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Reversibility of dynamics is a fundamental feature of nature, as it
is currently believed that all physical processes are reversible in
the ultimate microscopic scale. In this paper, we consider cellular
automata (CA) whose dynamics are reversible when restricted to
the limit set; i.e., those that obey reversibility in equilibrium.

We exploit standard topological and combinatorial arguments to
show that the limit set, in this case, is a mixing subshift of fi-
nite type (SFT), and is reached in finite time. In one dimensional
case, any mixing SFT which contains at least one homogeneous
configuration, may arise this way. We also discuss the decidabil-
ity of two related algorithmic questions.
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1 INTRODUCTION

Reversibility is a widely accepted principle in physics, according to which,
the microscopic laws governing the dynamics of the physical nature can hy-
pothetically be reversed to let the system run backward in time. Reversible
cellular automata (CA) have been extensively studied as convenient tools for
modeling physical systems, whenever capturing the microscopic reversibility
is desirable (see e.g. [16]).
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Although various elegant techniques have been devised (see e.g. [14, 15]),
the task of designing a reversible CA with certain behavior still remains far
from trivial. The fundamental reason behind this difficulty is that no algo-
rithm could exist to answer whether a given (two-dimensional) CA is re-
versible or not [7].

Here we study a broader class of CA which can be used for modeling re-
versible processes. Namely, we let the CA undergo an irreversible transient,
and require reversibility only when settled in the limit set. This is a natural
relaxation of the original property, and as we are to show, it meets another
course of generalizing the notion of reversible CA, i.e., the study of automor-
phisms of subshifts of finite type.

To further clarify the relevance of this notion, let us consider the following
abstract model of particles moving in a one-dimensional lattice. Each cell in
the lattice may take one of the states «, », or —, representing respectively, a
particle moving to the left, a particle moving to the right, and an empty space.
It is easy to verify that the rewriting rules in Figure 1(a) (together with their
mirror images) uniquely define a CA with neighborhood radius 2. This CA
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FIGURE 1

An abstract model of moving particles in 1d. Over its limit set, this CA is reversible
and conserves the number of particles. (a) Transition rules (mirror images are omit-
ted). (b) A sample space-time snapshot.

is not reversible, neither does it even conserve the number of particles, which
seems disappointing for a model of physical particles. Yet, after one step,
it settles in its limit set (i.e., the set of configurations with no occurrence of
blocks « <« and » »), over which it is reversible, and conserves the number
of particles (Figure 1(b)).

The two ends of the spectrum of the CA that are reversible over limit set,



are when the limit set contains only a single point, and when it includes the
whole space. The former, gives a nilpotent CA; the latter an ordinary re-
versible one.

In Section 2 we fix the notations and review some required preliminaries.
The reader may consult [11, 12] for a thorough treatment of the topic. The
main results are given in Section 3, where we show that for the CA in ques-
tion, the limit set is reached in finite time. This was known for the nilpotent
CA, and is trivial for the reversible ones. An immediate consequence is that
the limit set must be a mixing subshift of finite type. This gives rise to a
characterization of the limit behavior in Section 4, which is based on some
known results in symbolic dynamics. Alas, this characterization only works
for one-dimensional CA. The higher dimensional case remains open.

In Section 5 we consider two algorithmic questions important in designing
CA whose limit behavior are supposed to model a physical phenomenon. The
first question is whether a given CA is reversible over its limit set, and the
second asks whether it obeys a given conservation law over its limit set. Both
questions are seen to be undecidable (even in the one-dimensional case) using
the proof of the undecidability of nilpotency. Some further remarks and open
problems are noted in Section 6.

2 NOTATIONS AND PRELIMINARIES

Let S be a finite set. An assignment ¢ : Z% — S (d > 1) is called a configura-
tion of the lattice Z®. Each point ¢ € 7% is referred to as a cell of the lattice,
and ¢(7) is called the state of the cell i. d is the dimension of the lattice. For
the sake of succinctness, let T = Z<.

For each a € T, we define a shift operator 0@ : ST — ST, which simply
translates any configuration by a:

(c%)(i) £ c(a+1i)  foralli €T

A partial configuration is a pattern. A finite pattern is one with finite do-
main. Whenever it is not ambiguous, we may consider the patterns modulo
shifts, and loosely refer to the class of all patterns that can be obtained from
p: D — S by some shift, as the pattern p.

Let A and B be finite sets. Given a finite set N C T and a function
¢ : AN — B, we can define a mapping f : AT — BT as follows: A
configuration z € A" is mapped to a configuration y = f(x) € BT, where

y(i) £ p((o'z)|n) foralli € T



(Here g|x denotes the restriction of a function g to a subset X of its domain.)
The function ¢ is called a local rule, and N its neighborhood. When a map-
ping f is induced by a local rule, like above, we say that it is local (or, it is
locally defined).

A cellular automaton (CA) consists of a finite state set .S, a lattice T, a
finite neighborhood N C T, and a local rule ¢ : SN _, S. The set ST of
configurations together with the induced map f : ST — ST (the global map
of the CA) form a dynamical system. We often identify the CA with its global
map, and speak of the CA f.

The space of configurations ST is naturally equipped with the product
topology if we provide S with discrete topology. This space is compact (e.g.,
by Tychonoff’s Theorem) and metrizable. Given a finite pattern w : A — S,
the set [w]4 = {x € ST | x|4 = w} is called a cylinder. Cylinders are both
open and closed, and form a basis for the topology.

A compact and translation invariant subspace of ST is called a subshift.
Subshifts are exactly those subsets of ST that can be defined by forbidding a
collection of finite patterns: Given a collection F' of finite patterns, we define
the subshift

Xp 2 {336 ST (0°%)|dom(p) # P, foralla € T and p € F}

Any subshift, has a representation of this form. For a subshift X, let us de-
fine L(X) as the set of all finite patterns that occur in configurations in X’.
Because of compactness, we have X7.c(xy = & If F'is finite, X'r is called a
subshift of finite type (SFT).

Continuous translation invariant maps between subshifts coincide with
those that are induced by local rules. This is the Curtis-Hedlund-Lyndon
Theorem [5]. Put it more clearly, for subshifts X C ST and ) C T, a map-
ping f : X — Y which commutes with all shift operators, is continuous, if
and only if, there is a finite neighborhood N, and a local rule ¢ : SV — T
that generates f. (Here ¢ does not need to be total.) This again follows from
a simple compactness argument. As a consequence, we get that, any bijec-
tive local map is a homeomorphism and hence is (locally) reversible; i.e., its
inverse is also local. In particular, the inverse of a bijective CA is a CA.

Let (X, ®) be a dynamical system, with X a compact topological space,
and & a finitely generated semigroup of continuous transformations over X.
We say (X, @) is (topologically) mixing, if for any two open sets U,V C X,
we have aU NV # @ for all but finitely many o € ®.

Mixing property is invariant under epimorphisms. Namely, let (X', ®) and
(Y, @) be dynamical systems, and h : X — ) a surjective continuous map



that commutes with the action of ® (i.e., an epimorphism). It is easy to see
that if (X', ®) is mixing, so is (Y, ®).

If we think of a subshift and the shift operators as a dynamical system, the
mixing property can be expressed in terms of patterns: X’ is mixing, if and
only if, for any two patterns p, ¢ € L(X’) and all but finitely many shifts o¢,
there can be found a pattern v € L(X’) that agrees with o®p and ¢ over their
domains.

An element p € T is called a period of a configuration z € ST, if 0P (z) =
x. A configuration z is said to be (spatially) periodic if the set {c%z | a € T}
is finite. It is homogeneous if it is constant over T.

Given a CA f, a configuration c is temporally periodic if fi(c) = c for
some i > 0. It is eventually temporally periodic if f*(c) is temporally peri-
odic for some k& > 0.

Let o : SN — S be the local rule of a CA. For a state s € S, let qgs : N —
S be a pattern with ¢5(7) = s (for all i € N). A state 0 € S with p(g,) = 0
is called a quiescent state.

The limit set of a CA f : ST — ST is the intersection of all forward images
of the space of configurations A £ (1,5, f*(ST) . The limit set is translation-
invariant and compact, and so it is a subshift. A CA with singleton limit set
is called nilpotent. The single element of A in this case is a homogeneous
configuration in which all cells are quiescent.

One way to formulate the conservations laws in CA is in terms of rel-
ative invariance. An additive quantity is a function p : S — R that as-
signs a real number to each state. For any finite set A C T of cells, define
Ma(z) £ 3,4 u(z(i)), for all z € ST. Given a subshift I' C ST, we say
an endomorphism f : I' — I conserves the additive quantity u, if for any two
configurations x,z’ € T that differ in at most a finite number of cells, there
is a finite set /' C T, such that

Ma(f(2)) = Ma(f(2)) = Ma(z’) — Ma(z)
forall A D F.

3 INJECTIVITY OVER LIMIT SET

It is known [3] that for any nilpotent CA there is a finite time when all cells
go quiescent, regardless of the initial configuration; i.e., the CA reaches its
singleton limit set after a certain finite time. We show that the same is true
for every CA whose global map is injective restricted to the limit set. In what
follows, let T = Z<¢ where d > 1.



Let f : ST — ST be a CA, and A its limit set. Consider the chain
AC fHA) Cf3A) C - C ST

If for some k, f~*(A) = f~(+1(A), then for all m > k we will have
f7*(A) = f~™(A). In this case, we claim, we must also have f~#(A) = ST.
For, suppose on the contrary, that ¥ = ST — f=%(A) is non-empty. X’ is the
set of all configurations that, under iteration of f, never get inside the limit
set. On the other hand, X is an open set, and hence contains at least one
spatially periodic configuration. But every spatially periodic configuration is
eventually temporally periodic, and so cannot be in X'. This is a contradiction.
Therefore, we have

Lemma 1. Either f™(ST) = A for some m > 0, or for every m > 0 there is
a configuration c_,, € ST that enters A after exactly m steps.

Consider now the case that f is one-to-one over A. We show that there is
an m > 0 such that f™(ST) = A, i.e., the limit set is reached in finite time.
If this is not true, according to Lemma 1, for any m > 0 there is a sequence
c(_m;r)t, c&mﬁi+1, NN c(()m) of configurations in ST, such that C§T1) = f(cgm)) for
each —m <t < 0, and cém) € A, but ci’”) ¢ Afort < 0. Since c(()m) is in
A, it also has a pre-image e(™) in A. Clearly c(f'f) #£ e(™)_ Without loss of
generality (possibly using a proper translation), we can assume that they are
different at position 0, i.e., c(_"f) (0) # (™ (0). Consider the sequences

{e™}; and {7}, {93, (D)

Since ST is compact, we can choose 1 : N — N, such that, all the subse-
quences

{0y and (e}, {1 Ll

converge. Denote the limits by e, ¢y, c_1, c—_2 ..., respectively. Since f is
continuous, it preserves the limits, i.e., f(e) = ¢o and f(c;) = ¢;41 for any
t < 0. It follows that e and c¢_; are both in A. Furthermore, f(e) = f(c_1),
but e # c_1, which means f|, is not one-to-one.

Lemma 2. If the restriction of f to A is injective, there must be an m > 0
such that f™(ST) = A.

The restriction f|A is continuous, shift-invariant and onto. In case it is
one-to-one, it turns out, from Curtis-Hedlund-Lyndon theorem, that it must



also be reversible over A; i.e., f|s has a local inverse go : A — A. The local
map go can now be extended to a CA, by completing the transition table of
its local rule, arbitrarily. In particular, the extension g : ST — ST defined by
g(z) = gy o f™(x) (for all = € ST) has the convenient property that it has
the same limit set as f. (In fact, g(ST) = A.)

Lemma 2 also implies that the limit set A in this case is a subshift of finite
type. To see this, note that A is exactly the set of configurations 2 € ST that
satisfy g™ (f™(z)) = =.

The following theorem summarizes the above discussion.

Theorem 1. Ifa CA f : ST — ST is injective on its limit set A,

a) there is a CA g : ST — ST with limit set A, such that f o g(z) =
go f(x) =u, forany x € A.

b) A is a subshift of finite type, and under the evolution of f, is reached in
finite time.

A closely related theorem [6] states that if the limit set of a CA is an SFT,
it is necessarily reached in finite time: using compactness, one may show that
each forbidden pattern of the limit set must be excluded at some particular
time.

4 THE LIMIT BEHAVIOR

Let f : ST — ST beaCA, and A its limit set. Clearly, A must contain at least
one homogeneous configuration. On the other hand, if f is reversible over A,
we have f™(ST) = A for some m > 0. The full shift ST is, trivially, mixing.
Therefore, A should also be mixing.

In one-dimensional case, any surjective endomorphism f of a mixing SFT
A C S? which has at least one homogenous configuration is in fact the re-
striction of a CA to its limit set [13]. The idea is simple: given an arbitrary
configuration z, one first erases all the A-forbidden blocks from x. Large
erased blocks can then be filled (up to a margin) by blocks from the homo-
geneous configuration. Now each two consecutive non-erased blocks can be
glued together via connectors as in the definition of the mixing property for
the subshifts. Since A is of finite type, the connector depends only on a
bounded-length suffix of the left block and a bounded-length prefix of the
right block. For any suffix and prefix, some canonical connectors should be
fixed beforehand to make the process deterministic. It is straightforward to



realize these operations using a local mapping. The endomorphism f; later
may be applied to obtain a CA f which maps every configuration in S% to
one in A, and which over A agrees with f.

Theorem 2. Let f : S* — S” be a 1d CA which is reversible over its
limit set A. Then, A must be a mixing SFT having at least one homogeneous
configuration. Conversely, let A C S” be a 1d mixing SFT with at least one
homogeneous configuration, and fs : A — A any automorphism of A. Then,
there is a CA f with limit set A, such that f|x = fs.

In higher dimensions, one needs a stronger mixing property to ensure that
an SFT is the limit set of a cellular automaton which is reversible over it.
The following is an example of a 2d mixing SFT having a homogeneous
configuration which cannot be the limit set of any such CA.

Example 1. Consider the binary SFT X, defined over the lattice Z? by for-
bidding the block S: . This subshift contains two homogeneous configu-
rations. It is also mixing. To see this, note that any finite pattern p : A —
{0, W} in L(X") can be extended to one which contains only (0’s in its border.
Let us denote this new pattern by p. Now, for any two patterns p, ¢ € L(X),
we can clearly glue p and ¢ together to obtain a new pattern w € L(X), pro-
vided that we shift one of them far enough apart from the other so that their
domains do not intersect.
Yet X could not be the limit set of any CA which is reversible over its limit
set. In particular, no matter how a CA maps the configuration ¢, defined by
o W Oifi >0,
(i) = {D if i <0,
it keeps its vertical period unchanged. Therefore, it can never get rid of
the E: blocks in finite time, unless it takes ¢ to a homogeneous config-
uration, which leads to a violation of injectivity over X'. (In fact, using a
slightly more complicated argument, one can show that X’ cannot be the limit
set of any CA.)

5 ALGORITHMIC ASPECTS

We now discuss two algorithmic questions concerning the global behavior
of CA over their limit sets. Both questions turn out to be undecidable, taking
advantage of the well-known proof of the undecidability of nilpotency. Again,
let T = Z% (d > 1) be the lattice.



First, consider the algorithmic question, given a CA, whether it is re-
versible over its own limit set. Reversibility in general (over the whole space)
is decidable in 1d [1], but undecidable in higher dimensions [7, 9]. On the
other hand, the structure of the limit set is undetectable. In particular, for
every d > 1, any non-trivial property of the limit set is undecidable [10].

Any nilpotent CA is trivially reversible over its limit set. Nilpotency of the
CA is known to be undecidable for any d > 1 [8]. Not quite surprisingly, the
proof is invariably effective here, to show that our problem is undecidable,
too.

The original proof of the undecidability of nilpotency (for d = 1; note this
implies the undecidability for d > 1), uses a reduction from a version of the
tiling problem, called NW-deterministic tiling, which is in turn, shown to be
undecidable [8]. The latter can be viewed as the emptiness question of a class
of Z2-SFTs: Given a partial function ¢ : § x § — S, define the subshift I' ,,
as the set of all configurations = € S%° that satisfy ¢ (z(, j), z(i + 1, 7)) =
x(i,j + 1) for all ¢, j € Z. The problem asks if ', is empty.

A partial function ¢ can be extended to a total function

Y:SU{gt x SU{g} — SuU{q}

by (a,b) = ¢(a,b), whenever ¢(a,b) is defined, and v (a,b) £ ¢, other-
wise. Now, it is easy to see that the 1d CA with local rule ¢ is nilpotent,
if and only if, I, is empty. On the other hand, whenever I, is not empty,
the homogeneous configuration x4, with 4(¢) = ¢ has infinitely many pre-
images in the limit set of the CA. (Note that if y is another configuration in
the limit set, any configuration that agrees with y on a finite interval and with
x4 everywhere else must also be in the limit set.) Therefore, we have

Theorem 3. Given a CA over T = Z% (d > 1), it is undecidable whether it
is reversible over its limit set.

Note that using Theorem 1, it is easy to see that our question is semi-
decidable. Namely, in case a CA is reversible over its limit set, the limit set
can be detected in finite time, and one can also recognize the existence of an
inverse rule, simply by enumerating all local maps as candidates.

For the next question, we are given a CA, and a proposed conservation
law. We are, then, asked whether that conservation law holds for the CA in
equilibrium. It is known that, given a CA f and an additive quantity g, it
is decidable whether f conserves u over the whole space [4]: Note that one
only needs to verify the relative invariance criteria for the cases that the two
configurations x and z’ differ in only one cell (cf. [11]).



Here, however, we are concerned about the question, whether f conserves
w over its limit set. This is undecidable, again following the same line as in
the proof of the undecidability of nilpotency. Note, a nilpotent CA conserves
anything on its limit set. For the 1d CA with local rule ¢ as constructed above,
the additive quantity u defined with 11(¢) £ 0 and p(a) £ 1 (for a # q), is
conserved on the limit set, if and only if the CA is nilpotent.

Theorem 4. Given a CA f over T = Z% (d > 1) and an additive quantity 1,
it is undecidable whether f conserves p over its limit set.

6 CONCLUSION AND REMARKS

We studied the class of CA that are reversible over their limit sets. Since
they inevitably reach their limit sets in finite time, they are well-justified to
be called eventually reversible. The concept is comparable to that of CA that
eventually obey some conservation law [2].

An important open problem here is to find a characterization of the class
of subshifts that arise as the limit set of such CA. The limit dynamics, then,
can be determined by any automorphism of such a subshift. We know that
the limit set must be a mixing SFT, and contains at least one homogeneous
configuration. This provides the required characterization in 1d, but is shown
to be insufficient in higher dimensions.

Another open issue is to understand the transient behavior. Nilpotent CA
may be found useful in this respect, as their non-transient behavior is trivial.
Can the transient of any eventually reversible CA be somehow reduced to that
of a nilpotent CA?

As a final remark, note that although we presented our main result for
the ordinary checker-board lattices, it is valid for a large class of interesting
lattices, including the 2d triangular and hexagonal lattices, and all kinds of
crystalline lattice structures of the 3d space.

The definitions in Section 2 do not need to be changed if we substitute
T with an arbitrary finitely generated group. The Curtis-Hedlund-Lyndon
Theorem likewise holds on any group T. The bottleneck in Section 3 is when
we argue that any open set in ST has a spatially periodic point. This is valid
whenever for any finite set /' C T the group T has a finite factor G with
homomorphism A : T — G, such that the restriction h| is one-to-one. Not
all groups have such a property, as there exist infinite simple groups. Yet,
the counter-examples are weird structures that do not naturally appear in CA
theory.

10



The undecidability results in Section 5 can be extended to any finitely
generated group that has a copy of Z as subgroup. Again, the negative answer
to Burnside’s problem shows that this is not the case for all finitely generated
groups, though the counter-examples are obscure.
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