaning procedure: Version II

- 1. Clean all isolated islands of length $\leq l_1$.
- 2. Clean all isolated islands of length $\leq l_2$.
- 3. ...

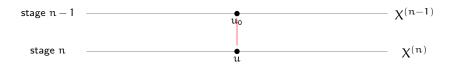
Note: The notion of sparseness does not change!

Question

What is the probability that site u has state \bullet after n cleaning steps?

Explanation tree

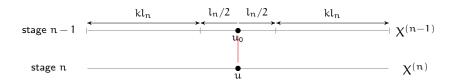
Explanation tree



If site u has state \bullet at stage n, then

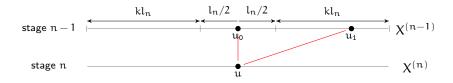
▶ \mathfrak{u} must have state • at stage $\mathfrak{n}-1$, and

Explanation tree



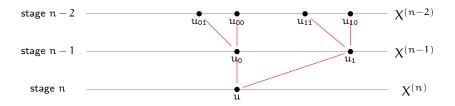
- ▶ \mathfrak{u} must have state at stage $\mathfrak{n}-1$, and
- $\mathfrak u$ must not be inside an isolated island of length $\leq l_n$.

Explanation tree



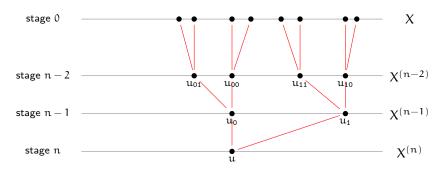
- ▶ \mathfrak{u} must have state at stage $\mathfrak{n}-1$, and
- u must not be inside an isolated island of length $\leq l_n$.

Explanation tree



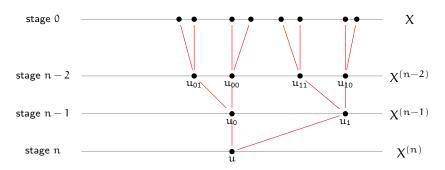
- ▶ \mathfrak{u} must have state at stage $\mathfrak{n}-1$, and
- u must not be inside an isolated island of length $\leq l_n$.

Explanation tree



- ▶ \mathfrak{u} must have state at stage $\mathfrak{n}-1$, and
- $\mathfrak u$ must not be inside an isolated island of length $\leq l_n$.

Explanation tree

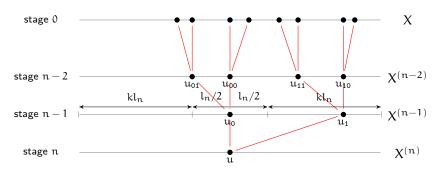


Probability of a tree

Choose $l_n \triangleq (4k+3)^{n-1}$ to sure the leaves are distinct!

 $\mathbb{P}(\text{a given tree is an explanation}) = p^{2^n}$

Explanation tree



Number of a tree

Recursive inequality: $f_n \leq 2kl_n \times f_{n-1}^2$.

$$\#$$
 of trees $\leq (2k)^{2^{n+1}}$

Probability of a tree

 $\mathbb{P}(\text{a given tree is an explanation}) = p^{2^n}$

Number of a tree

$$\#$$
 of trees $\leq (2k)^{2^{n+1}}$

Probability of survival after n cleaning steps

At least one explanation tree must exist!

$$\mathbb{P}(X_{u}^{(n)} = \bullet) \le (2k)^{2^{n+1}} p^{2^{n}} = ((2k)^{2} p)^{2^{n}}$$

which \rightarrow 0 as long as p < $(2k)^{-2}$.

Probability of survival after n cleaning steps

$$\mathbb{P}(X_u^{(n)} = \bullet) \le \left((2k)^2 p \right)^{2^n}$$

which \rightarrow 0 as long as p < $(2k)^{-2}$.

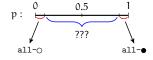
Corollary: sparseness

X is sparse as long as $p < (2k)^{-2}$.

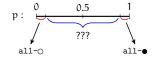
Corollary: strong sparseness

X is strongly sparse as long as $p < (2k)^{-2}$. [by Borel-Cantelli . . .]

Q.E.D.

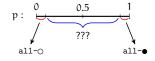


- ► Random configurations with other distributions Sparseness? Classification? [Markov, Gibbs, ...]
- Would sparseness approach work for probabilistic CA?
 - Fatès, 2013: majority-traffic
 - Noisy version of majority
- Noise at each step: modified traffic and GKL
- Washing out errors on tilings and subshifts of finite type
 - Törmä: one-dimensional SFT [in progress]
 - Marcovici and T.: 2d NE-deterministic (extra symbols)

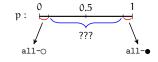


- ► Random configurations with other distributions

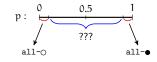
 Sparseness? Classification? [Markov, Gibbs, ...]
- Would sparseness approach work for probabilistic CA?
 - Fatès, 2013: majority-traffic
 - Noisy version of majority
- Noise at each step: modified traffic and GKL
- Washing out errors on tilings and subshifts of finite type
 - Törmä: one-dimensional SFT [in progress]
 - Marcovici and T.: 2d NE-deterministic (extra symbols)



- ► Random configurations with other distributions Sparseness? Classification? [Markov, Gibbs, ...]
- Would sparseness approach work for probabilistic CA?
 - Fatès, 2013: majority-traffic
 - Noisy version of majority
- Noise at each step: modified traffic and GKL
- Washing out errors on tilings and subshifts of finite type
 - Törmä: one-dimensional SFT [in progress]
 - Marcovici and T.: 2d NE-deterministic (extra symbols)



- ► Random configurations with other distributions Sparseness? Classification? [Markov, Gibbs, ...]
- Would sparseness approach work for probabilistic CA?
 - Fatès, 2013: majority-traffic
 - Noisy version of majority
- Noise at each step: modified traffic and GKL
- Washing out errors on tilings and subshifts of finite type
 - Törmä: one-dimensional SFT [in progress]
 - Marcovici and T.: 2d NE-deterministic (extra symbols)



- ► Random configurations with other distributions

 Sparseness? Classification? [Markov, Gibbs, ...]
- Would sparseness approach work for probabilistic CA?
 - Fatès, 2013: majority-traffic
 - Noisy version of majority
- Noise at each step: modified traffic and GKL
- Washing out errors on tilings and subshifts of finite type
 - Törmä: one-dimensional SFT [in progress]
 - Marcovici and T.: 2d NE-deterministic (extra symbols)

Thank you for your attention!