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Abstract. We study the group-valued and semigroup-valued conserva-
tion laws in cellular automata (CA). We provide examples to distin-
guish between semigroup-valued, group-valued and real-valued conserva-
tion laws. We prove that, even in one-dimensional case, it is undecidable
if a CA has any non-trivial conservation law of each type. For a fixed
range, each CA has a most general (group-valued or semigroup-valued)
conservation law, encapsulating all conservation laws of that range. For
one-dimensional CA the semigroup corresponding to such a most gen-
eral conservation law has an effectively constructible finite presentation,
while for higher-dimensional ones no such effective construction exists.

1 Introduction

Conservation laws in physics are numerical invariants of the dynamics of a sys-
tem. In cellular automata, a similar concept has already been defined and studied
(see e.g. [8, 3, 14, 5, 6]). We first choose a finite window, through which we can
recognize the pattern made by the states of a finite number of cells on the lattice.
We associate a real value to each possible local pattern that may be seen through
this window, resembling the “energy” (or “mass”, or . . . ) of that pattern. The
total “energy” of a configuration is obtained by sliding this window all over the
lattice and summing up the energy values of the local patterns we see. We have
a conservation law for that energy provided the evolution of the CA preserves
the total energy of each configuration.

In physics, conservation laws are used to write equations about the dynamics
of the system. Each conserved quantity extracts certain information about the
dynamics. In many cases, different conservation laws extract enough information
to allow the reconstruction of the whole dynamics. In other cases, conservation
laws concretize the physicist’s insight into the behavior of the system by refuting
those sequences of events that do not respect their preservation.

We study what happens if instead of mere real numbers, we allow energy
valuations from a commutative group or semigroup. A remarkable (but trivial)
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fact is that for each CA and a fixed window, there is a most general conservation
law that extracts whatever information can be expressed in terms of conservation
laws using that window. Any other more specific conservation law using that
window can be derived from that by applying an algebraic homomorphism.

We provide examples that the group-valued conservation laws give strictly
more information than the real-valued ones, and examples in which the semigroup-
valued conservation laws are strictly more general than the group-valued ones.
Needless to say, the semigroup-valued conservation laws can be quite expressive.
Nevertheless, we prove that for one-dimensional CA, the most general conserva-
tion law of each range, and a finite presentation of the corresponding semigroup
can be effectively constructed. This is a good news, because the Word Problem
for commutative semigroups is also decidable (see e.g. [1]). Therefore the whole
theory, in one-dimensional case, turns out to be algorithmically effective! For ex-
ample we can effectively determine whether two (finite) configurations have the
same total energy, or if a given CA conserves a given energy valuation. In higher
dimensions, however, no such construction for the most general semigroup-valued
conservation laws is possible.

Increasing the size of our window, we obtain more and more general (more
and more discriminating) conservation laws. We may ask if there is a large enough
window that provides the absolutely most general conservation law amongst all.
This we still cannot answer adequately. However, we show that there are CA
whose non-trivial conservation laws require very large windows. In fact, we prove
that it is undecidable (even in one-dimensional case) whether a CA has any non-
trivial conservation law at all, answering a formerly open question (see [10]). This
is valid, no matter we are looking for real-valued, group-valued, or semigroup-
valued conservation laws.

We note that the concept of the most general conservation law is closely
related to the Conway’s tiling group [4, 16], when we look at the space-time
diagram of CA as tilings of the plane. Unlike Conway’s group, in this paper
we restrict our study to commutative groups or semigroups. That is because
non-commutative conservation laws in higher-than-one dimensional CA do not
make much sense. Furthermore, in the non-commutative case, the Word Problem
is undecidable even for groups, and we much prefer to stay in the algorithmic
realm.

2 Preliminaries

A cellular automaton (CA) is a collection of identical cells arranged regularly on
a lattice where a natural notion of neighborhood is present. Each cell is assigned
a state from a finite number of possible states. The state of the cells are updated
synchronously, in discrete time steps, according to a local update rule, which
takes into account the current state of each cell and its neighbors.

The cells are often indexed by Zd (d ≥ 1), where we obtain a d-dimensional
CA. The state set is a finite set S. An assignment c : Zd → S of states to the
cells of the lattice is referred to as a configuration (of the lattice). For each state



q ∈ S, a q-uniform configuration is a configuration with all cells in state q, and
a q-finite configuration is one in which all cells but finitely many of them are in
the state q. The set of all q-finite configurations is denoted by Cq[S]. A pattern
over a finite set A ⊆ Zd is an assignment p : A → S. We use the notation g[X]
for the restriction of a mapping g to a subset X of its domain. Therefore, for
example, c[A] denotes the pattern seen over A ⊆ Zd in the configuration c ∈ SZd

.

The neighborhood is specified by a finite set N ⊆ Zd. The neighborhood of a
cell i ∈ Zd is the set i+N = {i+a : a ∈ N}. The local update rule is a function
f : SN → S. The local rule f naturally induces a mapping F : SZd → SZd

, called
the global mapping, that maps each configuration c, to its follower configuration
F (c), which when starting from c, appears on the lattice after one time-step.
Namely, F (c)[i] , f(c[i + N ]); i.e., the state of the cell i in F (c) is the result of
the application of the local rule on the pattern of the neighborhood of i in c. We
often identify a CA with its global mapping. A quiescent state is a state q ∈ S
such that F maps the q-uniform configuration to itself; i.e., f(qN ) = q. If q is a
quiescent state, the image of every q-finite configuration is also q-finite.

For any a ∈ Zd, the translation by a is the operator σa : SZd → SZd

defined
by (σac)[i] , c[a + i]. Notice that σa is a CA with neighborhood {a}. When
d = 1, we may write σ for σ1.

Let A ⊆ Zd be a finite set. The A-block-presentation of a configuration c ∈
SZd

is a configuration e ∈
(
SA

)Zd

where e[i] = c[i + A]. That is, the state of the
cell i in e is the overall state of the cells i + A in c.

One-dimensional CA have a natural representation (upto translations) using
edge-labeled De Bruijn graphs. The De Bruijn graph of order k (k > 0) over an
alphabet S, is a graph Bk[S] with vertex set V = Sk and edge set E = Sk+1,
where for any a, b ∈ S and u ∈ Sk−1, there is an edge aub from au to ub.

Let F : SZ → SZ be a one-dimensional CA with neighborhood [−l, r] =
{−l,−l + 1, . . . , r} and local rule f : S[−l,r] → S. For any k ≥ l + r, the
CA can be represented on the De Bruijn graph Bk[S] with labeling λ : E →
Sk−(l+r) which is defined as follows. For every edge u0u1 · · ·uk ∈ Sk+1, let
λ(u0u1 · · ·uk) = vlvl+1 · · · vk−r where vi = f(u[i − l, i + r]). The edge sequence
p = {p[i]}i∈Z of each bi-infinite path on Bk[S] is the [0, k]-block-presentation
of a unique configuration c ∈ SZ, while its label sequence λ(p) = {λ(p[i])}i∈Z
is the [l, k − r]-block-presentation of F (c). Conversely, for every configuration
c ∈ SZ, there is a unique infinite path on Bk[S] whose edge sequence is the
[0, k]-block-presentation of c.

A counter machine is a finite automaton equipped with two unbounded coun-
ters. The machine can increase or decrease the value of each counter, and can
test if either has value zero. Counter machines are known to be equivalent in
power with Turing machines — any algorithm can be implemented on a counter
machine (see e.g. [11]).



3 Universal Conservation Law

Let F : SZd → SZd

be a CA, and to avoid cumbersome technicalities, let us
assume that the CA has a quiescent state q. Let Φ be a commutative (additive)
semigroup, and W ⊆ Zd a finite set, and assume that to each pattern p ∈ SW

we have associated a value µ(p) ∈ Φ as its energy. We would like to define the
total energy M(c) of a configuration c ∈ SZd

as the sum∑
i∈Zd

µ(c[i + W ]) (1)

by sliding the window W over c and adding up all the local energy values we see.
However, there is no uniform way to interpret an infinite sum over a semigroup!
To overcome this, we choose the following approach: we assume that Φ contains
an identity element 0, and that µ(qW ) = 0. Then the above sum will have a
natural meaning for all q-finite configurations — only finite number of the terms
have values other than 0. For all other configurations we leave the total energy
undefined.4

We say that the CA conserves the energy valuation µ, if

M(F (c)) = M(c) (2)

for every q-finite configuration c. Then M is a Φ-valued conserved energy defined
using window W , and (2) is a conservation law for the CA. More concisely, the
conservation law can be identified by the pair (Φ, µ).

Notice that the values of M do not depend on the displacement of the window.
That is, for every translation σa, M ◦ σa = M . The conservation of M by a
CA F means further that its value is constant over the orbits of F ; i.e., M ◦
F = M . Therefore, the kernel of M is a partition of the orbits of F . The finer
this partition, the more information the conservation law extracts about the
dynamics of the CA.

An energy function which assigns the same value to every finite configuration
is trivially conserved by every CA. We call such a conservation law trivial. Note
that the total energy mapping M : Cq[S] → Φ of a conservation law is not
necessarily onto (even if the local energy function µ is onto). The uncovered
part of Φ bears no information about the dynamics of F . Hence it is convenient
to name the realizable sub-monoid Φ̆ , M(Cq[S]) of Φ. So (Φ, µ) is trivial, if and
only if, the realizable sub-monoid Φ̆ is trivial.

Let us now fix a CA F : SZd → SZd

with a quiescent state q, and a finite
window W ⊆ Zd. Every conserved energy valuation µ for F satisfies (2) for every
q-finite configuration c. The key observation in this paper is that the largest
semigroup generated by the (formal) values of µ for which (2) holds for every
q-finite configuration c provides the most general conservation law for F defined
using window W .

4 This is not the only possible approach, but it sounds most natural to us.



Put it precisely, let Σ , SW −{qW } be the set of non-quiescent patterns on
W , and let us denote by NΣ the free commutative (additive) monoid generated
by Σ. Define the energy assignment µ◦ : SW → NΣ with µ◦(qW ) = 0, and
µ◦(p) = p for any other pattern p over W , and let M◦ : Cq[S] → NΣ be the
corresponding total energy. Let ∼= ⊆ NΣ×NΣ be the coarsest monoid congruence
where M◦(F (c)) ∼= M◦(c) for every q-finite c. Define ΦF , NΣ/∼= and let h∼= :
NΣ → ΦF be the natural homomorphism. Define µF : W → ΦF with µF =
h∼= ◦ µ◦. Clearly the pair (ΦF , µF ) identifies a conservation law, because

MF (F (c)) = h∼=(M◦(F (c))) = h∼=(M◦(c)) = MF (c) (3)

Furthermore, for every conservation law (Φ, µ) with window W , there is a monoid
homomorphism h : ΦF → Φ so that µ = h ◦ µF ; schematically,

(SZ, F )
MF //

M

%%JJJJJJJJJJJJ
ΦF

h

���
�
�
�

Φ

(4)

One can verify that using Φ̆F instead of ΦF , the choice of h would be unique.
It is easy to see that when W ′ ⊆ W ⊆ Zd, the most general conservation

law based on window W ′ is a factor of the most general conservation law based
on window W ; i.e., (Φ(W )

F , µ
(W )
F ) is more general than (Φ(W ′)

F , µ
(W ′)
F ). That is

because every energy valuation on W ′ can be seen also as a energy valuation on
W , by adding some dummy elements to W ′.

Following a similar trail of reasoning, if instead of semigroup-valued energies
we consider group-valued energies, we can define the most general group-valued
conservation law (GF , ρF ) based on W for F . Likewise, we define the realiz-
able subgroup ĞF , PF (Cq[S]) of GF , where PF is the total energy mapping
corresponding to ρ. The conservation law (ĞF , ρF ) satisfies a similar universal
property (4) among group-valued conservation laws.

Example 1 (Spreading 1’s). Consider the one-dimensional CA F with state set
{0, 1}, neighborhood {−1, 0, 1}, and local rule f(a, b, c) = a∨ b∨ c ; see Fig. 1 for
a typical snapshot. The time axis in the figure goes downward. It is easy to see
that every group-valued conservation law for F is trivial. Notice that every non-
quiescent finite configuration eventually turns into a single ever-growing block
of ones. In contrast, F has a non-trivial semigroup-valued conservation law. Let
Φ = {0, 1} be the commutative semigroup with binary operation a + b , a ∨ b.
Let W = {0} be the singleton window, and µ : {0, 1} → Φ be the identity. Under
this energy valuation, the 0-uniform has total energy 0, while every other 0-finite
configuration has total energy 1.

Example 2 (XOR). The second example is again a one-dimensional CA F ′ with
binary state set, and neighborhood {−1, 0, 1}. The local rule is the XOR rule



Fig. 1. A space-time snapshot from the CA in Ex. 1.

f ′(a, b, c) = a+b+c (mod 2). Figure 2 shows a typical snapshot. A well-known
property of the XOR CA (and in general every linear CA) is its replicating behav-
ior. Specifically, every finite pattern, after a finite number of steps, is replicated
into three copies with large 0 blocks in between (Fig. 2 depicts an example. This
is easy to verify using generating functions; see e.g. [15]). This implies that F ′

cannot have any non-trivial real-valued conservation law. On the other hand, G
preserves the parity of the configurations. Let G = Z2 be the binary cyclic group,
and consider the identity energy function ρ : {0, 1} → Z2 on window {0}. The
total energy P (c) is simply the parity of the number of 1’s in c, and is preserved
by F ′.

Fig. 2. A space-time snapshot from the CA in Ex. 2.

4 Semigroup-valued Conservation Laws

The definition of the most general conservation law of certain range, given above,
is based on an infinite presentation of the corresponding semigroup. A standard
theorem from the theory of semigroups states that any finitely generated com-
mutative semigroup has a finite presentation (see e.g. [7]). A question arises that
how one can find such a finite presentation. A finite presentation is needed if,
for example, we want to algorithmically verify whether two configurations have
the same total energy. It turns out there is no algorithm to construct such a
finite presentation for the semigroup of the most general conservation law in



2- or higher-dimensional CA. In one-dimensional case, we can construct these
semigroups effectively.

Let F : SZd → SZd

be a CA with a quiescent state q ∈ S. Clearly, (q, q) is a
quiescent state for the product F ×F . Let Φ = {0, 1} be the Boolean semigroup
with a + b , a ∨ b, for any a, b ∈ Φ. Define the range-{0} energy valuation
µ : S × S → Φ with

µ(a, b) =
{

0 if a = b,
1 otherwise. (5)

The energy µ is conserved by F × F , if and only if, F is injective on finite
configurations. According to the Garden-of-Eden theorem [12, 13], F is injective
on finite configurations if and only if it is surjective. However, when d ≥ 2, it
is undecidable whether a given d-dimensional CA is surjective [9]. Therefore no
algorithm could verify, for a given F , whether F × F conserves µ.

Theorem 1. There is no algorithm, that given a 2- or higher-dimensional CA
F with state set S, and an energy valuation µ : S → Φ from a finitely presented
commutative semigroup Φ, determines if F conserves µ.

Corollary 1. There is no algorithm, that given a 2- or higher-dimensional CA
F , computes a finite presentation of the semigroup ΦF and the energy valuation
µF of the most general conservation law for F with window {0}.

Let us now focus on one-dimensional CA. Let F : SZ → SZ be a 1d CA.
Without loss of generality we assume that F has a neighborhood [−l, r] =
{−l,−l + 1, . . . , r} with l + r ≥ 0. Let q be the designated quiescent state of
F . Let W ⊆ Z be a finite set, and µ : SW → Φ be an energy valuation on
window W with values from a commutative monoid Φ. Again without loss of
generality we assume that W = [0,m) = {0, 1, . . . ,m− 1}.

For k = l+r+m, consider the k’th order De Bruijn representation (Bk[S], λ)
of F . This has a vertex qk, with a loop edge qk+1 which is labeled by qm. Any
path corresponding to a q-finite configuration starts by circulating in this loop,
and after possibly passing through a finite number of other edges, eventually
returns back to this loop.

To each edge u0u1 · · ·uk ∈ Sk+1 let us assign two elements

α(u0u1 · · ·uk) , µ(u0u1 · · ·um−1) (6)

and
β(u0u1 · · ·uk) , µ(vlvl+1 · · · vl+m−1) (7)

from ΦF , where vlvl+1 · · · vk−r = λ(u0u1 · · ·uk) is the label of u0u1 · · ·uk. The
total energy of a q-finite configuration x can be calculated by adding up the val-
ues of α over the edges of the corresponding bi-infinite path on Bk[S]. Likewise,
the sum of β values on this path gives the total energy of F (x). Note that the ini-
tial and final parts of such a path, where it is circulating in the loop qk+1 do not
contribute to the total energy, because µ(qm) = 0. For any path p = p1p2 · · · pn



(pi is the i’th edge of the path), let us use the notation α(p) for the sum of the
values of α over the edges of p; i.e.,

α(p) ,
n∑

i=1

α(pi) (8)

and similarly for β.
The requirements imposed by the conservation of µ can now be translated

in terms of the values of α and β over finite paths on the graph Bk[S]: The pair
(Φ, µ) specifies a conservation law, if and only if, for any finite path p starting
and ending at vertex qk, α(p) = β(p).

We claim that (the proof can be found in the Appendix):

Proposition 1. Let G be a (finite, directed) graph with vertex set V and edge
set E, and ∆ a finite symbol set. Let α, β : E → ∆ and A,B ⊆ V . Let Φ be the
largest commutative monoid generated by ∆, satisfying the equations

α(p) = β(p) (9)

for any finite path p starting from A and ending at B. Then, there is an al-
gorithmically constructible finite subset of the above equations, such that any
commutative monoid generated by ∆ satisfying those equations is a factor of Φ.

From Prop. 1, we immediately obtain what we were after in this section:

Theorem 2. For any one-dimensional CA F and any finite window W ⊆ Z,
the semigroup ΦF of the most general conservation law for F based on W is
effectively finitely presentable.

This does not say much about the realizable sub-monoid Φ̆F ⊆ ΦF . For
example, it is not even clear if Φ̆F is finitely generated or not. Following a
similar construction, however, one can decide whether Φ̆F is trivial or not.

Proposition 2. Let F be a one-dimensional CA, and (Φ, µ) a semigroup-valued
conservation law for F . It is decidable whether Φ̆ is trivial.

5 Group-valued Conservation Laws

Group-valued conservation laws are more easily tractable. There is a simple
algorithm which tests whether a given CA F (of any dimension) conserves a
given group-valued energy function ρ. (This is similar to the real-valued case;
see e.g. [10]). In particular, for any fixed window W one can effectively construct
the most general group-valued conservation law (G(W )

F , ρ
(W )
F ) based on W . The

next challenge would be to classify all conservation laws, based on all windows.
For example, given a CA, is it possible to decide if it has any conservation law at
all? In this section we prove that the answer to the latter question is negative.



Lemma 1. Let F : SZd → SZd

be a 1d CA with a designated quiescent state q.
Suppose that F is nilpotent over q-finite configurations. Then F does not have
any non-trivial (real-valued/group-valued/semigroup-valued) conservation law.

Theorem 3 (Blondel, Cassaigne and Nichitiu [2]). Given a counter ma-
chine A with 2 counters and no halting state, it is undecidable whether A has a
periodic orbit.

Theorem 4. There is no algorithm that given a one-dimensional cellular au-
tomaton F determines if F has a non-trivial (real-valued/group-valued/semigroup-
valued) conservation law.

Sketch of the proof. We show how to reduce the problem of whether a given
counter machine has a periodic orbit to finding out if a 1d CA has any non-
trivial conservation law. Since the former is undecidable, we conclude that so is
the latter.

Let A be a counter machine with state set Q, two registers x1 and x2, and
transition function δ : Q× {0, 1}2 → Q× {1, 2} × {−, 0,+}. We construct a CA
F with a designated quiescent state q such that

a) if A has a periodic configuration, F has a non-trivial (real-valued) conserva-
tion law, while

b) if A has no periodic orbit, F is nilpotent over q-finite configurations (hence,
has no non-trivial conservation law).

The CA F has two states L and R which are end-markers. In the interval
between a left end-marker L and a right end-marker R, the CA simulates the
machine A. The CA also constantly verifies the syntax of the block between
two end-markers, to make sure it corresponds with an actual simulation. If a
syntax error is found, or if the simulation overflows the end-markers, the CA
erases the whole block, by replacing the cell contents with q. Blocks not having
end-markers are also erased.

If the machine A has no periodic orbit, every syntactically correct simulation
of A on a finite block eventually overflows the boundaries. Therefore, every q-
finite configuration eventually goes quiescent; i.e., F is nilpotent over q-finite
configurations.

On the other hand, if A has a periodic configuration, one can choose a suf-
ficiently large simulation block in F which evolves periodically, and never over-
flows. Let us fix a snapshot of such a periodic simulation block (including its
end-markers), and denote it by B. Since no new end-marker is ever created by
F , and since the end-markers block the flow of information inwards and outwards
the simulation blocks, we can argue that if a simulation block in a configuration
eventually turns into B, it does so independent of the rest of the configuration,
and after a bounded number of steps. Let us denote by B the set of all simulation
blocks that eventually turn into B. This is a stable set. Once we know that a
block from B occurs in a certain position on a configuration c, we also know
that a block from B occurs in the same position on any pre-image of c. This
immediately gives a non-trivial (real-valued) conservation law that states that
the number of occurrences of blocks from B is conserved by F . ut



6 Conclusion and Open Problems

In this paper we examined a number of algorithmic problems that arise from
studying the algebraic conservation laws for cellular automata. The semigroup-
valued conservation laws are highly expressive, still not so tractable. The group-
valued conservation laws are more expressive than the real-valued ones, yet as
accessible as they are.

Since reversible CA are particularly attractive for modeling physical pro-
cesses, it would be useful to examine the same problems in the restricted case of
reversible CA. In particular, is it decidable whether a given reversible CA has
any conservation law? Notice that our proof of Theorem 4 takes advantage of the
existence of very long transients to construct CA whose conservation laws need
very large windows. We conjecture that every reversible CA has a non-trivial
conservation law with a relatively small window.
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A Appendix

A.1 Proposition 1

Proof. We start by introducing the finite subset in question. For any vertex
v ∈ V , define the following three sets:

Pv: The set of all simple paths starting from A and ending at v.
Qv: The set of all simple paths starting from v and ending at B.
Cv: The set of all simple cycles (including the empty one) passing through v.

For any v, the set PvCvQv is finite, because each of Pv, Cv and Qv is finite.
Its elements are paths starting from A, passing through v (and possibly a cycle
around v), and continuing further to end up at B. Define

R ,
⋃

v∈V

PvCvQv .

We claim that if for some semigroup Φ′ generated by ∆, the equation (9) holds
for all paths r ∈ R, it also holds for any other path p from A to B.

The proof is by induction on the length of the path p. Note that any suffi-
ciently short path p from A to B is simple and passes through a vertex like v.
Therefore it is of the form xy where x ∈ Pv and y ∈ Qv. That is p ∈ R and the
equation (9) holds by the assumption.

Suppose that the equation (9) holds for all paths of length at most n, and let
p be a path of length n + 1 from A to B. If p is not simple, it contains at least
one non-empty simple cycle, and hence can be written in the form xcy where x
is a (not necessarily simple) path from A to a vertex v, c is a non-empty simple
cycle starting and ending at v, and y is a (not necessarily simple) path from v to
B. On the other hand x contains a subsequence x̃ which is a simple path from
A to v, and we can write

α(x) =
∑

i

α(xi) = γx +
∑

i

α(x̃i) = γx + α(x̃)

where γx ∈ Φ is the sum of α over those edges from x that are not in x̃. Similarly
y contains a subsequence ỹ which is a simple path from v to B and we can write

α(y) = γy + α(ỹ)

for some γy ∈ Φ. Writing the equation (9) for the paths x̃ỹ and x̃cỹ (note that
x̃ỹ, x̃cỹ ∈ R) and xy (by induction hypothesis), we have

α(x̃) + α(ỹ) = β(x̃) + β(ỹ) (10)
α(x̃) + α(c) + α(ỹ) = β(x̃) + β(c) + β(ỹ) (11)

α(x) + α(y) = β(x) + β(y) (12)



from which we obtain that

α(p) = α(x) + α(c) + α(y)
= γx + γy + α(x̃) + α(c) + α(ỹ)
= γx + γy + β(x̃) + β(c) + β(ỹ)
= γx + γy + α(x̃) + α(ỹ) + β(c)
= α(x) + α(y) + β(c)
= β(x) + β(y) + β(c)
= β(p)

which is what we wanted to proof. Therefore, any equation satisfied by the
semigroup Φ is also satisfied by Φ′, and Φ′ is a factor of Φ. ut

A.2 Theorem 4

Construction. Let E = {L,R}, X = {0, 1}, K = {1, 2} and C = {0,+,−, 1}.
The state set of F is S = {q}∪E∪Q∪(X ×X ×K × C), and its neighborhood is
N = {−1, 0, 1}. Each simulation block starts with a left end-marker L, followed
by an element from Q, representing the state of the counter machine, and ends
with a right end-marker R. The space between the Q state and the right end-
marker stores the two counters, and manages the required signaling. The first
and the second components of X × X × K × C keep the unary value of the
counters x1 and x2 in the form of stacks extending to the right. The K component
corresponds the second component of the values of δ, indexing the counter to
be increased or decreased. The C component carries a signal indicating whether
the indexed counter should be increased (+), decreased (−), or left unchanged
(0), and an acknowledgment signal (1) that comes back to the left to initiate the
simulation of the next step. The local rule f : S3 → S of the CA is presented in
Table 1. A sample syntactically correct simulation block is depicted in Figure 3.

ut
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Fig. 3. A syntactically correct simulation block in the CA described in the proof of
Theorem 4. The simulated machine is in state x ∈ Q. The first counter contains 2,
while the second counter has 6. There is a signal, moving to the right, commanding
the second counter to increase.



a−1 a0 a1 f(a−1a0a1) Condition

q q

L x L x ∈ Q
L x q x /∈ Q

(0, 0, k, c) R R k ∈ K and c 6= 0
x R q x /∈ {0} × {0} ×K × {+,−, 1}
L x (b1, b2, k, 1) x′ x ∈ Q and δ(x,¬b1,¬b2)

= (x′, k′, c′)
L x (b1, b2, k, c) x x ∈ Q and c 6= 1
y x q x ∈ Q but y 6= L

x R q x ∈ Q

x (b1, b2, k, 1) y (b1, b2, k
′, c′) x ∈ Q and y /∈ {q, L} and

δ(x,¬b1,¬b2)
= (x′, k′, c′)

(b′1, b
′
2, k

′, c′) (b1, b2, k, 1) y (b1, b2, k
′, c′) c′ 6= 0 and y /∈ {q, L}

(b′1, b
′
2, k

′, 0) (b1, b2, k, 1) y (b1, b2, k, 1) y /∈ {q, L}
x (b1, b2, k, 0) (b′1, b

′
2, k

′, 1) (b1, b2, k, 1) x /∈ {q, L, R}
x (b1, b2, k, 0) (b′1, b

′
2, k

′, c) (b1, b2, k, 0) c 6= 1 and x /∈ {q, L, R}
x (0, b2, 1, +) y (1, b2, 1, 1) x ∈ Q and y /∈ {q, L}

(b′1, b
′
2, k

′, c′) (0, b2, 1, +) y (b′1, b2, 1, 1) y /∈ {q, L}
x (1, b2, 1, +) y (1, b2, 1, 0) x /∈ {q, L, R} and y /∈ {q, L}
x (b1, 0, 2, +) y (b1, 1, 2, 1) x ∈ Q and y /∈ {q, L}

(b′1, b
′
2, k

′, c′) (b1, 0, 2, +) y (b1, b
′
2, 2, 1) y /∈ {q, L}

x (b1, 1, 2, +) y (b1, 1, 2, 0) x /∈ {q, L, R} and y /∈ {q, L}
x (0, b2, 1,−) y (0, b2, 1, 1) x /∈ {q, L, R} and y /∈ {q, L}
x (1, b2, 1,−) (0, b′2, k

′, c′) (0, b2, 1, 1) x /∈ {q, L, R}
x (1, b2, 1,−) (1, b′2, k

′, c′) (1, b2, 1, 0) x /∈ {q, L, R}
x (b1, 0, 1,−) y (b1, 0, 1, 1) x /∈ {q, L, R} and y /∈ {q, L}
x (b1, 1, 1,−) (b′1, 0, k′, c′) (b1, 0, 1, 1) x /∈ {q, L, R}
x (b1, 1, 1,−) (b′1, 1, k′, c′) (b1, 1, 1, 0) x /∈ {q, L, R}
L x q x 6= Q

x R q x /∈ {0} × {0} ×K × {+,−, 1}
y x q x 6= L and y ∈ {q, R}

x y q x 6= R and y ∈ {q, L}

Table 1. The local rule of the CA described in the proof of Theorem 4.


