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Abstract. The problem of describing the dynamics of a conserved energy in a cellular
automaton in terms of local movements of “particles” (quanta of that energy) has attracted
some people’s attention. The one-dimensional case was already solved by Fukś (2000) and
Pivato (2002). For the two-dimensional cellular automata, we show that every (context-
free) conservation law can be expressed in terms of such particle displacements.

Introduction

Let L = Zd be the d-dimensional square lattice, and S a finite set of states. Every
cellular automaton (CA for short) F : SL → SL maps the uniform configurations into the
uniform configurations. Two configurations x, y : L→ S are asymptotic if they agree on all
but finitely many cells of the lattice. The image of asymptotic configurations under every
cellular automaton remain asymptotic.

A (context-free) energy assignment is a function µ : S → R. The µ-content of a finite
pattern p : A→ S (A ⊆ L finite) is the sumM(p) ,

∑
i∈A µ (p[i]). For every two asymptotic

configurations x, y ∈ SL, the corresponding energy difference is

δM(x, y) ,
∑
i∈L

[µ(y[i])− µ(x[i])] (0.1)

which is clearly well-defined (only a finite number of terms are non-zero). The energy µ is
conserved by a cellular automaton F : SL → SL, if

δM(Fx, Fy) = δM(x, y) (0.2)
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for every two asymptotic configurations x and y. This is equivalent to the formulations in
terms of finite or periodic configurations [7, 3]. In particular, one can show that, if F maps
an a-uniform configuration to a b-uniform configuration, we must have µ(a) = µ(b).

For a conserved energy µ, it is desirable to find a local rule that explains the microscopic
dynamics of µ under the iteration of F , in terms of “flows” of energy from one cell to another.
More specifically, a flow for µ is a mapping x, i, j 7→ Φi→j(x) ∈ R for x ∈ SL and i, j ∈ L
that satisfies the following conditions:
a) For every configuration x and every cell a,

µ (x[a]) =
∑
j∈L

Φa→j(x) , (0.3)

b) For every configuration x and every cell a,∑
i∈L

Φi→a(x) = µ ((Fx)[a]) , (0.4)

c) There exist finite sets K, I ⊆ L, and a rule ϕ : SK × I → R such that,

Φi→j(x) =
{
ϕ (x[j +K], i− j) if i− j ∈ I,
0 otherwise, (0.5)

for every x ∈ SL and i, j ∈ L.
Here, f [A] denotes the restriction of a function f to a subset A of its domain. Equations (0.4)
and (0.3) are called the continuity equations. Equation (0.5) states that the amount of the
flows toward each cell is decided locally, by looking at a finite neighborhood K of that cell.
The set I is the set of directions from which energy flows into a cell. The local rule ϕ is
called an inflow. An energy µ is locally conserved by F , if it has an inflow.

Proposition 0.1 (Hattori and Takesue [7]). In cellular automata, conserved energies are
locally conserved.

We remark that the third condition in the above definition could equivalently be for-
mulated in terms of an outflow.

Recently a number of people have shown interest in flows that can be interpreted as
displacement of “particles” (see e.g. [6, 10, 9, 1]). In such a case, the µ-content of a pattern
p is seen as the sum of the energies (or masses) of the particles in p.

Recall that every finitely generated subgroup of R is isomorphic to Zm for some m ≥ 0.
If an energy µ : S → Zm is conserved by a cellular automaton F , each of its m components
must be conserved independently. If we are able to find “particle flows” for each component,
we can extend our interpretation for µ by assuming m different types of particles which flow
independently. So, without loss of generality, we can concentrate on the case µ : S → Z
or µ : S → Q. Now, if the particles are indistinguishable and each have the same energy
ε ∈ R, for every state s ∈ S we must have µ(s) = ν(s) ·ε, where ν(s) ∈ Z≥0 is the number of
particles in s. Thus, it makes sense to assume µ is everywhere non-negative (or everywhere
non-positive).

Formally, let µ : S → Q≥0 be a conserved energy for a cellular automaton F . A particle
flow for µ is a flow Φ whose values are from non-negative rationals Q≥0. Let Φ be a particle
flow which is defined by an inflow ϕ : SK×I → Q≥0. Let ε > 0 be such that ϕ(p, i)/ε ∈ Z≥0

for every p and i. Then ε is the µ-content of a particle and the function ρ(·, ·) , ϕ(·, ·)/ε
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is called a particle displacement rule. For every state s ∈ S, ν(s) , µ(s)/ε is the number of
particles in s.

Proposition 0.2 (Fukś [6] and Pivato [10]). Let F : SZ → SZ be a one-dimensional cellular
automaton, and µ : S → N an energy conserved by F . Then, µ has a particle flow.

We extend this result to the two-dimensional CA. In Section 1, we show how to construct
a particle flow for a conserved energy in a two-dimensional radius-1

2 CA. In Section 2, we
give a sketch of how this can be exploited in the case of arbitrary neighborhoods. Some
open problems are proposed in Section 3.

1. Particle Flows in Radius One Half CA

Let F : SZ2 → SZ2
be a two-dimensional CA with neighborhood

N = {(0, 0), (0, 1), (1, 1), (1, 0)} (1.1)

and local rule f : SN → S. The neighbors (0, 0), (0, 1), (1, 1) and (1, 0) are interpreted,
respectively, as the down-left (dl), up-left (ul), up-right (ur) and down-right (dr) neighbors.
Such a neighborhood is often called radius-1

2 .
To simplify our exposition, let us distinguish between neighbors of a cell i, and the cells

adjacent to it. The former are the cells i+dl, i+ul, i+ur and i+dr one step before, while
the latter are the cells i+ r, i+ u, i+ l and i+ d at the same time step, where r = (1, 0),
u = (0, 1), l = (−1, 0) and d = (0,−1).

Let µ : S → Q≥0 be a conserved energy. Without loss of generality, we can assume that
µ(�) = 0 for a state � ∈ S which we call blank. For every state x ∈ S we define the free
flows going out of x by looking at the configurations

� � �
� x �
� � �

F−→
x2 x3

x1 x4
(1.2)

That is, ϕ ←(x) , µ(f(� •
x

� �)), ϕ ↑ (x) , µ(f(� •
�

� x
)), ϕ →(x) , µ(f(� •

�
x �)) and ϕ ↓ (x) ,

µ(f(x •
�

� �)). By the conservation of µ, we have

ϕ ←(x) + ϕ ↑ (x) + ϕ →(x) + ϕ ↓ (x) = µ(x) . (1.3)

When two states are put next to each other, their touching out-going flows interfere
and as a result we have a flow deflection from one cell toward another.

� � � �
� x y �
� � � �

F−→
x2 a y3

x1 b y4
(1.4)

Specifically, for every x, y ∈ S, define

ψ↑(x y) , max
{

0, µ(f(� •
�

x y))− ϕ →(x)− ϕ ↑ (y)
}
, (1.5)

and
ψ↓(x y) , max

{
0, µ(f(x •

y

� �))− ϕ ↓ (x)− ϕ ←(y)
}
. (1.6)
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By the conservation of µ we have

µ(f(� •
�

x y)) = ϕ →(x) + ϕ ↑ (y) + ψ↑(x y)− ψ↓(x y) , (1.7)

µ(f(x •
y

� �)) = ϕ ↓ (x) + ϕ ←(y) + ψ↓(x y)− ψ↑(x y) , (1.8)

and either ψ↓(x y) or ψ↑(x y) is zero. The deflections ψ→(xy) and ψ←(xy) are defined simi-
larly, and in the same way we have

µ(f(x •
�

y �)) = ϕ ↓ (x) + ϕ →(y) + ψ→(xy)− ψ←(xy) , (1.9)

µ(f(� •
x

� y)) = ϕ ←(x) + ϕ ↑ (y) + ψ←(xy)− ψ→(xy) , (1.10)

and either ψ←(xy) or ψ→(xy) is zero. The deflections summarize all the interactions between
the free flows:

Lemma 1.1. For every x, y, z, t ∈ S we have

µ(f(
y
•
z

x t
)) = ϕ →(x) + ϕ ↓ (y) + ϕ ←(z) + ϕ ↑ (t)

+ ψ→(
y

x
) + ψ↓(y z) + ψ←(

z

t
) + ψ↑(x t )

− ψ←(
y

x
)− ψ↑(y z)− ψ→(

z

t
)− ψ↓(x t ) . (1.11)

We shall think of the free flows and the flow deflections as weighted arrows from one
cell (in the space-time) to another. For example, in the consecutive configurations

p
!!B

BB
y

}}||| !!B
BB

z
}}|||

a b

q

==|||
x

aaBBB ==|||
t

aaBBB
F−→

p y z

a // b

q x t

(1.12)

the free flow ϕ ↓ (p) determines an arrow toward the cell with state a from its up-left neighbor
in the previous time step, and so forth. Similarly, there is a deflection arrow from a to b
with weight ψ→(

y

x
) ≥ 0 and one in the opposite direction with weight ψ←(

y

x
) ≥ 0, even

though at least one of them is zero. For two consecutive configurations x and y = F (x),
let us write Φ →[i] for the free flow arrow with value ϕ → (x[i+ dl]) from the cell i+ dl (on
x), to the cell i (on y), and so forth. Similarly, let Ψ↑[i], Ψ→[i], Ψ↓[i] and Ψ←[i] be the
deflection arrows going out from i (on y) to the cells i + u, i + r, i + d and i + l (on y),
respectively.

Deflections represent the deviation of an actual flow from the free flows. If we split each
deflection ψ↑ (resp. ψ→, ψ↓, ψ←) into two parts ψ� and ψ� (resp. ψ⇀ and ψ⇁, ψ� and ψ�,
ψ↽ and ψ↼) and use these parts to correct the free flows, we obtain an actual flow for µ.
To be precise, at each cell i, the arrow Φ →[i] is corrected to

Φ′→[i] , Φ →[i]−Ψ�[i] + Ψ�[i+ u]−Ψ⇀[i] + Ψ↼[i+ r] (1.13)

and so forth (Figure 1). We require the splits ψ�, ψ�, . . . to be non-negative and rational.
Otherwise, the splitting can be arbitrary and may depend on the local neighborhood pattern.
The main challenge here is to do the splitting in such a way that the corrected flow has
only non-negative rational values.
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Figure 1: Correcting the flows.

Let us say that a cell i on y is balanced, if
a) Φ ↓ [i] + Φ ←[i] ≥ Ψ↑[i] (and its rotations),
b) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] ≥ Ψ↑[i] + Ψ→[i] (and its rotations), and
c) Φ ↓ [i] + Φ ←[i] + Φ ↑ [i] + Φ →[i] ≥ Ψ↑[i] + Ψ→[i] + Ψ↓[i] + Ψ←[i].

Observation 1.2. For every a, b, c ∈ S we have
a) ϕ ↓ (a) + ϕ ←(b) ≥ ψ↑(a b).

b) ϕ ↓ (a) + ϕ ←(b) + ϕ ↑ (c) ≥ ψ↑(a b) + ψ→(b
c
).

Lemma 1.3. If a cell is balanced, we can split its out-going deflections properly, so that its
corrected in-coming flows remain non-negative and rational.

Proof. Let i be a balanced cell. Let us do the splitting in such a way that (the splits are
non-negative and rational, and) when the flows are corrected, the total amount of negative
flows coming into i (let us call it M) is minimal. We claim that the corrected in-coming
flows of i are non-negative.

Suppose the contrary. Without loss of generality, assume that Φ′
→
< 0. Since the sum

of the corrected in-coming flows of i is non-negative (requirement (c) of balancedness), at
least one of the other in-coming flows is strictly positive.

First assume that all the splits are strictly positive. If Φ′ ↑ > 0, we could get a splitting
with smaller M , by choosing

Ψ′� = Ψ� − ε (1.14)

Ψ′� = Ψ� + ε (1.15)

(see Figure 2.a) for a sufficiently small ε > 0.
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Figure 2: Proper splitting of the deflections.

By symmetry, Φ′ ↓ > 0 cannot happen either. So let Φ′ ↑ ,Φ
′
↓ ≤ 0 and Φ′

←
> 0. Again,

this is not possible, because if (for a sufficiently small ε > 0) we chose

Ψ′� = Ψ� − ε (1.16)

Ψ′� = Ψ� + ε (1.17)

Ψ′⇁ = Ψ⇁ − ε (1.18)
Ψ′⇀ = Ψ⇀ + ε (1.19)

(see Figure 2.b) we would get a smaller M .
If Ψ� = 0, then Φ → < Ψ↽ and by requirement (a) of balancedness Φ ↓ > Ψ↼ ≥ 0. If

Φ′ ↓ > 0, by choosing a different splitting like before, we could get a smaller M . So Φ′ ↓ ≤ 0
and Ψ� > 0. Now, by requirement (b) of balancedness Φ ← > Ψ� ≥ 0. Again, if Φ′

←
> 0, by

choosing a different splitting like before, leads us to a smaller M . So Φ′
←
≤ 0 and Ψ⇀ > 0.

At this point, since Φ′
→
< 0 and Φ′ ↓ ,Φ

′
←
≤ 0, we must have Φ′ ↑ > 0. But again, by

taking a sufficiently small ε > 0 and choosing the splitting

Ψ′↽ = Ψ↽ − ε (1.20)
Ψ′↼ = Ψ↼ + ε (1.21)
Ψ′� = Ψ� − ε (1.22)

Ψ′� = Ψ� + ε (1.23)

Ψ′⇀ = Ψ⇀ − ε (1.24)
Ψ′⇁ = Ψ⇁ + ε (1.25)

(see Figure 2.c) we would get a smaller M .
Finally, let Ψ�,Ψ↽ > 0. If either Φ′ ↑ > 0 or Φ′ ↓ > 0 we could make M smaller like

before. So Φ′ ↑ ,Φ
′
↓ ≤ 0 and Φ′

←
> 0. Now, by the requirement (b) of balancedness, either

Ψ⇁ > 0 or Ψ� > 0. So, again we could get a smaller M as before.
Hence, in any case Φ′

→
< 0 leads to a contradiction, which by symmetry means the

corrected in-coming flows of i must all be non-negative.
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Figure 3: The situations that may happen around a cell.
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Figure 4: Doubly problematic cell.

Figure 3 shows a cell and the various situations that may happen, based on the direction
of the deflection arrows around it. The other possibility are all symmetrically identical to
these five case. According to the Lemma 1.3, Observation 1.2 guarantees that, unless there
is exactly one deflection directing toward a cell (i.e., the cases (1-4)), one can correct the
in-coming free flows of that cell to satisfy its out-going deflections, in such a way that the
corrected flows remain non-negative. Let us call a cell problematic (P in symbol) if the
situation around it is as in case (5) (or its symmetrically identical variants). We call a cell
doubly problematic (~P in symbol) if it is problematic, and furthermore, the endpoints of its
out-going deflection arrows are also problematic (Figure 4). For two adjacent cells i and j,
let us say j follows i, if there is a deflection arrow from i to j.

Observation 1.4. If j follows i, both of i and j cannot be doubly problematic at the same
time.

Theorem 1.5. Let F : SZ2 → SZ2
be a two-dimensional radius-1

2 cellular automaton.
Then, every conserved energy µ : S → Q≥0 has a particle flow, with flows entering each cell
only from its four neighbors.

Proof. Let x and y be two consecutive configurations in SZ2
. Let us set the free flows as

an initial approximation of the desired flow. That is, let Φ(0)
d , Φd (d ∈ { →, ↓ , ←, ↑ }).

We construct a non-negative rational flow for µ, by correcting this approximation in three
steps. At each step a number of deflections are split and redistributed into the affected
flows.

Step 1.
Splitting. For every cell i which is in either cases (1-4) of Figure 3 we split the out-
going deflections as suggested in Lemma 1.3. If the cell is doubly problematic, we leave the
splitting of its out-going deflections for the next step. If the cell is problematic, but not
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doubly problematic, we leave one of its out-going deflections that leads to a non-problematic
cell for the next step, and split the other two, as described in Lemma 1.3.
Correcting. We use the already split deflections to correct the flows. Let Φ(1)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

Step 2.
Splitting. Let i be a problematic cell. Notice that unless i follows a doubly problematic
cell, its in-coming deflection is already resolved in the previous step. So, in this case i is no
more problematic, and we can split its out-going deflections as explained in Lemma 1.3. In
particular, all the out-going deflections of (formerly) doubly problematic cells are split in
this step (Observation 1.4).
Correcting. We correct the flows using the newly split deflections. Let Φ(2)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

Step 3.
Splitting. The only unresolved deflections are those leaving a problematic cell (such as
i) which follows an initially doubly problematic cell. But the out-going deflections of the
doubly problematic cells are already resolved. So i is no further problematic. We split its
unresolved out-going deflection using Lemma 1.3.
Correcting. We correct the flows using the newly split deflections. Let Φ(3)

d (d ∈
{ →, ↓ , ←, ↑ }) be the corrected flow arrows of this step.

At this point, all the deflections are resolved. The corrected arrows Φ(3)
d define a flow

Φ by

Φi→j ,



Φ(3)

→
[j] if i = j + dl,

Φ(3)

↓ [j] if i = j + ul,

Φ(3)

←
[j] if i = j + ur,

Φ(3)

↑ [j] if i = j + dr,
0 otherwise,

(1.26)

for µ, which satisfies the continuity equations, and its values are locally determined. Also,
by construction, the values of Φ are all non-negative and rational. Therefore, Φ is a particle
flow.

2. Particle Flows in CA with Arbitrary Neighborhood

Every CA can be transformed into a radius-1
2 one, using a combination of a translation

and moving to a higher block representation. A conserved energy µ : S → Q≥0 gives a
conserved energy µ̂ : Ŝ → Q≥0 for the new CA, which simply measures the collective energy
of the super-cells of this new CA. By the discussion of the previous chapter, we can find a
particle flow for µ̂. This can be turned into a particle flow for µ in the following way.

Let x and y = F (x) be two consecutive configurations in the original CA. For each
super-cell î on x let us order its out-going flow arrows using, for example, the lexicographic
ordering of their end points, and distribute them properly into its constituent cells, so that
each cell with state s gives out exactly µ(s). Now for each cell i on x and each super-
cell ĵ on y, we have a flow arrow from i to ĵ. Then, for each super-cell on y order its
in-coming flow arrows according to the lexicographic ordering of their starting points, and
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distribute them properly into its constituent cells, so that each cell with state s receives
exactly µ(s). Clearly, this can be done locally, but the obtained flow may not be translation-
invariant. However, if we translate the partitioning of the cells and take the average of the
flows obtained from each partitioning, we obtain a translation-invariant flow which is still
non-negative and rational-valued.

3. Open Problems

With enough patience, one should be able to find a particle representation for the
conservation laws of the three-dimensional CA, or the CA on the hexagonal or triangular
lattices, using similar analysis. Is there a unified approach that works for any lattice, in
any number of dimensions?

A drawback of our solution is the arbitrariness involved. There are infinite number of
ways one can assign a flow to a given conservation law. Can we (possibly by putting some
extra constraints, or by formalizing the concept of the flows in a different way) obtain a
“natural” flow for each conservation law, which is unique? One criterion for naturalness is
that for a reversible CA, the flows in the backward direction of time should be obtained
from the flows in the forward direction, only by reversing the direction of the arrows. Such a
concept of flow would definitely give a better understanding of the dynamics of the conserved
energy.
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[1] N. Boccara and H. Fukś, Motion representation of one-dimensional cellular automata rules, Inter-
national Journal of Modern Physics C, 17 (2006), pp. 1605–1611.

[2] T. Boykett, J. Kari, and S. Taati, Conservation laws in rectangular CA, Journal of Cellular Au-
tomata, To appear.

[3] T. Boykett and C. Moore, Conserved quantities in one-dimensional cellular automata. Unpublished
manuscript, 1998.
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Appendix A

Proof of Proposition 0.1. Let F : SL → SL be a cellular automaton with neighborhood
N ⊆ L and local rule f : SN → S, and let µ : S → R be an energy which is conserved by F .
Fix a state � ∈ S as blank. We construct an inflow ϕ̄ for the conserved energy µ̄ , µ(·)−µ(�).
An inflow for µ follows by superposing ϕ̄ with a constant inflow ϕ�(·, 0) ≡ µ(�). That is,
ϕ = ϕ̄+ ϕ�.

Let � be the lexicographic order on L. For every cell a ∈ L, let γ(a) be its successor
according to the total ordering �. For every pattern p : A → S (A ⊆ L) and every cell a,
define the pattern χap : A→ S with

(χap)[i] =
{
� if a � i,
p[i] otherwise. (A.1)

Notice that for every configuration x and every cell a, the configurations χax and χγ(a)x
are asymptotic, and we have

δM̄
(
χax, χγ(a)x

)
= µ̄(x[a])− µ̄(�) = µ̄(x[a]) . (A.2)

We define the amount of flow from the cell a to the cell b as the difference between the
µ̄-content of the cell b in F (χax) and F (χγ(a)x).

More precisely, set K = I = N . For every pattern p : N → S and a direction i ∈ N , let

ϕ(p, i) , µ̄
(
f(χγ(i)p)

)
− µ̄ (f(χip)) . (A.3)

We prove that ϕ̄ satisfies the continuity equations.
First, let i1 ≺ i2 ≺ i3 ≺ · · · ≺ in (n = |N |) be the enumeration of the elements of N

according to the order �. Let x be an arbitrary configuration and a an arbitrary cell. Note
that in χa+i1x, all the cells in the neighborhood of a are blank, so F (χa+i1x)[a] = f(�N ).
Similarly, F (χa+γ(in)x)[a] = (Fx)[a], and F (χa+γ(it)x)[a] = F (χa+it+1x)[a], for every 1 ≤
t < n. Therefore, we have∑

i∈N

ϕ̄ (x[a+N ], i) =
∑
i∈I

[
µ̄

(
F (χa+γ(i)x)[a]

)
− µ̄ (F (χa+ix)[a])

]
(A.4)

=
n∑

t=1

[
µ̄

(
F (χa+it+1)x)[a]

)
− µ̄ (F (χa+itx)[a])

]
(A.5)

= µ̄ ((Fx)[a])− µ̄(�) (A.6)
= µ̄ ((Fx)[a]) (A.7)

Next, notice that the configurations F (χax) and F (χγ(a)x) may differ only on the cells
in a−N . Thus, conservation of µ̄ implies that

µ̄ (x[a]) = δM̄
(
χax, χγ(a)x

)
(A.8)

= δM̄
(
F (χax), F (χγ(a)x)

)
(A.9)

=
∑
i∈N

[
µ̄

(
F (χγ(a)x)[a− i]

)
− µ̄ (F (χax)[a− i])

]
(A.10)

=
∑
i∈I

ϕ̄ (x[a− i+N ], i) . (A.11)

Hence, ϕ̄ is an inflow for µ̄ and we are done!


