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Abstract We analyze a basic building block of gene regulatory networks us-
ing a stochastic/geometric model in search of a mathematical backing for the
discrete modeling frameworks. We consider a network consisting only of two
interacting genes: a source gene and a target gene. The target gene is acti-
vated by the proteins encoded by the source gene. The interaction is therefore
mediated by activator proteins that travel, like a signal, from the source to the
target. We calculate the production curve of the target proteins in response
to a constant-rate production of activator proteins. The latter has a sigmoidal
shape (like a simple delay line) that is sharper and taller when the two genes
are closer to each other. This provides further support for the use of discrete
models in the analysis gene regulatory networks. Moreover, it suggests an evo-
lutionary pressure towards making the interacting genes closer to each other
to make their interactions more efficient and more reliable.
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1 Introduction

It is a well-known property in biology that gene interactions are sigmoidal. If
a gene σ is an activator of a gene τ , and assuming any other interactions being
constant, then, when σ gives a signal of activation to τ , the concentration level
of the protein produced by τ follows a sigmoidal shape.

It may seem surprising at first glance that the non-linearities reflected by
these sigmoids simplify the analysis of a gene network model as a whole. This
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is mainly due to the clear qualitative distinction that they induce in the set
of possible trajectories, facilitating the emergence of a set of clearly distinct
stable states and clarifying the high dependency to initial states. Sigmoidal be-
haviours allow the modeling process to focus on a smaller number of simplified
parameters and facilitate the identification activity.

Continuous modeling approaches for gene regulatory networks Tyson et al.
(2008); Leloup and Goldbeter (2004) often use Hill functions, for example,
to describe this behavior. Discrete modeling approaches even strongly rely on
these sigmoidal behaviors because the discrete values representing concentra-
tion levels are defined according to thresholds and each threshold is indeed the
inflection point of such a sigmoid Glass and Kauffman (1973); Thomas and
Kaufman (2001a,b); Bernot et al. (2004).

Although widely observed for a long time in cellular biology, these sig-
moidal behaviours became the object of theoretical studies rather recently.
For example in biochemistry and biophysics, at the molecular level, in Halford
and Marko (2004); Halford (2009); Wunderlich and Mirny (2008) the authors
have studied the efficiency of protein binding to specific sites of the DNA
strand. The emphasis of these theoretical models is on the recognition of the
DNA sites but the models also exhibit a sigmoidal behaviour. In Wunderlich
and Mirny (2008) also an interesting distinction is made between 3D diffusion
of the proteins and 1D search along DNA.

Also rather recently, biologists have made very interesting observations
about the functional organization, folding and evolution of chromosomes. The
genes that are co-transcribed under a given stress are preferentially placed at
periodic distances along the chromosomes Junier et al. (2010). A chromosome,
inside the cell, is dynamically rearranged in such a way that co-working genes
are closer to each other when they need to react together, and natural selection
seems to favour these periodic distances.

The significance of the spatial arrangement of the interacting genes is,
among others, influenced by the fact that the proteins mediating the interac-
tions and playing the role of signals must in a way locate their targets. The
mechanism by which a protein locates and binds to its target gene is a subject
of some debates, as the 3D diffusion alone is not rapid enough to lead the pro-
cess (see Wunderlich and Mirny (2008); Halford and Marko (2004)). However,
according to Halford (2009), the action of 3D diffusion is predominant before
the protein reaches a neighborhood of the target gene (∼50–100 bp).

So, dynamically, the impact of the distance between interacting genes, inde-
pendently of any local site recognition phenomena along DNA, seems to have
an important contribution to the biological functions, especially to rapidly
start these functions under a stress. The contribution of this article is to pre-
cisely study the impact of the distance between two interacting genes inside
a prokaryote. We relate the quality of the sigmoidal shape of the transient
behaviour to the distance between the interacting genes, using an abstract
stochastic/geometric model.

The “behaviour” of the genes has been intentionally abstracted (ignoring
the two stage translation/transcription production) in such a way that σ could
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be also considered as a sort of “source” of transcription factors, or simply a
transitory place from which transcription factors come. Similarly, the “place”
of a gene intentionally ignores the DNA structure, elasticity or 1D distance
along the chromosome, in such a way that we only focus on the actual distance
between σ and τ . We prove that considering the distance between the genes
alone, already induces a sigmoidal interaction. We also show that, the lower
the distance, the sharper the sigmoid; thus, a short distance induces a rapid
start of the gene function. It may explain by itself why the natural selection
favours reconfigurations of the chromosomes that rapidly co-locate co-working
genes sharing transcription factors.

2 The Model

We encapsulate the transcription and translation stages into a single step in
which new proteins are produced in the vicinity of the genes. We see the genes
σ (source) and τ (target) as points in the 3-dimensional Euclidean space that
are at distance D from each other. New S proteins are produced at σ according
to a Poisson process with rate λS > 0. This amounts to the assumption that
the number of proteins produced in disjoint intervals are independent and the
probability that a new protein is produced during an infinitesimal time δt is
λSδt.

Each S protein in our model follows a two-phase process to locate and
interact with the target gene τ . The first phase is a simple diffusion; we see
it as a Brownian motion in the 3-dimensional space. We denote the diffusion
rate by β > 0. The diffusion of each S protein is assumed to be independent
of the production and diffusion of the other S proteins.

The diffusion continues until the protein arrives (if at all) at the “range
of interaction” R of the target τ . We consider the range of interaction R
simply as a sphere with radius r > 0 centered at τ . After arriving at R,
the process enters its second phase. In this phase, the diffusion is affected
by other factors (e.g., the electrostatic forces between the involved molecules,
temporary attachments to the DNA strand, etc.) that eventually lead to the
production of new T proteins at τ . Since here we are only concerned with
the role of the distance D between the two genes, we model the generation of
T proteins in this phase simply as a Poisson process: upon its arrival at R,
each S protein triggers a Poisson process with rate λ̂T > 0 for the production
of new T proteins at τ . This T production process continues as long as the
initiating S protein has not degraded. The T production processes triggered
by different S proteins are assumed to be independent of each other and of
the other elements of the model.

Finally, each protein may degrade (become annihilated) according to an
exponential decay process, independent of everything else in the model. To
simplify the calculations, we assume that S and T proteins both degrade at
the same rate ε > 0: the probability that a protein (S or T ) degrades during
an infinitesimal time δt is εδt.
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2.1 Protein Concentrations

The concentration of the proteins of type S or T at a given time can be
measured by their actual numbers. We denote the number of S and T proteins
at time t by nS(t) and nT (t), respectively. These are random variables. We
now calculate their expected values. We denote by p(t1 − t0), the probability
that an S protein produced at time t0 arrives at the range of interaction of
τ before time t1 > t0, provided it has not degraded during that period. This
will be calculated in the next section.

The basic tool used in the calculations of this section is Campbell’s theorem
(see Kingman (1993)). A Poisson process with rate λ on R+ can be identified
with a random countable set ξ ⊆ R+. Let f : R+ → C be an arbitrary
measurable function and I ⊆ R+ a bounded measurable set. Then, Campbell’s
theorem states that the expected value of the sum over ξ ∩ I of f is the same
as the integral of λf over I.

Proposition 1

E [nS(t)] =
λS
ε

(
1− e−εt

)
.

Proof Denote the set of times θ ∈ R+ in which a new S protein is produced
by ξS . We write ξS(t) for ξS ∩ [0, t]. To calculate E [nS(t)], we condition nS(t)
to ξS and use E [nS(t)] = E [E [nS(t) | ξS ]]. Since each S protein may degrade
with rate ε, we have

E [nS(t) | ξS ] =
∑

θ∈ξS(t)

e−ε(t−θ) .

Therefore, according to Campbell’s theorem we have

E [nS(t)] =

∫ t

0

e−ε(t−θ)λSdθ =
λS
ε

(
1− e−εt

)
. ut

Proposition 2

E [nT (t)] =
λS λ̂T
ε

∫ t

0

(
e−εθ − e−εt

)
p(θ)dθ .

Proof For an S protein produced at time s, let nsT (t) denote the number of
children of s at time t > s. By the children of s we mean the T proteins pro-
duced in the process triggered by s. Clearly, the distribution of nsT (t) depends
only on t− s and not on t or s separately.

Let us first calculate E
[
n0T (t)

]
. Consider a (potential) S protein produced

at time 0. Denote by δ ∈ [0,+∞) the time at which this S protein degrades.
Let h ∈ [0,+∞] represents the time at which this S protein arrives at the
range of interaction of τ . If the protein degrades before reaching the target we
set h , +∞. Finally, denote by ξ0T the set of T proteins produced as a result
of the interaction of this S protein with the target (i.e., the set of children of
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this S protein). In the present model, given h and δ, ξ0T is a Poisson process

with rate λ̂T on the interval [h, δ]. We write ξ0T (t) for ξ0T ∩ [0, t].
Since each T protein annihilates with rate ε, we have

E
[
n0T (t)

∣∣h, δ, ξ0T
]

=
∑

r∈ξ0T (t)

e−ε(t−r) .

From Campbell’s theorem we get

E
[
n0T (t)

∣∣h, δ
]

=

∫ min(δ,t)

min(h,t)

e−ε(t−r)λ̂Tdr

=





λ̂T

ε

(
1− e−ε(t−h)

)
if h ≤ t < δ,

λ̂T

ε

(
e−ε(t−δ) − e−ε(t−h)

)
if h ≤ δ ≤ t,

0 if t < h or δ < h.

Taking expectation with respect to δ for h ≤ t, we obtain

E
[
n0T (t)

∣∣h
]

= e−εt E
[
n0T (t)

∣∣h, {δ > t}
]

+

∫ t

h

E
[
n0T (t)

∣∣h, {δ = x}
]
εe−εxdx

=
λ̂T
ε
e−εt

(
1− e−ε(t−h)

)
+ λ̂T e

−εt
∫ t

h

(
eεx − eεh

)
e−εxdx

= λ̂T e
−εt(t− h) .

Recall that the probability that the S protein hits the target before time h is
denoted by p(h). Therefore, resolving the conditioning relative to h, we have

E
[
n0T (t)

]
=

∫ t

0

E
[
n0T (t)

∣∣h = x
]

dp(x)

=

∫ t

0

λ̂T e
−εt(t− x) dp(x)

= λ̂T e
−εt
(
tp(t)−

∫ t

0

xdp(x)

)

= λ̂T e
−εt
∫ t

0

p(x) dx .

Next, let us use E
[
n0T (t)

]
to calculate E [nT (t)]. As before, denote the set

of time moments s ∈ R+ in which a new S protein is produced by ξS and write
ξS(t) for ξS ∩ [0, t]. We have

nT (t) =
∑

s∈ξS(t)

nsT (t) ,

and hence

E [nT (t) | ξS(t)] =
∑

s∈ξS(t)

E [nsT (t)] =
∑

s∈ξS(t)

E
[
n0T (t− s)

]
.
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Thus, Campbell’s theorem implies that

E [nT (t)] =

∫ t

0

E
[
n0T (t− s)

]
λS ds = λS

∫ t

0

E
[
n0T (r)

]
dr

= λS λ̂T

∫ t

0

e−εr
∫ r

0

p(x) dxdr

= λS λ̂T

∫ t

0

p(x)

∫ t

x

e−εr dr dx

=
λS λ̂T
ε

∫ t

0

(
e−εx − e−εt

)
p(x) dx ,

concluding the proof. ut

2.2 Mechanism of Diffusion

In this section, we describe the probability distribution p(t) of the time it
takes for an S protein produced at σ to reach the range of interaction of
τ . As mentioned above, we consider this range of interaction R as a sphere
with radius r centered at τ . In reference to the description given in Halford
(2009), r is of order of 50 bp on the target DNA molecule (i.e., ∼20–30 nm),
whereas D is of intermolecular scale. We assume that the S protein follows a
3-dimensional Brownian motion (Wiener process) with diffusion rate β > 0:
the total displacement of the protein within an interval [s, t] (0 ≤ s < t) has a
normal distribution with mean 0 and variance β(t− s), and the displacements
in disjoint intervals are independent (see e.g. Folland (1999) or Krylov (1991)).

For a point x ∈ Rd and a compact set R ⊆ Rd (not including x) in the
d-dimensional Euclidean space, let us denote by Hd(x,R, t) the probability
that a standard d-dimensional Brownian motion (i.e., with diffusion rate 1)
starting at x and time 0 hits the region R before time t. Hence, in our model
p(t) = H3(σ,Br(τ), βt), where Br(τ) is the closed ball with radius r around
τ , and the distance between σ and τ is D > r.

When R = Br(y) is a closed ball with radius r whose center y is at distance
D > r from x, Yin and Wu (1996) have calculated Hd(x,R, t) in any number
of dimensions d as

Hd(x,Br(y), t) =
2

π

( r
D

)α ∫ ∞

0

(
e−tθ

2/2 − 1
) Q(α, θ,D, r)

θ
dθ , (1)

where α = d/2− 1 and

Q(α, θ,D, r) =
Jα(Dθ)Nα(rθ)− Jα(rθ)Nα(Dθ)

J2
α(rθ) +N2

α(rθ)
(2)

and Jα and Nα are, respectively, the Bessel functions of the first and second
kinds.
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It is interesting to observe that formula (1) in dimensions 1 and 3 differ
only by a factor of r/D. Namely, Equation (2) can be rewritten as

Q(α, θ,D, r) = sin(απ)
Jα(rθ)J−α(Dθ)− Jα(Dθ)J−α(rθ)

J2
α(rθ)J2

−α(rθ)− 2Jα(rθ)J−α(rθ) cos(απ)

Note that Q(α, θ,D, r) is invariant under change of sign of α. In particular,
Q(−1/2, θ,D, r) = Q(1/2, θ,D, r); that is to say in dimension 1 and 3, the
term Q(α, θ,D, r) is the same. Therefore,

H3(x,Br(y), t) =
r

D
H1(x′, Br(y′), t) (3)

for x, y ∈ R3 and x′, y′ ∈ R with |y − x| = |y′ − x′| = D.
In dimension 1, there is a well-known simpler formula

H1(x′, Br(y′), t) = 1− erf

(
D − r√

2t

)
(4)

for the probability distribution of the first time a standard Brownian motion
hits an obstacle at distance D− r > 0 (see e.g. Redner (2001), page 84). Here,
erf(a) refers to the error function:

erf(a) , 2√
π

∫ a

0

e−z
2

dz .

Combining (3) and (4), we obtain a simple expression

H3(x,Br(y), t) =
r

D

(
1− erf

(
D − r√

2t

))

for the probability that a standard 3-dimensional Brownian motion hits a
closed ball with radius r > 0 and distance D > r before time t.

Proposition 3

p(t) =
r

D

(
1− erf

(
D − r√

2βt

))
.

2.3 Analysis

In this section, we verify that the concentration of T proteins in our model
is indeed a sigmoidal function of time whose height grows exponentially as
the distance between the two genes σ and τ decreases. We also demonstrate
numerically that the transition duration of this sigmoidal function grows lin-
early with the distance between σ and τ . Hence from the current model, the
closeness of the interacting genes seem to drastically affect the height and
sharpness of the concentration curve of the target proteins. This suggests a
strong evolutionary pressure towards making the interacting genes closer to
each other.

We call a continuous function f : (0,+∞)→ (0,+∞) sigmoidal if
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0
t

f(t)

hf

tf
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arctan f �(tf )

0.1hf

0.9hf

∆f

Fig. 1 A generic sigmoidal function with height hf , steepness f �(tf ), and width ∆f .

i) its derivatives f �(t) and f ��(t) exist and are continuous,
ii) it is monotone,
iii) limt�0 f(t) = limt�0 f �(t) = 0,
iv) limt→+∞ f(t) < +∞, and
v) it has exactly one inflection point 0 < tf < +∞ (at which the curvature

changes from upward to downward).

We call the value hf � limt→+∞ f(t) the height of f and f �(tf ) its steepness.

We measure the transition duration of f by the value ∆f � f−1(0.9hf ) −
f−1(0.1hf ), which we call the width of f (see Figure 1). For example, the func-

tion p(t) in our model is sigmoidal with height r/D, steepness ∼0.23 2βr
(D−r)2D ,

and width ∼125.9 (D−r)2

2β (see Figure 2).

The expected number of S proteins E [nS(t)] does not have a sigmoidal
curve as it has no inflection point on (0, +∞) (see Figure 3). Yet it is in-
creasing and bounded with E [nS(0)] = 0, and all its derivatives exist and are
continuous. Therefore, we can still define and calculate its height and width:
its height is λS/ε and its width is ∼2.20/ε.

Let us verify that the expected number of T proteins E [nT (t)] does indeed
have a sigmoidal curve (Figure 4(a)).

Proposition 4 The function GT (t) � E [nT (t)] is sigmoidal.

Proof From Proposition 2, we have

GT (t) =
λS λ̂T

ε

� t

0

�
e−εθ − e−εt

�
p(θ)dθ , (5)

which is a continuous function of t. Clearly limt�0 GT (t) = 0. Since p(t) has
continuous derivatives of any degree on (0, +∞), so does GT (t). The first
derivative of GT (t) is

G�
T (t) = λS λ̂T e−εt

� t

0

p(x)dx

Fig. 1 A generic sigmoidal function with height hf , steepness f �(tf ), and width ∆f .
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v) it has exactly one inflection point 0 < tf < +∞ (at which the curvature
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The expected number of S proteins E [nS(t)] does not have a sigmoidal
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Proof From Proposition 2, we have
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ε
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0

�
e−εθ − e−εt

�
p(θ)dθ , (5)

which is a continuous function of t. Clearly limt�0 GT (t) = 0. Since p(t) has
continuous derivatives of any degree on (0, +∞), so does GT (t). The first
derivative of GT (t) is
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T (t) = λS λ̂T e−εt
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Fig. 1 A generic sigmoidal function with height hf , steepness f ′(tf ), and width ∆f .

i) its derivatives f ′(t) and f ′′(t) exist and are continuous,
ii) it is monotone,
iii) limt↘0 f(t) = limt↘0 f

′(t) = 0,
iv) limt→+∞ f(t) < +∞, and
v) it has exactly one inflection point 0 < tf < +∞ (at which the curvature
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We call the value hf , limt→+∞ f(t) the height of f and f ′(tf ) its steepness.

We measure the transition duration of f by the value ∆f , f−1(0.9hf ) −
f−1(0.1hf ), which we call the width of f (see Figure 1). For example, the func-

tion p(t) in our model is sigmoidal with height r/D, steepness ∼0.23 2βr
(D−r)2D ,

and width ∼125.9 (D−r)2
2β (see Figure 2).

The expected number of S proteins E [nS(t)] does not have a sigmoidal
curve as it has no inflection point on (0,+∞) (see Figure 3). Yet it is in-
creasing and bounded with E [nS(0)] = 0, and all its derivatives exist and are
continuous. Therefore, we can still define and calculate its height and width:
its height is λS/ε and its width is ∼2.20/ε.

Let us verify that the expected number of T proteins E [nT (t)] does indeed
have a sigmoidal curve (Figure 4(a)).

Proposition 4 The function GT (t) , E [nT (t)] is sigmoidal.

Proof From Proposition 2, we have

GT (t) =
λS λ̂T
ε

∫ t

0

(
e−εθ − e−εt

)
p(θ)dθ , (5)

which is a continuous function of t. Clearly limt↘0GT (t) = 0. Since p(t) has
continuous derivatives of any degree on (0,+∞), so does GT (t). The first
derivative of GT (t) is
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0

p(x)dx
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Again we have limt↘0G
′
T (t) = 0. Moreover, since p(t) is positive, so is G′T (t),

and therefore GT (t) is monotonically increasing. Also, since p(t) < r/D, we
have

G′T (t) ≤ λS λ̂T e−εt
∫ t

0

r

D
dx = λS λ̂T

r

D
e−εtt ,

which implies

lim
t→+∞

GT (t) =

∫ +∞

0

G′T (x)dx

≤ λS λ̂T
r

D

∫ +∞

0

e−εxxdx

=
λS λ̂T
ε2

r

D
< +∞ .

The first derivative G′T (t) is everywhere positive and continuous, and con-
verges to 0 as t → +∞ or t ↘ 0. Hence, it has a maximum value. Therefore,
in order to show that GT (t) has a unique inflection point in (0,+∞), it is suf-
ficient to show that its second derivative G′′T (t) has a unique zero in (0,+∞).
We have

G′′T (t) = λS λ̂T e
−εt
(
p(t)− ε

∫ t

0

p(x)dx

)
. (6)

If we substitute p(t) in (6) with its value from Proposition 3 and use the
shorthand c , 2β

(D−r)2 , we get that G′′T (t) = 0 if and only if

erfc

(
1√
ct

)
− ε

∫ t

0

erfc

(
1√
cx

)
dx = 0 , (7)

where erfc(·) , 1−erf(·) is the complementary error function. Defining k , c/ε
and changing the variables using s , ct and y , cx we can rewrite (7) as

k erfc

(
1√
s

)
−
∫ s

0

erfc

(
1√
y

)
dy = 0 . (8)

Note that s 7→ s/c is one-on-one and onto on (0,+∞). Hence, GT (t) has a
unique inflection point t in (0,+∞) if and only if (8) has a unique root s in
(0,+∞). In order to show that for each ε, c > 0 (or equivalently, for each
k > 0) Equation (8) has a unique root, it is enough to prove the following
lemma.

Lemma 1 The function

u(s) ,

∫ s

0

erfc (1/
√
y) dy

erfc
(
1/
√
s
)

is one-to-one and onto on (0,+∞).
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A proof of this lemma can be found in Appendix B. ut

Let us calculate the height of E [nT (t)] as a function of the distance D.
Combining Propositions 2 and 3 we have

E [nT (t)] =
λS λ̂T
ε

r

D

∫ t

0

(
e−εθ − e−εt

)
erfc

(
1√
ct

)
dθ ,

where c , 2β/(D − r)2. This can be rewritten as

E [nT (t)] =
λS λ̂T
cε

r

D

[∫ ct

0

(
e−(ε/c)x − e−(ε/c)ct

)
erfc

(
1√
x

)
dx

]

=
λS λ̂T
cε

r

D

[
F (ct, ε/c)− e−(ε/c)ctG(ct)

]
, (9)

where

F (s, a) ,
∫ s

0

e−ax erfc

(
1√
x

)
dx ,

and

G(s) ,
∫ s

0

erfc

(
1√
x

)
dx .

Expanding F and G (see Appendix A) it is easy to verify that

lim
s→+∞

e−asG(s) = 0 , and lim
s→+∞

F (s, a) =
1

a
e−2
√
a .

Therefore, we obtain that the height of E [nT (t)] is

lim
t→+∞

E [nT (t)] =
λS λ̂T
ε2

α(D)

α(r)
.

where α(x) = e−2
√
ε/(2β)x/x (see Figure 4(b)).

From (9) we can also see that if we choose ε ∼ c ∼ 1/(D − r)2, the value
the distance D affects only the scale of the curve E [nT (t)] and not its shape.
In particular, it follows that with the constraint ε ∼ 1/(D − r)2, the width of
E [nT (t)] behaves like an increasing quadratic function ∼(D− r)2. For a fixed
value of ε, it appears from numerical calculations that the width of E [nT (t)]
increases linearly with D. See Figure 4(c) for numerical approximations of the
width for few choices of the value of ε.
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3 Conclusions

The main contribution of this article is to establish an exact formula for the
transient behavior of two interacting genes, taking into account their geometric
arrangement. We mixed together a probabilistic and a geometric approach,
based only on the individual behavior of single molecules and taking into
account the Euclidian distance between genes. This provides an alternative
to more classical approaches based on concentrations (often using differential
equations).

When applied to transcription factors, for example, our analysis shows
that the delay of the production of the target gene is considerably shorter
when the distance covered by the transcription factors is short. The sharpness
of the sigmoidal response of the target gene is abruptly increased for short
distances and this result is independent of any “local” molecular recognition
phenomenon. When a biological function involving several genes has to be
triggered rapidly, it is often observed that the genes share the same transcrip-
tion factor(s) and that they dynamically co-locate when their transcriptions
start Junier et al. (2010). Our result may explain why the natural selection
favours such co-localizations.

The modeling approach and the underlying analytical methods used to
establish our result can be helpful to address several connected questions at
different levels of intracellular phenomena. Among several possible subjects,
we plan to develop the following research directions:

– There can be several transcription processes at the same time on a single
gene and the number of such simultaneous transcriptions may depend on
several limiting factors (e.g. the length of the gene). This phenomenon can
be seen as a kind of “pipelining” in the production of RNA. It could be
interesting to extend our model to cover such phenomena.

– It has been observed that, in prokaryotes, genes coding for membrane pro-
teins are located near the membrane Jensen and Shapiro (2000), allowing
the proteins under construction to anchor into the membrane. Technics
similar to the one used in this paper might be adapted to try to explain
the localization of such genes.

– A more ambitious extension of our modeling may address the geometry of
metabolic pathways. At the metabolic level, it seems that the localization
of enzymes plays an important role: several researchers have pointed out
the importance of transitory structures in order to optimize the flux of
metabolites Thellier et al. (2006); Norris et al. (2007).

– Also, in the present paper, we assume a homogeneous cytoplasm. An inter-
esting question is how to extend our current modeling to consider different
compartments inside the cell: fluxes between compartments are crucial in
cellular biology.

For all these models an important tricky issue is to properly tune the level of
abstraction to smoothly reflect behaviours at the cellular level.
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A Some Useful Formulas

I. erf(x) = 0, erf(−x) = − erf(x), lim
x→+∞

erf(x) = 1.

II. erfc(x) ≈ e−x
2

x
√
π

as x→ +∞.

Proof Using l’Hôpital rule. ut

III.

∫ s

0
erfc

(
1√
x

)
dx = (s+ 2) erfc

(
1√
s

)
− 2√

π
e−1/s√s, for s ≥ 0.

Proof Fubini’s theorem
∫ s
x=0

∫+∞
y=1/

√
x

=
∫+∞
y=1/

√
s

∫ s
x=1/y2 and integration by parts.

ut

IV.

∫
e−a

2x2−b2/x2dx =

√
π

4a

[
e2ab erf

(
ax+

b

x

)
+ e−2ab erf

(
ax− b

x

)]
+ constant,

for a, b ≥ 0.

Proof Define f , ax+b/x and g , ax−b/x. Then a2x2+b2/x2 = f2−2ab = g2+2ab
and (f ′ + g′)/(2a) = 1. ut

V.

∫ s

0
e−ax erfc

(
1√
x

)
dx =

e2
√
a

2a
erfc

(
1√
s

+
√
as

)
+
e−2
√
a

2a
erfc

(
1√
s
−√as

)

− e−as

a
erfc

(
1√
s

)
,

for a, s ≥ 0.

Proof Integration by parts, change of integration variable to y = 1/
√
x, and using

formula IV. ut

B Proof of Lemma 1

We verify that the function

u(s) ,

∫ s

0
erfc (1/

√
y) dy

erfc
(
1/
√
s
)

is one-to-one and onto on (0,+∞). That u(s) is onto follows from the fact that it is continu-
ous with lims↘0 u(s) = 0 (e.g., using l’Hôpital’s rule) and lims→+∞ u(s) = +∞ (erfc(1/

√
s)

is positive, increasing and bounded). It remains to show that u(s) is increasing.
Expanding the integral (see Appendix A) and writing z , 1/

√
s we get

u

(
1

z2

)
=

(
1
z2

+ 2
)

erfc(z)− 2√
π
e−z2

z

erfc(z)

= 2 +
1

z2
− 2√

π

e−z
2

z erfc z
.

Note that z 7→ 1/z2 is onto and decreasing on (0,+∞). Therefore, we have to show that the
function v(z) , u(1/z2) is decreasing on (0,+∞). This happens if and only if the derivative
of v is negative for z > 0.

Let us use the shorthands f(z) , erf(z) and g(z) ,
(
2/
√
π
)
e−z

2
so that

v(z) = 2 +
1

z2
+

g(z)

z (f(z)− 1)
.
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We have f ′(z) = g(z) and g′(z) = −2zg(z). Differentiating v(z) with respect to z we obtain

v′(z) = − 2

z3
+
−2z2g · (f − 1)− g · (f − 1)− zg2

z2(f − 1)2
,

which is claimed to be negative for z > 0. Since z3(f − 1)2 is positive for z > 0, it is enough
to show that the function

w(z) , −z3(f − 1)2v′(z) = 2(f − 1)2 + z(2z2 + 1)g · (f − 1) + z2g2 (10)

is positive on (0,+∞). Rearranging (10) we have

w(z) = 2f2 +
[
z(2z2 + 1)g − 4

]
f +

[
z2g2 − z(2z2 + 1)g + 2

]
.

Recall that f(z) = erf(z) takes its values on (0, 1) for z > 0. Therefore, it is sufficient to
show that for every z > 0, the quadratic function

h(x) , 2x2 +
[
z(2z2 + 1)g − 4

]
x+

[
z2g2 − z(2z2 + 1)g + 2

]
(11)

is positive for 0 < x < 1. The discriminant of (11) is

∆ =
[
z(2z2 + 1)g − 4

]2 − 8
[
z2g2 − z(2z2 + 1)g + 2

]

= z2g2 ·
[
(2z2 + 1)2 − 8

]
.

If ∆ < 0 the function h(x) is strictly positive on R. Otherwise, it has zeros

x1 =
1

4

(
−z(2z2 + 1)g + 4−

√
z2g2 · [(2z2 + 1)2 − 8]

)
,

x2 =
1

4

(
−z(2z2 + 1)g + 4 +

√
z2g2 · [(2z2 + 1)2 − 8]

)

and is positive outside the interval [x1, x2]. We claim that x2 < 0, that is,

z(2z2 + 1)g + 4 >
√
z2g2 · [(2z2 + 1)2 − 8] .

This becomes clear if we raise both sides to the power 2 and note that

8z2g2 + 8z(2z2 + 1)g + 16 > 0

for every z > 0 and g =
(
2/
√
π
)
e−z

2
.

We conclude that the function u(s) is increasing, and hence one-to-one. ut
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