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Abstract Conservation laws in cellular automata (CA) are studied as an abstraction of

the conservation laws observed in nature. In addition to the usual real-valued conservation

laws we also consider more general group-valued and semigroup-valued conservation

laws. The (algebraic) conservation laws in a CA form a hierarchy, based on the range of the

interactions they take into account. The conservation laws with smaller interaction ranges

are the homomorphic images of those with larger interaction ranges, and for each specific

range there is a most general law that incorporates all those with that range. For one-

dimensional CA, such a most general conservation law has—even in the semigroup-valued

case—an effectively constructible finite presentation, while for higher-dimensional CA

such effective construction exists only in the group-valued case. It is even undecidable

whether a given two-dimensional CA conserves a given semigroup-valued energy

assignment. Although the local properties of this hierarchy are tractable in the one-

dimensional case, its global properties turn out to be undecidable. In particular, we prove

that it is undecidable whether this hierarchy is trivial or unbounded. We point out some

interconnections between the structure of this hierarchy and the dynamical properties of the

CA. In particular, we show that positively expansive CA do not have non-trivial real-

valued conservation laws.
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1 Introduction

Conservation laws in physics provide numerical invariants of the dynamics of a system. In

cellular automata (CA), a similar concept has already been defined and studied (see e.g.

Hattori and Takesue 1991; Boccara and Fukś 1998; Pivato 2002; Durand et al. 2003;

Formenti and Grange 2003; Moreira et al. 2004). We first choose a finite window through

which we can recognize the pattern made by the states of a finite number of cells on the

lattice. We associate a real value to each possible local pattern that may be seen through

this window, resembling the ‘‘energy’’ (or ‘‘mass’’, or . . .) of that pattern. Usually the CA

has a designated non-active state and the ‘‘energy’’ of the uniformly non-active pattern is

chosen to be zero. The total ‘‘energy’’ of a configuration is obtained by sliding the window

all over the lattice and adding up the energy values of the local patterns we see. The total

energy is not always meaningful, but it is so for any finite configuration (i.e., a configu-

ration with only finitely many active cells). We have a conservation law for that energy

provided the evolution of the CA preserves the total energy of each finite configuration.

In physics, conservation laws are used to write equations about the dynamics of the

system. Each conserved quantity extracts certain information about the dynamics. In many

cases, different conservation laws extract enough information to allow the reconstruction

of the whole dynamics. In other cases, conservation laws concretize the physicist’s insight

into the behavior of the system by refuting those sequences of events that do not respect

their preservation.

The study of conservation laws in cellular automata was initiated in connection with

cellular automata models of physical phenomena (see e.g. Hardy et al. 1976; Pomeau 1984;

Takesue 1987). Hattori and Takesue were first to consider such laws in a general abstract

setting and address the problem of finding and verifying them. Various mathematical and

algorithmic characterizations of conservation laws in cellular automata are investigated in

details (see e.g. Hattori and Takesue 1991; Pivato 2002; Durand et al. 2003). Certain natural

conservation laws are also used to define a rich class of cellular automata (see e.g. Boccara

and Fukś 1998; Fukś 2000; Durand et al. 2003; Formenti and Grange 2003; Moreira et al.

2004). Local representation of conservation laws using flows and particles is particularly

challenging (see e.g. Fukś 2000; Moreira et al. 2004; Pivato 2002).

We study what happens if instead of mere real numbers, we allow energy valuations

from a commutative group or semigroup. A remarkable (but trivial) fact is that for each CA

and a fixed window, there is a most general conservation law that extracts whatever

information can be expressed in terms of conservation laws using that window. Any other

more specific conservation law using that window can be derived from the most general

law by applying an algebraic homomorphism.

We provide examples that the group-valued conservation laws give strictly more

information than the real-valued ones, and examples in which the semigroup-valued

conservation laws are strictly more general than the group-valued ones. We also provide an

example of a reversible one-dimensional CA that has no non-trivial real-valued conser-

vation laws, refuting our conjecture in Formenti et al. (2008).

The semigroup-valued conservation laws can be quite expressive. Nevertheless, we

prove that for one-dimensional CA, the most general conservation law of each range, and a

finite presentation of the corresponding semigroup can be effectively constructed. This is a

good news, because the word problem for commutative semigroups is also decidable (see

e.g. Biryukov 1967). Therefore the whole theory, in one-dimensional case, turns out to be

algorithmically effective. For example we can effectively determine whether two (finite)

configurations have the same total energy in the most general energy valuation of a given
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range, or if a given CA conserves a given energy valuation. In higher dimensions, however,

no such construction for the most general semigroup-valued conservation laws is possible.

Increasing the size of our window, we obtain more and more general (more and more

discriminating) conservation laws. This hierarchy may be trivial, non-trivial but bounded

or unbounded. In the bounded case there is a window that provides the absolutely most
general conservation law amongst all. We prove that it is undecidable (even in the one-

dimensional case) whether a CA has any non-trivial conservation law at all, or whether the

hierarchy is unbounded. These properties are undecidable regardless of whether we con-

sider the semigroup-, group- or real-valued conservation laws. In fact, there is no algorithm

to separate the CA without any semigroup-valued conservation laws from those that have

an unbounded hierarchy of real-valued conservation laws.

We note that the concept of the most general conservation law is closely related to

Conway’s tiling group (Conway and Lagarias 1990; Thurston 1990), when we look at the

space–time diagram of CA as tilings of the plane. Unlike Conway’s group, in this paper we

restrict our study to commutative groups or semigroups. That is because non-commutative

conservation laws in higher-than-one dimensional CA do not make much sense. Further-

more, in the non-commutative case, the word problem is undecidable even for groups, and

we much prefer to stay in the algorithmic realm.

The paper is organized as follows. We start with basic definitions related to cellular

automata (Sect. 2.1) and conservation laws, including the definitions related to the most

general semigroup- and group-valued conservation laws (Sect. 2.2). We continue with

three examples in Sect. 3: first two examples show that moving from real numbers to more

general groups, or from groups to semigroups, can improve the fidelity of conservation

laws. The third example is a simple one-dimensional reversible CA that has no real-valued

conservation laws of any interaction range.

In Sect. 4 we study algorithmic questions concerning semigroup-valued conservation

laws of a fixed interaction range. It is shown (Theorem 1) that it is undecidable whether a

given two-dimensional CA conserves a given energy valuation, even in the very restricted

setup where the energy values are from a two-element semigroup and the values are

assigned to cells without neighborhood interaction. In contrast, the one-dimensional case is

effective: one can algorithmically construct the most general conservation law for any

given interaction range (Theorem 2). In Sect. 5 we investigate algorithmic questions in the

setup when the interaction window of the energy valuation is not fixed. In this case, it is

undecidable if any non-trivial conservation laws exist, or whether their hierarchy is

unbounded (Theorem 4). This undecidability holds in semigroup-, group- and real-valued

cases. The main results of Sects. 4 and 5 were already reported in Formenti et al. (2008)

without detailed proofs.

In Sect. 6 we show an example of what purely dynamical properties of a CA can tell

about their conservation laws. We show that strong transitivity and positive expansivity of

a CA guarantee that the CA can have no real-valued conservation laws (Theorem 5).

2 Preliminaries

2.1 Cellular automata

A cellular automaton (CA) is a collection of identical cells arranged regularly on a lattice
where a natural notion of neighborhood is present. Each cell is assigned a state from a

finite number of possible states. The state of the cells are updated synchronously, in
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discrete time steps, according to a local update rule that takes into account the current state

of each cell and its neighbors.

The cells are often indexed by Z
dðd� 1Þ; where we obtain a d-dimensional CA. The

state set is a finite set S. An assignment c : Zd ! S of states to the cells of the lattice is

referred to as a configuration (of the lattice). For each state s [ S and each configuration

c 2 SZ
d

we denote by

suppsðcÞ, i 2 Z
djc½i� 6¼ s

� �

the set of those cells where c does not take value s, and call it the s-support of c. An

s-uniform configuration is a configuration whose s-support is empty, and an s-finite
configuration is one whose s-support is finite. The set of all s-finite configurations is

denoted by Cs[S]. For any two configurations c and e we denote by

diff ðc; eÞ, i 2 Z
djc½i� 6¼ e½i�

� �

the set of cells where c and e take different values. Configurations c and e are called

asymptotic, denoted c * e, if diff (c, e) is a finite set.

A pattern over a set A � Z
d is an assignment p : A? S. If A is finite, we say that p is

a finite pattern. Note that every configuration is a pattern with domain Z: We use the

notation g[X] for the restriction of a mapping g to a subset X of its domain. Therefore,

for example, c[A] denotes the pattern seen over A � Z
d in the configuration c 2 SZ

d

: The

translation of a pattern p : A ? S by a 2 Z
d is denoted by rap and is defined by

rapð Þ½i�, p½aþ i�: When d = 1, we may write r for r1. Finite patterns are often con-

sidered modulo translations; we do not distinguish between a finite pattern and its

translations.

The neighborhood is specified by a finite set N � Z
d: The neighborhood of a cell i 2 Z

d

is the set i ? N = {i ? a: a [ N}. The local update rule is a function f : SN? S. The local

rule f naturally induces a mapping F : SZ
d ! SZ

d

; called the global mapping, that maps

each configuration c, to its follower configuration F(c), which when starting from c,

appears on the lattice after one time-step. Namely, FðcÞ½i�, f ðc½iþ N�Þ; i.e., the state of

the cell i in F(c) is the result of the application of the local rule on the pattern of the

neighborhood of i in c. We often identify a CA with its global mapping. A quiescent state

is a state � [ S such that F maps the �-uniform configuration to itself; i.e., f �Nð Þ ¼ �: If � is

a quiescent state, the image of every �-finite configuration is also �-finite. More generally,

if c * e then F(c) * F(e).

Let A � Z
d be a finite set. The A-block-presentation of a configuration c 2 SZ

d

is a

configuration e 2 ðSAÞZ
d

where e[i] = c[i ? A]. That is, the state of the cell i in e is the

overall state of the cells i ? A in c.

One-dimensional CA have a natural representation (up to translations) using edge-

labeled De Bruijn graphs, which we are going to exploit in Sect. 4. The De Bruijn graph of

order k ðk [ 0Þ over an alphabet S, is a graph Bk[S] with vertex set V = Sk and edge set

E = Sk?1, where for any a, b [ S and u [ Sk-1, there is an edge aub from au to ub.

Let F : SZ ! SZ be a one-dimensional CA with neighborhood ½�l; r� ¼ f�l;�lþ
1; . . .; rg and local rule f : S[-l,r]? S. For any k� lþ r; the CA can be represented on the

De Bruijn graph Bk[S] with labeling k : E? Sk?1-(l?r) which is defined as follows.

For every edge u0u1. . .uk 2 Skþ1; let kðu0u1. . .ukÞ ¼ vlvlþ1. . .vk�r where vi = f(u
[i - l, i ? r]). The edge sequence p ¼ p½i�f gi2Z of each bi-infinite path on Bk[S] is the
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[0, k]-block-presentation of a unique configuration c 2 SZ; while its label sequence

kðpÞ ¼ kðp½i�Þf gi2Z is the [l, k - r]-block-presentation of F(c). Conversely, for every

configuration c 2 SZ there is a unique infinite path on Bk[S] whose edge sequence is the

[0, k]-block-presentation of c.

Cellular automata are often studied as topological dynamical systems. This will be the

point of view in Sect. 6 of this article. The configuration space SZ
d

can be naturally

topologized with the product topology. The convergence in this topology is defined cell-

wise: a sequence c1; c2; . . . of configurations converges to a configuration c if and only if

for every cell i there is n� 1 such that ck[i] = c[i] for all k� n: The product topology on

the configuration space is compact and metric. A simple distance function for this topology

is defined by

qðc; eÞ, 2�jðc;eÞ

for every two configurations c and e, where j(c, e) is the smallest non-negative integer

i (? if none exists) such that c and e differ on the central hypercube [-i, i]d. All CA global

mappings are continuous with respect to the product topology. In fact, the CA global

mappings are exactly those continuous mappings that are translation symmetric (Hedlund

1969).

A continuous mapping F : X? X on a compact metric space X defines a topological

dynamical system. Two dynamical systems (X, F) and (Y, G) are isomorphic if there is a

homeomorphism u : X ! Y such that u � F ¼ G � u: Topological dynamics is the study

of the dynamical properties that can be expressed topologically and hence are invariant

under isomorphisms. These include sensitivity properties (whether small perturbations lead

to large deviations) and mixing properties (whether each orbit covers the whole space) that

are used to describe chaos in dynamical systems. See Kůrka (2003) for more information.

2.2 Conservation laws in cellular automata

We formulate conservation laws in a general setting in that the energy values can be

chosen from an arbitrary semigroup. This makes the possible relation between different

conservation laws and the information embedded in them transparent, and organizes all

conservation laws in a hierarchy. However, the material of Sects. 5 and 6, as well as

Example 3 can be followed without reference to this algebraic point of view, by simply

choosing the set of real numbers R as the semigroup.

Let F : SZ
d ! SZ

d

be a CA, and to avoid cumbersome technicalities, let us assume that

the CA has a quiescent state �. Let U be a commutative (additive) semigroup, and W � Z
d

a finite set, and assume that to each pattern p [ SW we have associated a value lðpÞ 2 U as

its energy. We would like to define the total energy l̂ðcÞ of a configuration c 2 SZ
d

as the

sum
X

i2Zd

lðc½iþW �Þ

by sliding the window W over c and adding up all the local energy values we see. However,

there is no uniform way to interpret an infinite sum over a semigroup. To overcome this,

we choose the following approach: we assume that U contains an identity element 0, and

that l �Wð Þ ¼ 0: Then the above sum will have a natural meaning for all �-finite
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configurations—only finite number of the terms have values other than 0. For all other

configurations we leave the total energy undefined.1

We say that the CA conserves the energy valuation l, if

l̂ðFðcÞÞ ¼ l̂ðcÞ ð1Þ

for every �-finite configuration c. Then l̂ is a U-valued conserved energy defined using

window W, and (1) is a conservation law for the CA. More concisely, the conservation

law can be identified by the pair ðU; lÞ: If U is in fact a group (or if U ¼ R is the set of

real numbers), we may speak of a group-valued (resp. real-valued) energy or conser-

vation law.

Notice that the values of l̂ do not depend on the displacement of the window. That is,

for every translation ra; l̂ � ra ¼ l̂: The conservation of l̂ by a CA F means further that its

value is constant over the orbits of F; i.e., l̂ � F ¼ l̂: Therefore, the kernel of l̂ is a

partition of the orbits of F. The finer this partition, the more information the conservation

law extracts about the dynamics of the CA.

An energy function which assigns the same value to every finite configuration is triv-

ially conserved by every CA. We call such a conservation law trivial. Note that the total

energy mapping l̂ : C�½S� ! U of a conservation law is not necessarily onto (even if the

local energy function l is onto). The uncovered part of U bears no information about the

dynamics of F. Hence it is convenient to name the realizable sub-monoid Û, l̂ðC�½S�Þ of

U: So ðU; lÞ is trivial, if and only if, the realizable sub-monoid Û is trivial.

Let us now fix a CA F : SZ
d ! SZ

d

with a quiescent state �, and a finite window

W � Z
d: Every conserved energy valuation l for F satisfies (1) for every �-finite con-

figuration c. An important observation is that the largest semigroup generated by the

(formal) values of l for which (1) holds for every �-finite configuration c provides the most
general conservation law for F defined using window W.

Put it precisely, let R, SW � �Wf g be the set of non-quiescent patterns on W, and let us

denote by N
R the free commutative (additive) monoid generated by R: Define the energy

assignment l� : SW ! N
R with l� �Wð Þ ¼ 0; and lo(p) = p for any other pattern p over W,

and let l̂� : C�½S� ! N
R be the corresponding total energy. Let ffi � N

R 
 N
R be the

smallest monoid congruence where l̂�ðFðcÞÞ ffi l̂�ðcÞ for every �-finite c. Define

UF ,N
R=ffi and let hffi : NR ! UF be the natural homomorphism. Define lF : SW ! UF

with lF ¼ hffi � l�: Clearly the pair ðUF ; lFÞ identifies a conservation law, because

l̂FðFðcÞÞ ¼ hffi l̂�ðFðcÞÞð Þ ¼ hffi l̂�ðcÞð Þ ¼ l̂FðcÞ:

If ðU; lÞ is any other conservation law with window W, then for any �-finite configurations

c and e,

l̂FðcÞ ¼ l̂FðeÞ ¼) l̂�ðcÞ ffi l̂�ðeÞ ¼) l̂ðcÞ ¼ l̂ðeÞ:

The second implication follows from the fact that, by (1), the kernel of the homomorphism

N
R ! U determined by l�ðpÞ 7! lðpÞ is coarser than %. We see that lF defines a finer

partitioning of C�[S] than any other conservation law with window W, i.e., it is the most

1 This is not the only possible approach, but it sounds most natural to us. For the real-valued energies, this
and several other approaches lead to equivalent definitions (see Durand et al. 2003; Hattori and Takesue
1991; Pivato 2002).
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general conservation law with window W. More specifically, there is a monoid homo-

morphism h : UF ! U satisfying l = h � lF. Then, schematically,

ð2Þ

One can verify that using ÛF instead of UF; the choice of h would be unique.

It is easy to see that when W 0 � W � Z
d; the most general conservation law based on

window W 0 is a factor of the most general conservation law based on window W; i.e.,

UðWÞF ; lðWÞF

� �
is more general than U W 0ð Þ

F ; l W 0ð Þ
F

� �
: That is because every energy valuation

on W 0 can be seen also as a energy valuation on W, by adding some dummy elements to W 0:
Following a similar trail of reasoning, if instead of semigroup-valued energies we

consider group-valued energies, we can define the most general group-valued conservation

law ðGF; lFÞ based on W for F. Likewise, we define the realizable subgroup

ĜF , l̂FðC�½S�Þ of GF, where l̂F is the total energy mapping corresponding to lF. The

conservation law ĜF; lF

� �
satisfies a similar universal property (2) among group-valued

conservation laws. The usual real-valued conservation laws are obtained when the energies

are in the additive group of real numbers.

In the group-valued case we have a more elegant formulation of energy conservation

that does not require a quiescent state but uses asymptotic configurations instead. For any

group-valued energy valuation l with window W we define the potential difference

Dðc; eÞ,
X

i2Zd

lðe½iþW�Þ � lðc½iþW�Þ½ � ð3Þ

between asymptotic configurations c and e. The sum is defined as it contains only a finite

number of non-zero terms. Note the additivity of D: for any three asymptotic configurations

c1; c2 and c3 we have

Dðc1; c2Þ þ Dðc2; c3Þ ¼ Dðc1; c3Þ:

Now, the conservation of l by a CA F can be stated as the requirement that

DðFðcÞ;FðeÞÞ ¼ Dðc; eÞ ð4Þ

holds for all asymptotic c and e. In the presence of a quiescent state �, this is easily seen

equivalent to (1).

3 Examples

The following example shows that semigroup-valued conservation laws can extract more

information than group-valued ones.

Example 1 (Spreading 1’s) Consider the one-dimensional CA F with binary state set

Z2 ¼ f0; 1g; neighborhood {-1, 0, 1}, and local rule f ða; b; cÞ ¼ a _ b _ c; see Fig. 1 for

a typical snapshot. The time axis in the figure goes downward. It is easy to see that every

group-valued conservation law for F is trivial. Notice that every non-quiescent finite
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configuration eventually turns into a single ever-growing block of ones. In contrast, F has a

non-trivial semigroup-valued conservation law. Let U ¼ f0; 1g be the commutative

semigroup with binary operation aþ b, a _ b: Let W = {0} be the singleton window, and

l : f0; 1g ! U be the identity. Under this energy valuation, the 0-uniform configuration

has total energy 0, while every other 0-finite configuration has total energy 1. This energy

valuation is easily seen to be the only non-trivial conservation law for this CA, so in this

case the hierarchy of semi-group valued conservation laws is non-trivial but bounded.

Our second example shows that group-valued conservation laws, in turn, can define a

finer partitioning than real-valued conservation laws.

Example 2 (XOR) This example is again a one-dimensional CA F with binary state set,

and neighborhood {-1, 0, 1}. The local rule is the XOR rule f ða; b; cÞ ¼ a� b� c where

we denote x� y ¼ xþ y (mod 2). Figure 2 shows a typical snapshot. A well-known

property of the XOR CA (and in general every linear CA) is its replicating behavior.

Specifically, every finite pattern, after a finite number of steps, is replicated into three

copies with large 0 blocks in between (Fig. 2 depicts an example. This is easy to verify

using generating functions; see e.g. Robison (1987)). This implies that F cannot have any

non-trivial real-valued conservation law. On the other hand, F preserves the parity of the

configurations. Let G ¼ Z2 be the binary cyclic group, and consider the identity energy

function l : f0; 1g ! Z2 on window {0}. The total energy l̂ðcÞ is simply the parity of the

number of 1’s in c, and is preserved by F.

The following example is a reversible one-dimensional CA that has no non-trivial real-

valued conservation laws of any range, resolving the question we asked in Formenti et al.

(2008). Recall that a CA F is called reversible if F is injective (in which case it is known to

be a bijection, and the inverse function is given by the inverse CA, see e.g. Kari (2005)).

Fig. 1 A space–time snapshot from the CA in Ex. 1

Fig. 2 A space–time snapshot from the CA in Ex. 2

E. Formenti et al.

123



Analogously to Example 2, the CA in this example creates new copies of any finite initial

pattern at times 2n, for all sufficiently large n.

Example 3 (Replicating reversible CA) The state set is Z2 
 Z2; so each state is a pair

(a, b) of bits (Fig. 3). The neighborhood is {-1, 0} and the local rule is

f ðða; bÞ; ðc; dÞÞ ¼ ðb; c� dÞ:

For this CA, any (0, 0)-finite configuration is conveniently represented as the column

vector ((p(x), q(x))T of two Laurent polynomials p(x) and q(x) over the ring Z2; where the

coefficients of any xk in p(x) and q(x) are the two bits in cell k. See Kari (2000) for more

details on using generating functions to analyze linear CA over rings Z
n
m:

If the local rule is expressed as the 2 9 2 matrix

M ¼ 0 x
1 1

� 	

of Laurent polynomials (as described in Kari 2000) then the configuration (p(x), q(x))T

becomes in one time step the configuration

M
pðxÞ
qðxÞ

� 	
:

Because matrix M is invertible, the CA it defines is reversible. The inverse CA is given by

the inverse matrix

M�1 ¼ x�1 1

x�1 0

� 	
;

that is, the inverse CA uses the neighborhood {0, 1}, and the local update rule is

ðða; bÞ; ðc; dÞÞ 7! ðb� c; cÞ:
The t’th iteration of the CA corresponds to multiplying with the matrix Mt. For t = 2n

we easily see that

Fig. 3 A space–time snapshot from the CA in Ex. 3. The black triangles represent states (0, 1) and (1, 0),
while the solid white and black indicate (0, 0) and (1, 1), respectively.
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M2n ¼ anðxÞ x
1 1þ anðxÞ

� 	
;

where

anðxÞ ¼ xþ x2 þ x4 þ � � � þ x2n�1

:

Indeed, this is true for n = 1, and assuming it for n, we have for n ? 1 that

M2nþ1 ¼ M2n

M2n ¼ anðxÞ x
1 1þ anðxÞ

� 	2

¼ anðxÞ2 þ x x
1 anðxÞ2 þ xþ 1

� 	
:

Now it is enough to notice that

anðxÞ2 ¼ xþ x2 þ x4 þ � � � þ x2n�1
� �2

¼ x2 þ x4 þ � � � þ x2n ¼ anþ1ðxÞ þ x

in the ring Z2.

Consider any finite initial configuration (p(x), q(x))T, and let us denote its 2nth successor

M2nðpðxÞ; qðxÞÞT by ðpnðxÞ; qnðxÞÞT : Because

M2nþ1 �M2n ¼ x2n 1 0

0 1

� 	
;

we immediately see that

pnþ1ðxÞ
qnþ1ðxÞ

� 	
¼ x2n pðxÞ

qðxÞ

� 	
þ pnðxÞ

qnðxÞ

� 	
;

so a new copy of the initial configuration (p(x), q(x))T is added at the position 2n during the

time interval 2n �! 2nþ1: By choosing large n, an arbitrarily long block of 0’s can be left

between the supports of the 2nth successor ðpnðxÞ; qnðxÞÞT and the new copy of (p(x), q(x))T

in the 2n?1st successor. Consequently, the contribution of the initial contribution

(p(x), q(x))T under any real-valued energy valuation l must be zero, showing that the CA

has no non-trivial real-valued conservation law of any range. h

4 Semigroup-valued conservation laws

The definition of the most general conservation law of a certain range, given in Sect. 2.2, is

based on an infinite presentation of the corresponding semigroup. A standard theorem from

the theory of semigroups states that any finitely generated commutative semigroup has a

finite presentation (see e.g. Grillet 1995). A question arises that how one can find such a

finite presentation. A finite presentation is needed if, for example, we want to algorith-

mically verify whether two configurations have the same total energy. It turns out there is

no algorithm to construct such a finite presentation for the semigroup of the most general

conservation law in 2- or higher-dimensional CA. In one-dimensional case, we can con-

struct these semigroups effectively.

Let F : SZ
d ! SZ

d

be a CA with a quiescent state � [ S. Clearly, (�, �) is a quiescent

state for the product F 9 F. Let UB ¼ f0; 1g be the Boolean semigroup with aþ b, a _ b;
for any a; b 2 UB: Define an energy valuation l with window {0} and values from UB by
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lða; bÞ ¼ 0 if a ¼ b;
1 otherwise.




The energy l is conserved by F 9 F, if and only if, F is injective on finite configurations.

According to the Garden-of-Eden theorem (Moore 1962; Myhill 1963), F is injective on

finite configurations if and only if it is surjective. However, when d� 2; it is undecidable

whether a given d-dimensional CA is surjective (Kari 1994). Therefore no algorithm could

verify, for a given F, whether F 9 F conserves l.

Theorem 1 There is no algorithm, that given a 2- or higher-dimensional CA F with state
set S, and an energy valuation l : S! UB into the semigroup UB ¼ ðf0; 1g;_Þ; deter-
mines if F conserves l.

Corollary 1 There is no algorithm, that given a 2- or higher-dimensional CA F, com-
putes a finite presentation of the semigroup UF and the energy valuation lF of the most
general conservation law for F with window {0}.

Let us now focus on one-dimensional CA. Let F : SZ ! SZ be a 1d CA. Without loss of

generality we assume that F has a neighborhood ½�l; r� ¼ f�l;�lþ 1; . . .; rg with lþ
r� 0: Let � be the designated quiescent state of F. Let W � Z be a finite set, and l :

SW ! U be an energy valuation on window W with values from a commutative monoid U:.
Again without loss of generality we assume that W ¼ ½0;mÞ ¼ f0; 1; . . .;m� 1g:

For k = l ? r ? m - 1, consider the k’th order De Bruijn representation (Bk[S], k) of

F. This has a vertex �k, with a loop edge �k?1 which is labeled by �m. Any path corre-

sponding to a �-finite configuration starts by circulating in this loop, and after possibly

passing through a finite number of other edges, eventually returns back to this loop.

To each edge u0u1. . .uk 2 Skþ1 let us assign two elements

aðu0u1. . .ukÞ,lðu0u1. . .um�1Þ ð5Þ

and

bðu0u1. . .ukÞ,lðvlvlþ1. . .vlþm�1Þ ð6Þ

from U; where vlvlþ1. . .vk�r ¼ kðu0u1. . .ukÞ is the label of u0u1. . .uk: The total energy of a

�-finite configuration x can be calculated by adding up the values of a over the edges of the

corresponding bi-infinite path on Bk[S]. Likewise, the sum of b values on this path gives

the total energy of F(x). Note that the initial and final parts of such a path, where it is

circulating in the loop �k?1 do not contribute to the total energy, because l �mð Þ ¼ 0: For

any path p ¼ p1p2. . .pn (pi is the i’th edge of the path), let us use the notation a(p) for the

sum of the values of a over the edges of p; i.e.,

aðpÞ,
Xn

i¼1

aðpiÞ

and similarly for b.

The requirements imposed by the conservation of l can now be translated in terms of

the values of a and b over finite paths on the graph Bk[S]: The pair ðU; lÞ specifies a

conservation law, if and only if, for any finite path p starting and ending at vertex �k,

a(p) = b(p). There are infinitely many such paths p, but it turns out that it is sufficient to

verify a(p) = b(p) for a suitably selected finite collection of paths p.
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Proposition 1 Let G be a (finite, directed) graph with vertex set V and edge set E, and D
a finite symbol set. Let a; b : E! D and A;B � V: Let U be the largest commutative
monoid generated by D; satisfying the equations

aðpÞ ¼ bðpÞ ð7Þ

for any finite path p starting from A and ending at B. Then, there is an algorithmically
constructible finite subset of the above equations, such that any commutative monoid
generated by D satisfying those equations is a factor of U:

Proof We start by introducing the finite subset in question. For any vertex v [ V, define

the following three sets:

Pv: The set of all simple paths starting from A and ending at v.

Qv: The set of all simple paths starting from v and ending at B.

Cv: The set of all simple cycles (including the empty one) passing through v.

For any v, the set PvCvQv is finite, because each of Pv;Cv and Qv is finite. Its elements

are paths starting from A, passing through v (and possibly a cycle around v), and continuing

further to end up at B. Define

R,
[

v2V

PvCvQv:

We claim that if for some semigroup U0 generated by D; the Eq. (7) holds for all paths

r [ R, it also holds for any other path p from A to B.

The proof is by induction on the length of the path p. Note that any sufficiently short

path p from A to B is simple and passes through a vertex like v. Therefore it is of the form

xy where x [ Pv and y [ Qv. That is p [ R and the Eq. (7) holds by the assumption.

Suppose that the Eq. (7) holds for all paths of length at most n, and let p be a path of

length n ? 1 from A to B. If p is not simple, it contains at least one non-empty simple

cycle, and hence can be written in the form xcy where x is a (not necessarily simple) path

from A to a vertex v, c is a non-empty simple cycle starting and ending at v, and y is a (not

necessarily simple) path from v to B. On the other hand x contains a subsequence ~x which is

a simple path from A to v, and we can write

aðxÞ ¼
X

i

aðxiÞ ¼ cx þ
X

i

a ~xið Þ ¼ cx þ a ~xð Þ

where cx 2 U is the sum of a over those edges from x that are not in ~x: Similarly y contains

a subsequence ~y which is a simple path from v to B and we can write

aðyÞ ¼ cy þ a ~yð Þ

for some cy 2 U: Writing the Eq. (7) for the paths ~x~y and ~xc~y (note that ~x~y; ~xc~y 2 R) and xy

(by induction hypothesis), we have

a ~xð Þ þ a ~yð Þ ¼ b ~xð Þ þ b ~yð Þ ð8Þ

a ~xð Þ þ aðcÞ þ a ~yð Þ ¼ b ~xð Þ þ bðcÞ þ b ~yð Þ ð9Þ

aðxÞ þ aðyÞ ¼ bðxÞ þ bðyÞ ð10Þ

from which we obtain that
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aðpÞ ¼ aðxÞ þ aðcÞ þ aðyÞ
¼ cx þ cy þ a ~xð Þ þ aðcÞ þ a ~yð Þ
¼ cx þ cy þ b ~xð Þ þ bðcÞ þ b ~yð Þ (by (9))

¼ cx þ cy þ a ~xð Þ þ a ~yð Þ þ bðcÞ (by (8))

¼ aðxÞ þ aðyÞ þ bðcÞ
¼ bðxÞ þ bðyÞ þ bðcÞ (by (10))

¼ bðpÞ

which is what we wanted to proof. Therefore, any equation satisfied by the semigroup U is

also satisfied by U0; and U0 is a factor of U: h

From Prop. 1, we immediately obtain what we were after in this section:

Theorem 2 For any one-dimensional CA F and any finite window W � Z; the semigroup
UF of the most general conservation law for F based on W is effectively finitely
presentable.

Proof In Prop. 1 choose as G the de Bruijn graph Bk[S], and let A ¼ B ¼ �k
� �

: Let a and

b be defined by (5) and (6) with l = lo. Then U ¼ UF : h

This does not say much about the realizable sub-monoid ÛF � UF : For example, it is

not even clear if ÛF is finitely generated or not. Following a similar construction, however,

one can decide whether ÛF is trivial or not.

Proposition 2 Let F be a one-dimensional CA, and ðU; lÞ a semigroup-valued conser-

vation law for F. It is decidable whether Û is trivial.

5 The existence problem

Group-valued conservation laws are more easily tractable. There is a simple algorithm

which tests whether a given CA F (of any dimension) conserves a given group-valued

energy function l. (This is similar to the real-valued case; see e.g. (Kari 2005)). In par-

ticular, for any fixed window W one can effectively construct the most general group-

valued conservation law G
ðWÞ
F ; lðWÞF

� �
based on W.

The next challenge would be to analyze the hierarchy of conservation laws, obtained by

increasing the size of their window. For example, given a CA, is it possible to decide if it

has any conservation law at all? Can one determine if the hierarchy of conservation laws is

bounded, i.e., whether there is a window size that provides the absolutely most general

conservation law? In this section we prove that the answer is negative: these questions are

undecidable even among one-dimensional CA.

We first establish a simple condition that guarantees that no non-trivial conservation law

exists. Let � be a quiescent state for CA F. We say that F is �-nilpotent if all �-finite

configurations eventually become �-uniform. In this case, any energy valuation l that is

conserved by F must assign the same value to all �-finite configurations, and hence no non-

trivial conservation law exists:
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Lemma 1 Let F : SZ
d ! SZ

d

be a CA with a designated quiescent state �. If F is
�-nilpotent then F does not have any non-trivial (real-valued/group-valued/semigroup-
valued) conservation law.

Our next lemma deals with the other extreme: it gives a condition that guarantees an

unbounded hierarchy of conservation laws. Let F be a CA. An energy valuation l with

window W is termed F-invariant if for every configuration c we have

lðc½W�Þ ¼ lðFðcÞ½W �Þ:

In other words, the energy values are preserved ‘‘at the same position’’. Note that this

definition does not require the values of l to have any algebraic structure. However, if the

values are in a semigroup or group, it is clear that F-invariance of l implies that F con-

serves l. Let us say that l is trivial if all patterns are given the same value.

Lemma 2 Let F be a cellular automaton and l a non-trivial F-invariant valuation. Then
F has an unbounded hierarchy of real-valued conservation laws. In fact, for every semi-
group-valued conservation law l0 of F there exists two configurations c and e, and a real-
valued conservation law l00 such that l̂0ðcÞ ¼ l̂0ðeÞ but l̂00ðcÞ 6¼ l̂00ðeÞ:

Proof Let � be an arbitrary state. Since l is non-trivial, there is a pattern p over domain

W such that lðpÞ 6¼ l �Wð Þ: For every i 2 Z
d; we define the real-valued energy valuation li

with window W [ (i ? W) as follows: For every pattern q : W [ (i ? W)? S let

q1, q½W � and q2, q½iþW � and define

liðqÞ ¼
1; if lðq1Þ ¼ lðq2Þ ¼ lðpÞ;
0; otherwise.




In other words, value 1 is assigned at a cell if and only if l gives value l(p) to both

patterns around that cell and around the cell offset by i. Since l is F-invariant, each li is

also F-invariant and hence conserved by F.

For all i 2 Z
d such that W \ (i ? W) = [, let us denote by ci the configuration that

contains pattern p in domains W and i ? W, and state � outside of W [ (i ? W). Clearly,

l̂iðciÞ[ 0:
Let l0 be an arbitrary energy valuation with window A. It is clear that l0 gives the same

total energy to all but a finite number of the configurations ci: When i is sufficiently large,

no translate of A intersects both W and i ? W. However, for all sufficiently large i 2 Z
d; all

but a finite number of j 2 Z
d satisfy l̂iðcjÞ ¼ 0; so there are configurations ci and cj that are

given the same value by l0 but different values by li. h

In the following, we show that the situations indicated in Lemmas 1 and 2 are recur-

sively inseparable, even for given one-dimensional CA F. In the proof, we use a standard

simulation of two-counter machines by one-dimensional cellular automata, and exploit the

following theorem about two-counter machines. A two-counter machine is a finite

automaton equipped with two unbounded counters, each storing a natural number. The

automaton can increase or decrease the value of each counter, and can test if either has

value zero. Two-counter machines are known to be equivalent in power with Turing

machines—any algorithm can be implemented on a two-counter machine (see e.g. Minsky

1967). Blondel, Cassaigne and Nichitiu have shown that the presence of periodic orbits in

two-counter machines cannot be decided algorithmically:
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Theorem 3 (Blondel et al. 2002) Given a deterministic two-counter machine A with no
halting state, it is undecidable whether A has a periodic orbit.

Consider the following two extreme cases concerning the hierarchy of conservation

laws of a given CA F:

I. F has no non-trivial semigroup-valued conservation law.

II. For every semigroup-valued conservation law l0 of F there exists a real-valued

conservation law l00 of F such that l̂0ðcÞ ¼ l̂0ðeÞ but l̂00ðcÞ 6¼ l̂00ðeÞ for some

configurations c and e.

In particular, condition II means that the hierarchy of (real-valued/group-valued/

semigroup-valued) conservation laws for F is unbounded.

Theorem 4 Cases I and II above are recursively inseparable for a given one-dimensional
CA F.

Proof We show how to reduce the problem of whether a given counter machine has a

periodic orbit to the problem of separating I and II. Since the former is undecidable, we

conclude the recursive inseparability of I and II.

Let A be a two-counter machine with state set Q, two registers x1 and x2, and transition

function d : Q 9 {0, 1}2? Q 9 {1, 2} 9 {-, 0, ?}. A configuration of the machine

consists of its current state q [ Q, and the current value of its two registers x1; x2 2 N: The

transition rule reads the current state, checks whether either of the registers contains zero (1

means the value of the register is zero, and 0 means otherwise), decides the new state,

chooses one of the registers (1 or 2 as the index of the chosen register), and instructs

whether the chosen register must be decreased (-), left unchanged (0), or increased (?).

We construct a CA F with a designated quiescent state � such that

(a) if A has a periodic orbit, F has a non-trivial F-invariant valuation l (and hence, by

Lemma 2, it satisfies condition II), while

(b) if A has no periodic orbit, F is �-nilpotent (hence, has no non-trivial conservation

law).

The CA F has two states L and R which are end-markers. In the interval between a left

end-marker L and a right end-marker R, the CA simulates the machine A. The CA also

constantly verifies the syntax of the block between two end-markers, to make sure it

corresponds with an actual simulation. If a syntax error is found, or if the simulation

overflows the end-markers, the CA erases the whole block, by replacing the cell contents

with �. Blocks not having end-markers are also erased.

If the machine A has no periodic orbit, every syntactically correct simulation of A on a

finite block eventually overflows the boundaries. Therefore, every �-finite configuration

eventually goes quiescent; i.e., F is �-nilpotent.

On the other hand, if A has a periodic configuration, one can choose a sufficiently large

simulation block in F which evolves periodically and never overflows. Let us fix a snapshot

of such a periodic simulation block (including its end-markers), and denote it by B ¼
Lb1b2. . .bn�1R: Let us denote by B the set of all simulation blocks B0 2 Snþ1 that even-

tually turn into B. Since no new end-marker is ever created by F, and since the information

cannot pass through the end-markers, we can argue that the set B is ‘‘stable’’; once we

know that a block in B occurs in a certain position at a certain time during the evolution

of the CA, we also know that in any other time a block in B occurs in that same position.

In other words, the valuation l : S[0,n]? {0, 1} defined by
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lðxÞ, 1 if x½½0; n�� 2 B;
0 otherwise




is invariant under F.

Let us now give the precise construction. Let E = {L, R}, X = {0, 1}, K = {1, 2} and

C = {0, ? , -, 1}. The state set of F is S ¼ f�g [ E [ Q [ X 
 X 
 K 
 Cð Þ; and its

neighborhood is N = {-1, 0, 1}. Each simulation block starts with a left end-marker L,

followed by an element from Q, representing the state of the counter machine, and ends

with a right end-marker R. The space between the Q state and the right end-marker stores

the two counters, and manages the required signaling. The first and the second components

of X 9 X 9 K 9 C keep the unary value of the counters x1 and x2 in the form of stacks

extending to the right. The K component corresponds to the second component of the

values of d, indexing the counter to be increased or decreased. The C component carries a

signal indicating whether the indexed counter should be increased (?), decreased (-), or

left unchanged (0), and an acknowledgment signal (1) that comes back to the left to initiate

the simulation of the next step. A sample syntactically correct simulation block is depicted

in Fig. 4.

To increase the value of the counter xb (for b [ K), a right-traveling signal is initiated in

the form of a ? tailed by a sequence of 0’s in the C component, accompanied by a

sequence of b’s in the K component. The segment between the head of the signal and the

right end of the simulation block is irrelevant and can take arbitrary values in the C and

K components. Once the signal reaches the end of the unary representation of the counter

xb, it increases the value of the counter by attaching an extra 1 to the end of its repre-

sentation. The signal is then destroyed and an acknowledgement signal is created. The

acknowledgement signal consists only of a 1 in the C component that travels to the left,

eating the sequence of 0’s. During the propagation of the ? signal and the return of the

acknowledgement, the automaton is kept on hold. Once an acknowledgement reaches the

left end of the block, the automaton proceeds to its next step. The protocol for decreasing a

counter is similar. The local rule f : S3? S of the CA is presented in Table 1. h

Corollary 2 It is undecidable whether a given one-dimensional CA has any non-trivial
(semigroup/group/real-valued) conservation laws. It is also undecidable whether it has an
unbounded hierarchy of such conservation laws.

6 Restrictions on the dynamics

In this section, we argue that the structure of the hierarchy of conservation laws in a CA

may severely restrict its dynamical properties (or vice versa). A rather trivial example of an

interconnection between the dynamical properties of a CA and the structure of its hierarchy

of conservation laws is already implied by Lemmas 1 and 2 of the previous section. A

dynamical system (X, F) is said to be equicontinuous if the orbit of every point x [ X is

Fig. 4 A syntactically correct simulation block in the CA described in the proof of Theorem 4. The
simulated machine is in state x [ Q. The first counter contains 2, while the second counter has 6. There is a
signal, moving to the right, commanding the second counter to increase
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stable, in the sense that for every e[ 0, there is a d[ 0 such that for any other point

y [ X with q(x, y) \ d we have q FiðxÞ;FiðyÞð Þ\e for all i� 0: For instance, every nil-

potent CA is equicontinuous. It is well-known that the equicontinuous CA are precisely

those CA that are eventually periodic (Kůrka 1997).

It is easy to see that every eventually periodic CA that is not nilpotent has a non-trial

invariant energy valuation. Therefore, while according to Lemma 1, nilpotent CA have no

non-trivial conservation law, Lemma 2 implies that every non-nilpotent equicontinuous

CA has an unbounded hierarchy of conservation laws.

We are now going to present a less trivial result about the interconnection between

dynamics and conservation laws in cellular automata. We show that a CA with a strong

Table 1 The local rule of the CA described in the proof of Theorem 4

a-1 a0 a1 f ða�1a0a1Þ Condition

� �
L x L x 2 Q

L x � x 62 Q

(0, 0, k, c) R R k 2 K and c 6¼ 0

x R � x 62 f0g 
 f0g 
 K 
 fþ;�; 1g
L x ðb1; b2; k; 1Þ x0 x 2 Q and dðx;:b1;:b2Þ ¼ x0; k0; c0ð Þ
L x ðb1; b2; k; cÞ x x 2 Q and c 6¼ 1

y x � x 2 Q but y 6¼ L

x R � x 2 Q

x ðb1; b2; k; 1Þ y b1; b2; k
0; c0ð Þ x 2 Q and y 62 f�;Lg

and dðx;:b1;:b2Þ ¼ x0; k0; c0ð Þ
b01; b

0
2; k
0; c0

� �
ðb1; b2; k; 1Þ y b1; b2; k

0; c0ð Þ c0 6¼ 0 and y 62 f�;Lg
b01; b

0
2; k
0; 0

� �
ðb1; b2; k; 1Þ y ðb1; b2; k; 1Þ y 62 f�;Lg

x ðb1; b2; k; 0Þ b01; b
0
2; k
0; 1

� �
ðb1; b2; k; 1Þ x 62 f�;L;Rg

x ðb1; b2; k; 0Þ b01; b
0
2; k
0; c

� �
ðb1; b2; k; 0Þ c 6¼ 1 and x 62 f�; L;Rg

x (0, b2, 1, ?) y (1, b2, 1, 1) x 2 Q and y 62 f�;Lg
b01; b

0
2; k
0; c0

� �
(0, b2, 1, ?) y b01; b2; 1; 1

� �
y 62 f�;Lg

x (1, b2, 1, ?) y (1, b2, 1, 0) x 62 f�;L;Rg and y 62 f�;Lg
x (b1, 0, 2, ?) y (b1, 1, 2, 1) x 2 Q and y 62 f�;Lg
b01; b

0
2; k
0; c0

� �
(b1, 0, 2, ?) y b1; b

0
2; 2; 1

� �
y 62 f�;Lg

x (b1, 1, 2, ?) y (b1, 1, 2, 0) x 62 f�;L;Rg and y 62 f�;Lg
x (0, b2, 1, -) y (0, b2, 1, 1) x 62 f�;L;Rg and y 62 f�;Lg
x (1, b2, 1, -) 0; b02; k

0; c0
� �

(0, b2, 1, 1) x 62 f�;L;Rg
x (1, b2, 1, -) 1; b02; k

0; c0
� �

(1, b2, 1, 0) x 62 f�;L;Rg
x (b1, 0, 1, -) y (b1, 0, 1, 1) x 62 f�;L;Rg and y 62 f�;Lg
x (b1, 1, 1, -) b01; 0; k

0; c0
� �

(b1, 0, 1, 1) x 62 f�;L;Rg
x (b1, 1, 1, -) b01; 1; k

0; c0
� �

(b1, 1, 1, 0) x 62 f�;L;Rg
L x � x 62 Q

x R � x 62 f0g 
 f0g 
 K 
 fþ;�; 1g
y x � x 6¼ L and y 2 f�;Rg

x y � x 6¼ R and y 2 f�;Lg
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chaotic behavior (positive expansivity or strong transitivity) cannot have any non-trivial

real-valued conservation laws. In the following we use the potential difference formulation

(4) for the conservation of energy valuation.

Let l be a real-valued energy function that uses window W, and let D be the potential

difference defined by (3) between asymptotic pairs of configurations. Let us call a con-

figuration c a ground configuration if for every configuration e asymptotic to c, we have

Dðc; eÞ� 0: Let us first show that ground configurations always exist.

Proposition 3 Every real-valued local potential difference has at least one ground
configuration.

Proof Let � [ S be arbitrary and let } be the �-uniform configuration. Let us fix a

growing sequence D1 � D2 � � � � of finite subsets of Zd whose union is Z
d: For example,

we can choose Dn, ½�n; n�d:
For every n 2 N; let us choose a configuration cn with minimum potential difference

Dð}; cnÞ among all configurations with supp�ðcnÞ � Dn: There is a finite number of such

configurations so a minimum exists. Due to the compactness of the configuration space,

there exists a configuration c that is the limit of a subsequence of c1; c2; . . . We claim that

c is a ground configuration.

Let e be any configuration that is asymptotic to c, and let D, diff ðc; eÞ be the set of

cells on which c and e differ. We denote

WðDÞ,DþW þ ð�WÞ ¼ fk þ i� j : k 2 D; i; j 2 Wg

so that Dðc; eÞ ¼ D c0; e0ð Þ holds for any c0 and e0 that agree with each other outside of

W(D), and with c and e, respectively, inside of W(D). Let n 2 N be such that

(i) WðDÞ � Dn; and

(ii) cn and c agree on W(D).

Let x be the �-finite configuration which agrees with e on W(D) and with cn outside of

W(D). In particular, x takes value � outside of Dn. We have

Dðc; eÞ ¼ Dðcn; xÞ ¼ Dð}; xÞ � Dð}; cnÞ� 0:

Therefore, c is a ground configuration. h

Let us denote the set of ground configurations of l by Gl. Next we see that ground

configurations form a subshift.

Proposition 4 The set Gl is closed in the product topology.

Proof Let g1; g2; . . . be a converging sequence of ground configurations, with limit c. It is

enough to show that c [ Gl. Let e be an arbitrary configuration that is asymptotic to c. Let

D, diff ðc; eÞ and, as in the proof above, we denote WðDÞ,DþW þ ð�WÞ: There exists

n 2 N such that gn and c agree inside W(D). Define the configuration x which agrees with

e inside W(D) and with gn outside of W(D). Then

Dðc; eÞ ¼ Dðgn; xÞ� 0:

We conclude that c is a ground configuration. h

Lemma 3 Suppose l is conserved by CA F. If c [ F-1(g) for a ground configuration g,
then also c is a ground configuration.
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Proof Let e be any configuration asymptotic to c. Then

Dðc; eÞ ¼ DðFðcÞ;FðeÞÞ ¼ Dðg;FðeÞÞ� 0:

h

Now we are ready to prove the main result of this section. A dynamical system is

strongly transitive if the orbits of the points in every open ball (no matter how small) cover

the whole space (Manzini and Margara 1999). In other words, a dynamical system (X, F) is

strongly transitive if for every point x [ X, the set
S

t [ 0 F�tðxÞ is dense.

Theorem 5 A CA with a non-trivial real-valued conservation law cannot be strongly
transitive.

Proof Let F be a strongly transitive CA, and let l be a real-valued energy function which

is conserved by F. By Proposition 3 there exists a ground configuration c, so by strong

transitivity and Lemma 3 the set Gl of ground configurations is dense. It follows then from

Proposition 4 that all configurations are ground configurations, so l must be trivial. h

A characteristic property of chaotic dynamical systems is their sensitivity to initial

conditions. Positively expansive dynamical systems are systems with a high degree of

sensitivity to initial conditions: A system (X, F) is said to be positively expansive if there

exists a constant e[ 0 such that any two distinct points x, y [ X (no matter how close) are

eventually separated by distance at least e. Cellular automata in higher than one dimensions

cannot be positively expansive (Finelli et al. 1998). In one dimension, however, positively

expansive CA exist and constitute a curious class of CA. Intuitively, they are those CA in

which any information on the lattice propagates indefinitely in both directions. Every

positively expansive CA is strongly transitive. In fact, every positively expansive CA is

known to be isomorphic to a so-called mixing one-sided shift space of finite type (Kůrka

1997; Nasu 1995) and every such system is strongly transitive.

Corollary 3 Positively expansive CA have no non-trivial real-valued conservation laws.

The XOR cellular automaton in Example 2 is positively expansive, and as we already

knew, has no non-trivial real-valued conservation law.

7 Conclusion

We have examined a number of algorithmic problems that arise from studying algebraic

conservation laws for cellular automata. Semigroup-valued conservation laws are highly

expressive, still not so tractable in two- and higher dimensional spaces. The group-valued

conservation laws are more expressive than the real-valued ones, yet as accessible as they are.

Since reversible CA are particularly attractive for modeling physical processes, it would

be useful to examine the same problems in the restricted case of reversible CA. In par-

ticular, is it decidable whether a given reversible CA has any conservation law? Example 3

shows that there exist reversible CA without any real-valued conservation laws so the

question has both positive and negative instances. Our proof of Theorem 4 takes advantage

of the existence of very long transients to construct CA whose conservation laws need very

large windows, so the method cannot be applied in the reversible case.
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