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> A cellular automaton algorithm [say, with periodic boundary]

[using no extra symbols!]
» Qutput: must reach consensus on the majority symbol

» Scalability: must work for arrays of arbitrary size
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Density classification: infinite lattice
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Terminology
» A configuration of symbols: x:Z — {0, e}
» A cellular automaton (CA): T:{0, 0% = {0,e}”

» T classifies x according to density if

T — all-e if density,(x) > 1/2,
T'x — all-0  if density,(x) < /2.

as t — oo. [convergence = site-wise eventual agreement]
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Task (relaxed)
Classify random configurations with high probability. [Random=7]



Classification of random configurations
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More specifically . ..
Let X be a configuration chosen at random, x {. with prob. p,
using independent biased coin flips. " o with prob. 1—p.

Then, density,(X) = p almost surely. [by the law of large numbers]

Task (relaxed)
T'X — all-e  ifp >1/2
T'X — all-o  ifp </

with high probability.
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More specifically . ..

Let X be a configuration chosen at random, _ {. with prob. p,
using independent biased coin flips. " o with prob. 1—p.
Then, density,(X) = p almost surely. [by the law of large numbers]

Task (relaxed)
T'X — all-e  ifp >1/2
T'X — all-o  ifp </
with high—-prebability- probability 1.

Note!
The distribution of X is shift-invariant and ergodic, and
{T*X — all-e} and {T'X — all-0O} are shift-invariant events.



Classification of coin-flip configurations

Task (almost-sure classification)
TX — all-e  ifp >1/2
TX - all-o  ifp<l/.
with probability 1.

Question
Is there a CA that classifies coin-flip configurations almost surely?
[i.e., forany 0 <p < 1]

In > 2 dimensions (Busi¢, Fates, Mairesse, Marcovici, 2013)

Perfect solution: Toom’s NEC rule! |

In T dimension

» Not known! But there are candidates ...

» Modest goal: when the bias is strong ...



Interpretations & related problems
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» Do all-O and all-@ remain stable?

— In 2d: — Toom’s NEC rule (Toom, 1974, 1980)
—— In 1d: — Same candidates ...
— Gécs's sophisticated construction (1986, 2001)

Density classification as a percolation problem
» Do contaminations survive (without escaping to infinity)?

[Contaminations can only spread through neighbours.]
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Sharp phase transition in the behaviour when varying p
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Candidate I: modified traffic (Kari and Le Gloanec, 2012)

® O [OXCX XO) [ JOX X J
T=TT T, ( T,
Oe O [ J
traffic filter

Theorem (Kari and Le Gloannec, 2012)

Every finite island is eventually washed out!
An island of length 1 is washed out within 21 steps.

Symmetry: O > @ and left ¢ right
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Candidate II: GKL (Gacs, Kurdyumov, Levin, 1978)

i=

maj(xi, Xi+1,Xi+3) if xi = @,

Theorem (de Sa and Maes, 1992)

Every finite island is eventually washed out!
An island of length 1 is washed out within 21 steps.

Symmetry: O - @ and left <5 right



Restricted classification

Theorem (T., 2014)

Let T be modified traffic or GKL. Then, T classified a biased coin
flip configuration almost surely correctly provided the bias is strong.
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Remark |
This shows a phase transition when p is varied.
However, it doesn't rule out other phases in between.



Restricted classification

Theorem (T., 2014)

Let T be modified traffic or GKL. Then, T classified a biased coin
flip configuration almost surely correctly provided the bias is strong.

0 0.5 1
P = + —+—
/ 77 \
all-o all-e

Recall: p £ P(X; = @)

Remark 11

By symmetry, we can focus on p close to 0.



Washing out finite islands (in linear time)
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ml

N

Washing out an island of length 1 in ml steps
T: neighbourhood radius of the CA

Examples: — modified traffic and GKL with m =2
— (also Toom's NEC rule)

Claim
Suppose T washes out finite islands of @ in background of O in
linear time. Then,

T'X — all-0 almost surely

if X is a coin flip configuration with p close to 0.



Isolated islands

l
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Observation

An isolated island has a sufficiently wide margin of O

An isolated island disappears before sensing or affecting the rest of
the configuration.

= removing an isolated island from a configuration x does not
affect whether T'x — al1-0 or not.

DA



Isolated islands
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Observation

An isolated island has a sufficiently wide margin of O

An isolated island disappears before sensing or affecting the rest of
the configuration.

= removing an isolated island from a configuration x does not
affect whether T'x — al1-0 or not.
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Washing out sparse sets

Cleaning isolated islands makes larger islands isolated!

C|eaning procedure [G&cs, 1986, 2001, Durand, Romashchenko, Shen, 2012]
Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually
cleans every e@.

—— Decompose a sparse configuration x
into a family of islands Z(x).

Question
Is sparseness enough for Tt — al1-0?
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Washing out sparse sets

Cleaning isolated islands makes larger islands isolated!

Cleaning procedure  [Gécs, 1986, 2001, Durand, Romashchenko, Shen, 2012]
Clean isolated islands recursively.

We call a configuration sparse if the cleaning procedure eventually
cleans every e@.

—— Decompose a sparse configuration x
into a family of islands Z(x).

Question
Is sparseness enough for Tt — all-0?



Washing out sparse sets

Site i may be changed infinitely often!

We call a sparse configuration x strongly sparse if every site is in
the territory of at most finitely many islands in Z(x).

Observation

[territory = island and its margin]
T'x — all-0 if x is strongly sparse.

DA



Sparseness of random configurations

kl l kl

ml

k£ 2rm

Theorem (Gécs, 1986, 2001, Durand, Romashchenko, Shen, 2012)

A biased coin flip configuration X is almost surely strongly sparse
if the parameter p is sufficiently close to 0.

More precisely: it is enough that p < (2k)~2

Examples

For modified traffic and GKL, m =2 and r =3, so k = 12.
= X is classified almost surely correctly
if p<0.0017 or p > 0.9983.
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Sparseness of random configurations: proof
[Gécs, 1986, 2001, Durand, Romashchenko, Shen, 2012]

Choose an appropriate sequence 1} < 1 < I3 < --- of lengths.
[to be determined .. .]

Cleaning procedure: Version I

1. Clean all isolated islands of length < 1;.
2. Clean all isolated islands of length < 1.
3. ...

Note: The notion of sparseness does not change!

Question
What is the probability that site u has state @
after n cleaning steps?
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Sparseness of random configurations: proof

Explanation tree

stage n

ce

If site u has state @ at stage n, then

x(m)
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Explanation tree

kln /2 1n/2 kln

stage n—1
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ce

If site u has state @ at stage n, then
» U must have state @ at stage n — 1, and

» U must not be inside an isolated island of length < 1,.
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Sparseness of random configurations: proof

Explanation tree
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If site u has state @ at stage n, then
» U must have state @ at stage n — 1, and
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Explanation tree
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Sparseness of random configurations: proof

Explanation tree

stage 0
stage n —2 (n—2)
ro
— e . 1
stage n — 1 T /u x(m-1)
stage n ° x(m)
u

If site u has state @ at stage n, then
» U must have state @ at stage n — 1, and

» U must not be inside an isolated island of length < 1,.



Sparseness of random configurations: proof

Explanation tree

stage 0 - e e e e e e e X
stage n —2 —o—uf—o—oi x(n—2)
stage n— 1 T=/= X(n—=1)

stage n . X ()

Probability of a tree
Choose 1, £ (4k + 3)™! to sure the leaves are distinct!

PP(a given tree is an explanation) = p?" J




Sparseness of random configurations: proof

Explanation tree

stage 0
stage n — 2 X (n—2)
0
kln ln ln/2 r
t -1 | ° | x(n—1)
stage T/m X
stage n . x(m)

Number of a tree
Recursive inequality: f,, < 2kl x fﬁq

# of trees < (Zk)zn+1 J




Sparseness of random configurations: proof
Probability of a tree

PP(a given tree is an explanation) = p?" J

Number of a tree

# of trees < (Zk)2TL+1 J

Probability of survival after n cleaning steps
At least one explanation tree must exist!

PX{” =) < (222" = ((2K)%p)" |

which — 0 as long as p < (2k) 2.



Sparseness of random configurations: proof

Probability of survival after n cleaning steps

PX = o) < ((2K)2p)" |

which — 0 as long as p < (2k) 2.

Corollary: sparseness
X is sparse as long as p < (2k) 2.

Corollary: strong sparseness
X is strongly sparse as long as p < (2k)~2. [by Borel-Cantelli . . .]

Q.E.D.



Remarks and open problems

» Does an intermediate phase exist?
0 0.5 1

P
e —
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all-o all-e
» Random configurations with other distributions
Sparseness? Classification? [Markov, Gibbs, ...]
» Would sparseness approach work for probabilistic CA?
— Fates, 2013: majority-traffic
— Noisy version of majority
» Noise at each step: modified traffic and GKL
» Washing out errors on tilings and subshifts of finite type

— Torma: one-dimensional SFT [in progress]
— Marcovici and T.: 2d NE-deterministic (extra symbols)
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Thank you for your attention!



